Dendrites and Pits: Untangling the Complex Behavior o Operando Video Microscopy

ACS Central Science 2, 790-801 DOI: 10.1021/acscentsci.6b00260

Citation Report

#	Article	IF	CITATIONS
4	Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Letters, 2017, 17, 1296-1301.	4.5	248
5	Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Letters, 2017, 2, 664-672.	8.8	434
6	Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganicâ^'Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 986-991.	1.7	25
7	Atomic Layer Deposition of the Solid Electrolyte Garnet Li ₇ La ₃ Zr ₂ O ₁₂ . Chemistry of Materials, 2017, 29, 3785-3792.	3.2	149
8	Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. ACS Nano, 2017, 11, 5853-5863.	7.3	155
9	Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography. ACS Applied Materials & Interfaces, 2017, 9, 18748-18757.	4.0	32
10	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 7764-7768.	7.2	989
11	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 7872-7876.	1.6	186
12	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
13	Research Progress toward the Practical Applications of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24407-24421.	4.0	95
14	Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A, 2017, 5, 11671-11681.	5.2	693
15	Visualization of Lithium Plating and Stripping via <i>in Operando</i> Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2017, 121, 7761-7766.	1.5	123
16	Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography. ACS Energy Letters, 2017, 2, 94-104.	8.8	89
17	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
18	New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Letters, 2017, 17, 7606-7612.	4.5	308
19	Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional Materials, 2017, 27, 1704391.	7.8	141
20	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
21	Dendriteâ€Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li ₃ N. Advanced Energy Materials, 2017, 7, 1700732.	10.2	190

ARTICLE IF CITATIONS # Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 22 23.0 4,365 10403-10473. In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy 8.8 Letters, 2017, 2, 2051-2057. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy, 24 8.2 209 2017, 40, 34-41. An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 271 871-886. Electrochemical performance and interfacial properties of Li-metal in lithium 26 1.6 16 bis(fluorosulfonyl)imide based electrolytes. Scientific Reports, 2017, 7, 15925. Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 11.1 908 1700007. Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chemistry of 28 3.2 155 Materials, 2017, 29, 6298-6307. Lithiumâ€Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of 29 142 Lithiumâ€Metal Batteries. Advanced Materials Interfaces, 2017, 4, 1700166. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium 30 4.0 29 electrolytes. Journal of Power Sources, 2018, 379, 344-349. A review on anode for lithium-sulfur batteries: Progress and prospects. Chemical Engineering Journal, 6.6 2018, 347, 343-365. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and 32 9.5 88 sulfur cathode. Energy Storage Materials, 2018, 15, 218-225. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. 247 Energy Storage Materials, 2018, 15, 148-170. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in 34 1.6 51 the high energy batteries. Scientific Reports, 2018, 8, 5819. Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li. Advanced Functional Materials, 2018, 28, 1705917. A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 10.2 36 95 1702296. 3D printed separator for the thermal management of high-performance Li metal anodes. Energy 95 Storage Materials, 2018, 12, 197-203. Do imaging techniques add real value to the development of better post-Li-ion batteries?. Journal of 38 5.236 Materials Chemistry A, 2018, 6, 3304-3327. Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate. ChemElectroChem, 39 58 2018, 5, 761-769.

#	Article	IF	CITATIONS
40	<i>In situ</i> analytical techniques for battery interface analysis. Chemical Society Reviews, 2018, 47, 736-851.	18.7	355
41	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ^'2. Nano Energy, 2018, 45, 203-209.	8.2	153
42	Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Advanced Energy Materials, 2018, 8, 1703491.	10.2	109
43	In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 12678-12689.	4.0	88
44	A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Materials, 2018, 15, 116-123.	9.5	53
45	Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Materials, 2018, 15, 31-36.	9.5	59
46	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
47	Recent development in lithium metal anodes of liquid-state rechargeable batteries. Journal of Alloys and Compounds, 2018, 730, 135-149.	2.8	44
48	In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field. Energy Storage Materials, 2018, 11, 118-126.	9.5	107
49	3D TiC/C Core/Shell Nanowire Skeleton for Dendriteâ€Free and Longâ€Life Lithium Metal Anode. Advanced Energy Materials, 2018, 8, 1702322.	10.2	237
50	Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF ₆ and Cyclic Carbonate Additives. ACS Energy Letters, 2018, 3, 14-19.	8.8	161
51	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	5.2	12
52	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. Engineering, 2018, 4, 831-847.	3.2	169
53	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
54	Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide Fundamental Insight on Sodium Metal Plating Behavior. ACS Nano, 2018, 12, 12255-12268.	7.3	48
55	Mechanism Explaining the Onset Time of Dendritic Lithium Electrodeposition via Considerations of the Li ⁺ Transport within the Solid Electrolyte Interphase. Journal of the Electrochemical Society, 2018, 165, D696-D703.	1.3	32
56	Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase. Advanced Energy Materials, 2018, 8, 1802350.	10.2	147
57	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018, 51, 7666-7671.	2.2	9

#	Article	IF	CITATIONS
58	Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. , 2018, , 1-27.		2
59	Mechanistic insight into dendrite–SEI interactions for lithium metal electrodes. Journal of Materials Chemistry A, 2018, 6, 19664-19671.	5.2	105
60	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018, 54, 375-382.	8.2	123
61	Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 38151-38158.	4.0	132
62	Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries. Journal of Power Sources, 2018, 407, 53-62.	4.0	62
63	Suppressing Li Metal Dendrites Through a Solid Liâ€ŀon Backup Layer. Advanced Materials, 2018, 30, e1803869.	11.1	70
64	Effect of the Electrolyte on the Cycling Efficiency of Lithium-Limited Cells and their Morphology Studied Through in Situ Optical Imaging. ACS Applied Energy Materials, 2018, 1, 5830-5835.	2.5	30
65	Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytes. Materials Today, 2018, 21, 1010-1018.	8.3	45
66	Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics. Journal of the Electrochemical Society, 2018, 165, A2801-A2806.	1.3	61
67	Electrode Edge Effects and the Failure Mechanism of Lithiumâ€Metal Batteries. ChemSusChem, 2018, 11, 3821-3828.	3.6	35
68	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266.	8.8	124
69	Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 289-296.	9.5	48
70	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1, 113-138.	13.1	290
71	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie - International Edition, 2018, 57, 9795-9798.	7.2	134
72	Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nature Communications, 2018, 9, 2490.	5.8	170
73	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie, 2018, 130, 9943-9946.	1.6	39
74	Lithiophilic Co/Co ₄ N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. Journal of Materials Chemistry A, 2018, 6, 22096-22105.	5.2	55
75	Lithium metal stripping beneath the solid electrolyte interphase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8529-8534.	3.3	150

#	Article	IF	CITATIONS
76	Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability. Advanced Energy Materials, 2018, 8, 1801427.	10.2	37
77	Mesoscale Complexations in Lithium Electrodeposition. ACS Applied Materials & Interfaces, 2018, 10, 26320-26327.	4.0	61
78	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 15859-15867.	5.2	90
79	Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries. Electrochimica Acta, 2018, 284, 485-494.	2.6	19
80	Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochimica Acta, 2018, 285, 78-85.	2.6	82
81	Nanoporous CaCO ₃ Coatings Enabled Uniform Zn Stripping/Plating for Longâ€Life Zinc Rechargeable Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1801090.	10.2	869
82	Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability. ACS Applied Materials & Interfaces, 2018, 10, 16521-16530.	4.0	29
83	Straw–Brickâ€Like Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal Anode. Small Methods, 2018, 2, 1800035.	4.6	106
84	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
85	Zipperâ€Inspired SEI Film for Remarkably Enhancing the Stability of Li Metal Anode via Nucleation Barriers Controlled Weaving of Lithium Pits. Advanced Energy Materials, 2018, 8, 1800650.	10.2	49
86	Mesoscale Understanding of Lithium Electrodeposition for Intercalation Electrodes. Journal of Physical Chemistry C, 2018, 122, 21097-21107.	1.5	6
87	XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. ACS Applied Energy Materials, 2018, 1, 4493-4504.	2.5	300
88	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
89	Effect of Praseodymium Doping on Structural and Electrochemical Performance of Lithium Titanate Oxide (Li4Ti5O12) as New Anode Material for Lithium-Sulfur Batteries. Journal of Electronic Materials, 2018, 47, 6525-6531.	1.0	9
90	Nitrogen and Oxygen Co-doped Graphitized Carbon Fibers with Sodiophilic-Rich Sites Guide Uniform Sodium Nucleation for Ultrahigh-Capacity Sodium-Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 30417-30425.	4.0	78
91	Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth. Journal of the Electrochemical Society, 2018, 165, A2654-A2666.	1.3	95
92	Confining electrodeposition of metals in structured electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6620-6625.	3.3	49
93	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247

#	Article	IF	CITATIONS
94	Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells. Advanced Materials, 2019, 31, e1902785.	11.1	121
95	Tuning sodium nucleation and stripping by the mixed surface of carbon nanotube-sodium composite electrodes for improved reversibility. Journal of Power Sources, 2019, 438, 227005.	4.0	15
96	Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Materials, 2019, 22, 18-28.	9.5	13
97	Uniform lithium deposition on N-doped carbon-coated current collectors. Chemical Communications, 2019, 55, 10124-10127.	2.2	24
98	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
99	High Capacity Utilization of Li Metal Anodes by Application of Celgard Separator-Reinforced Ternary Polymer Electrolyte. Journal of the Electrochemical Society, 2019, 166, A2142-A2150.	1.3	26
100	Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zincâ€lon Batteries. ChemSusChem, 2019, 12, 4889-4900.	3.6	120
101	Mitigating strategy in lithium dendrite formation in a Li–S cell in accelerated cycling tests. Electrochimica Acta, 2019, 327, 135007.	2.6	7
102	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A3342-A3347.	1.3	88
103	3D Lithiophilic "Hairy―Si Nanowire Arrays @ Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode. ACS Applied Materials & Interfaces, 2019, 11, 44325-44332.	4.0	25
104	High-Throughput Single-Nanoparticle-Level Imaging of Electrochemical Ion Insertion Reactions. Analytical Chemistry, 2019, 91, 14983-14991.	3.2	12
105	In situ and operando magnetic resonance imaging of electrochemical cells: A perspective. Journal of Magnetic Resonance, 2019, 308, 106600.	1.2	31
106	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. Scientific Reports, 2019, 9, 16795.	1.6	30
107	Diagnosing current distributions in batteries with magnetic resonance imaging. Journal of Magnetic Resonance, 2019, 309, 106601.	1.2	23
108	Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss. Journal of the Electrochemical Society, 2019, 166, A3456-A3463.	1.3	45
109	Transmission Line Model for Description of the Impedance Response of Li Electrodes with Dendritic Growth. Journal of Physical Chemistry C, 2019, 123, 27997-28007.	1.5	46
110	On the Reversibility and Fragility of Sodium Metal Electrodes. Advanced Energy Materials, 2019, 9, 1901651.	10.2	48
111	Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 21794-21801.	5.2	71

#	Article	IF	CITATIONS
112	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	5.2	4
113	Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses, 2019, , .	0.0	4
114	Nucleation and Early Stage Growth of Li Electrodeposits. Nano Letters, 2019, 19, 8191-8200.	4.5	159
115	On the Reliability of Sodium Metal Anodes: The Influence of Neglected Parameters. Journal of the Electrochemical Society, 2019, 166, A3122-A3131.	1.3	17
116	Mechanistic understanding of electrochemical plating and stripping of metal electrodes. Journal of Materials Chemistry A, 2019, 7, 4668-4688.	5.2	32
117	Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy and Environmental Science, 2019, 12, 780-794.	15.6	310
118	Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes. Electrochimica Acta, 2019, 300, 299-305.	2.6	27
119	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
120	Ethylene Carbonateâ€Free Electrolytes for Highâ€Nickel Layered Oxide Cathodes in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901152.	10.2	78
121	Ironing Controllable Lithium into Lithiotropic Carbon Fiber Fabric: A Novel Li-Metal Anode with Improved Cyclability and Dendrite Suppression. ACS Applied Materials & Interfaces, 2019, 11, 21584-21592.	4.0	14
122	Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries. Journal of the Electrochemical Society, 2019, 166, A1752-A1762.	1.3	78
123	Non-destructive characterization of lithium deposition at the Li/separator and Li/carbon matrix interregion by synchrotron X-ray tomography. Nano Energy, 2019, 62, 11-19.	8.2	26
124	Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modeling. Journal of the Electrochemical Society, 2019, 166, A1591-A1602.	1.3	17
125	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
126	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
127	Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. Journal of Materials Chemistry A, 2019, 7, 12498-12506.	5.2	52
128	Electrodeposition of the NaK Alloy with a Liquid Organic Electrolyte. ACS Applied Energy Materials, 2019, 2, 3009-3012.	2.5	11
129	Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chemical Engineering Science, 2019, 194, 142-147.	1.9	152

		CITATION REPORT		
#	Article		IF	Citations
130	Electrodeposition stability of metal electrodes. Energy Storage Materials, 2019, 20, 1-6.		9.5	68
131	Ag-Modified Cu Foams as Three-Dimensional Anodes for Rechargeable Zinc–Air Batteri Nano Materials, 2019, 2, 2679-2688.	ies. ACS Applied	2.4	52
132	Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enal dendrite-free anode for long-life zinc rechargeable aqueous batteries. Applied Surface Sc 481, 852-859.	bling a ience, 2019,	3.1	206
133	Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019, 1, 152	-158.	4.4	328
134	Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room lithium battery. Journal of Power Sources, 2019, 420, 63-72.	temperature	4.0	186
136	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithit batteries. Nature Energy, 2019, 4, 365-373.	ım	19.8	681
137	Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes. Angewand International Edition, 2019, 58, 5936-5940.	te Chemie -	7.2	35
138	Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes. Angewand 2019, 131, 5997-6001.	te Chemie,	1.6	8
140	Lithium metal batteries capable of stable operation at elevated temperature. Energy Stor 2019, 23, 646-652.	rage Materials,	9.5	87
141	Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal ano Storage Materials, 2019, 23, 539-546.	de. Energy	9.5	88
142	Exploiting self-heat in a lithium metal battery for dendrite healing. Energy Storage Mater 291-298.	ials, 2019, 20,	9.5	50
143	Protecting lithium/sodium metal anode with metal-organic framework based compact ar shield. Nano Energy, 2019, 60, 866-874.	nd robust	8.2	113
144	Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium met Journal of Energy Chemistry, 2019, 37, 197-203.	al anode.	7.1	116
145	Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influent Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials 1900574.	ce on the , 2019, 9,	10.2	123
146	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019	, 119, 5416-5460.	23.0	572
148	In Situ Observation of Dendrite Behavior of Electrode in Half and Full Cells. Journal of the Electrochemical Society, 2019, 166, A1107-A1113.		1.3	35
149	Water as an Effective Additive for Highâ€Energyâ€Density Na Metal Batteries? Studies ir Superconcentrated Ionic Liquid Electrolyte. ChemSusChem, 2019, 12, 1700-1711.	1a	3.6	36
150	Single Additive with Dual Functional-Ions for Stabilizing Lithium Anodes. ACS Applied Ma Interfaces, 2019, 11, 11360-11368.	iterials &	4.0	49

#	Article	IF	CITATIONS
151	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
152	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	11.7	358
153	Detecting Li Dendrites in a Twoâ€Electrode Battery System. Advanced Materials, 2019, 31, e1807405.	11.1	38
154	Efficient Liâ€lonâ€Conductive Layer for the Realization of Highly Stable Highâ€Voltage and Highâ€Capacity Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803722.	10.2	54
155	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122
156	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	5.2	48
157	Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3806-A3819.	1.3	12
158	Nano-SiO ₂ coating enabled uniform Na stripping/plating for dendrite-free and long-life sodium metal batteries. Nanoscale Advances, 2019, 1, 4989-4994.	2.2	14
159	A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals. Journal of Materials Chemistry A, 2019, 7, 25389-25398.	5.2	25
160	Mesoscale modeling in electrochemical devices—A critical perspective. Progress in Energy and Combustion Science, 2019, 71, 118-142.	15.8	75
161	The Role of Cellulose Based Separator in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5237-A5243.	1.3	27
162	In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470.	11.1	133
163	Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A89-A97.	1.3	221
165	Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy, 2019, 55, 316-326.	8.2	84
166	Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Materials, 2019, 21, 180-189.	9.5	132
167	Modeling of Dendrite Formation as a Consequence of Diffusion-Limited Electrodeposition. Journal of the Electrochemical Society, 2019, 166, D3182-D3189.	1.3	22
168	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
169	Electrolyte Confinement Alters Lithium Electrodeposition. ACS Energy Letters, 2019, 4, 156-162.	8.8	65

#	Article	IF	CITATIONS
170	Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1802534.	10.2	132
171	Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage Materials, 2020, 25, 858-865.	9.5	289
172	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
173	Heatâ€Resistant Trilayer Separators for Highâ€Performance Lithiumâ€Ion Batteries. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900504.	1.2	6
174	How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050502.	1.3	43
175	Controlling structure of vertically grown graphene sheets on carbon fibers for hosting Li and Na metals as rechargeable battery anodes. Carbon, 2020, 158, 394-405.	5.4	16
176	Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy, 2020, 70, 104479.	8.2	34
177	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 8366-8375.	4.0	29
178	Improvement of the Cycling Performance of Aluminum Anodes through Operando Light Microscopy and Kinetic Analysis. ChemSusChem, 2020, 13, 974-985.	3.6	20
179	Structure and mechanical properties of electroplated mossy lithium: Effects of current density and electrolyte. Energy Storage Materials, 2020, 26, 276-282.	9.5	11
180	Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Materials Horizons, 2020, 7, 843-854.	6.4	77
181	Three-Dimensional Superlithiophilic Interphase for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 5767-5774.	4.0	36
182	Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation. Physical Chemistry Chemical Physics, 2020, 22, 575-588.	1.3	14
183	Synchronous Healing of Li Metal Anode via Asymmetrical Bidirectional Current. IScience, 2020, 23, 100781.	1.9	48
184	Understanding Transformations in Battery Materials Using in Situ and Operando Experiments: Progress and Outlook. ACS Energy Letters, 2020, 5, 335-345.	8.8	82
185	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
186	The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proceedings of the United States of America, 2020, 117, 73-79.	3.3	220
187	Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy, 2020, 69, 104399.	8.2	25

#	Article	IF	CITATIONS
188	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	8.8	53
189	Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 200-207.	2.5	67
190	Mechanistics of Lithium-Metal Battery Performance by Separator Architecture Design. ACS Applied Materials & Interfaces, 2020, 12, 556-566.	4.0	27
191	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	5.8	19
192	Thickness variation of lithium metal anode with cycling. Journal of Power Sources, 2020, 476, 228749.	4.0	26
193	Highly Stable Porous Polyimide Sponge as a Separator for Lithium-Metal Secondary Batteries. Nanomaterials, 2020, 10, 1976.	1.9	6
194	An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive. Journal of Materials Chemistry A, 2020, 8, 23844-23850.	5.2	12
195	Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000ÂmA/cm2. Materials Today Energy, 2020, 18, 100515.	2.5	14
196	Minimizing lithium deactivation during high-rate electroplating via sub-ambient thermal gradient control. Materials Today Energy, 2020, 18, 100538.	2.5	7
197	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
198	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	14.4	141
199	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Science China Chemistry, 2020, 63, 1306-1314.	4.2	32
200	On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium–Sulfur Full Battery. ACS Applied Materials & Interfaces, 2020, 12, 53860-53868.	4.0	12
201	Kinetics of lithium electrodeposition and stripping. Journal of Chemical Physics, 2020, 153, 194701.	1.2	15
202	Effect of salt concentration profiles on protrusion growth in lithium-polymer‑lithium cells. Solid State Ionics, 2020, 358, 115517.	1.3	13
203	Noninvasive <i>In Situ</i> NMR Study of "Dead Lithium―Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 20814-20827.	6.6	160
204	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	2.0	33
205	Investigations into Reactions between Sodium Metal and Na ₃ PS _{4–<i>x</i>} O _{<i>x</i>} Solid-State Electrolytes: Enhanced Stability of the Na ₃ PS ₃ O Solid-State Electrolyte. ACS Applied Energy Materials, 2020, 3, 11559-11569	2.5	17

#	Article	IF	CITATIONS
206	Shielding Polysulfide Intermediates by an Organosulfurâ€Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
207	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
208	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
209	<scp>Conductivity–modulus–<i>T</i>_g</scp> relationships in solventâ€free, single lithium ion conducting network electrolytes. Journal of Polymer Science, 2020, 58, 2376-2388.	2.0	11
210	Understanding additive controlled lithium morphology in lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 16960-16972.	5.2	26
211	Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 2020, 32, 178-184.	9.5	45
212	Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy. Cell Reports Physical Science, 2020, 1, 100139.	2.8	67
213	Glassy Li metal anode for high-performance rechargeable Li batteries. Nature Materials, 2020, 19, 1339-1345.	13.3	162
214	Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nature Nanotechnology, 2020, 15, 883-890.	15.6	95
215	Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes. Electrochimica Acta, 2020, 364, 136878.	2.6	14
216	Designer Self-Assembled Polyelectrolyte Complex Nanoparticle Membrane for a Stable Lithium–Sulfur Battery at Lean Electrolyte Conditions. ACS Applied Energy Materials, 2020, 3, 7908-7919.	2.5	15
217	Sustainable Formation of Sulfur-Enriched Solid Electrolyte Interface on a Li Metal Electrode by Sulfur Chain-Containing Polymer Electrolyte Interfacial Layers. ACS Applied Energy Materials, 2020, 3, 10070-10079.	2.5	5
218	Electrolyte screening studies for Li metal batteries. Chemical Communications, 2020, 56, 11883-11886.	2.2	9
219	Threeâ€Dimensional Wettable Carbon Felt Host for Stable Lithium Metal Anode. Energy Technology, 2020, 8, 2000604.	1.8	12
220	Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: mechanism studies of dendrite suppression and corrosion inhibition. Journal of Materials Chemistry A, 2020, 8, 20637-20649.	5.2	39
221	Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Advanced Functional Materials, 2020, 30, 2003932.	7.8	210
222	A polymeric composite protective layer for stable Li metal anodes. Nano Convergence, 2020, 7, 21.	6.3	17
223	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 51563-51572.	4.0	30

#	Article	IF	CITATIONS
224	Leveraging Cation Identity to Engineer Solid Electrolyte Interphases for Rechargeable Lithium Metal Anodes. Cell Reports Physical Science, 2020, 1, 100239.	2.8	11
225	Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 2020, 14, 14549-14578.	7.3	126
226	Molar Volume Mismatch: A Malefactor for Irregular Metallic Electrodeposition with Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 082510.	1.3	44
227	3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A, 2020, 8, 11719-11727.	5.2	111
228	Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 090540.	1.3	33
229	Rechargeable Aqueous Zincâ€ion Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
230	Designing Polymeric Interphases for Stable Lithium Metal Deposition. Nano Letters, 2020, 20, 5749-5758.	4.5	23
231	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265
232	Li ₂ O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium. Chemistry of Materials, 2020, 32, 5525-5533.	3.2	101
233	Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes. Joule, 2020, 4, 1324-1336.	11.7	98
234	Nonwoven rGO Fiberâ€Aramid Separator for Highâ€Speed Charging and Discharging of Li Metal Anode. Advanced Energy Materials, 2020, 10, 2001479.	10.2	36
235	Inâ€Plane Lithium Growth Enabled by Artificial Nitrateâ€Rich Layer: Fast Deposition Kinetics and Desolvation/Adsorption Mechanism. Small, 2020, 16, e2000769.	5.2	26
236	Deciphering pitting behavior of lithium metal anodes in lithium sulfur batteries. Journal of Energy Chemistry, 2020, 49, 257-261.	7.1	14
237	Effects of Atmospheric Gases on Li Metal Cyclability and Solid-Electrolyte Interphase Formation. ACS Energy Letters, 2020, 5, 1088-1094.	8.8	29
238	Mesoscale Anatomy of Dead Lithium Formation. Journal of Physical Chemistry C, 2020, 124, 6502-6511.	1.5	31
239	Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: <i>operando</i> analysis and ALD interlayer effects. Journal of Materials Chemistry A, 2020, 8, 6291-6302.	5.2	61
240	Temperature Dependence of Dendritic Lithium Electrodeposition: A Mechanistic Study of the Role of Transport Limitations within the SEI. Journal of the Electrochemical Society, 2020, 167, 062503.	1.3	37
241	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8	201

#	Article	IF	CITATIONS
242	A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid‧tate Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399.	11.1	292
243	Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility. Matter, 2020, 2, 1025-1048.	5.0	240
244	Plan-View <i>Operando</i> Video Microscopy of Li Metal Anodes: Identifying the Coupled Relationships among Nucleation, Morphology, and Reversibility. ACS Energy Letters, 2020, 5, 994-1004.	8.8	82
245	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
246	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	1.1	14
247	Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and LLZTO. Journal of Colloid and Interface Science, 2020, 580, 389-398.	5.0	20
248	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
249	Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. Journal of Power Sources, 2020, 471, 228475.	4.0	168
250	Morphology-Safety Implications of Interfacial Evolution in Lithium Metal Anodes. Journal of Physical Chemistry C, 2020, 124, 16784-16795.	1.5	17
251	Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters. ACS Applied Materials & Interfaces, 2020, 12, 32863-32870.	4.0	8
252	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 2020, 32, e2003425.	11.1	278
253	Effect of high concentration of polysulfides on Li stripping and deposition. Electrochimica Acta, 2020, 354, 136696.	2.6	15
254	Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using <i>in situ</i> NMR spectroscopy. Journal of Materials Chemistry A, 2020, 8, 14975-14992.	5.2	57
255	Sodium metal anodes: Deposition and dissolution behaviour and SEI formation. Electrochimica Acta, 2020, 354, 136698.	2.6	43
256	Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Materials, 2020, 31, 344-351.	9.5	48
257	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	23.3	284
258	Draining Over Blocking: Nanoâ€Composite Janus Separators for Mitigating Internal Shorting of Lithium Batteries. Advanced Materials, 2020, 32, e1906836.	11.1	62
259	Simultaneous Suppression of Shuttle Effect and Lithium Dendrite Growth by Lightweight Bifunctional Separator for Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 2643-2652.	2.5	34

#	Article	IF	CITATIONS
260	Structure ontrolled Li Metal Electrodes for Postâ€Liâ€Ion Batteries: Recent Progress and Perspectives. Advanced Materials Interfaces, 2020, 7, 1902113.	1.9	33
261	Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies, 2020, 24, e00158.	1.7	10
262	Lithium Metal Protection by a Cross-Linked Polymer Ionic Liquid and Its Application in Lithium Battery. ACS Applied Energy Materials, 2020, 3, 2020-2027.	2.5	37
263	A systematical study on the electrodeposition process of metallic lithium. Journal of Energy Chemistry, 2020, 49, 59-70.	7.1	16
264	Largeâ€Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Small, 2020, 16, e1905620.	5.2	71
265	Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes. ACS Energy Letters, 2020, 5, 701-709.	8.8	91
266	Separator-free and concentrated LiNO ₃ electrolyte cells enable uniform lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 3999-4006.	5.2	23
267	Surface diffusion manifestation in electrodeposition of metal anodes. Physical Chemistry Chemical Physics, 2020, 22, 11286-11295.	1.3	53
268	Dendriteâ€Free Lithium Anodes with a Metal Organic Frameworkâ€Derived Cakeâ€like TiO ₂ Coating on the Separator. ChemElectroChem, 2020, 7, 2159-2164.	1.7	8
269	Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques. Journal of Power Sources, 2020, 461, 228135.	4.0	71
270	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
271	An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 3051-3057.	2.5	8
272	Electrolyte design for Li metal-free Li batteries. Materials Today, 2020, 39, 118-126.	8.3	138
273	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	8.8	85
274	A robust, highly reversible, mixed conducting sodium metal anode. Science Bulletin, 2021, 66, 179-186.	4.3	29
275	A Multilayer Ceramic Electrolyte for All‣olid‣tate Li Batteries. Angewandte Chemie - International Edition, 2021, 60, 3781-3790.	7.2	71
276	Submicron interlayer for stabilizing thin Li metal powder electrode. Chemical Engineering Journal, 2021, 406, 126834.	6.6	12
277	Armed lithium metal anodes with functional skeletons. Materials Today Nano, 2021, 13, 100103.	2.3	38

CITATION REPORT ARTICLE IF CITATIONS New insights into the formation of silicon–oxygen layer on lithium metal anode via in situ reaction 7.1 18 with tetraethoxysilane. Journal of Energy Chemistry, 2021, 56, 14-22. Spontaneously formation of SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME electrolytes. 3.1 Applied Surface Science, 2021, 537, 147983. Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. Advanced Energy 10.2 30 Materials, 2021, 11, 2003039. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries. Journal of Membrane Science, 2021, 620, 118926. Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy and Environmental 15.6 95 Science, 2021, 14, 602-642. Phase-field study of dendritic morphology in lithium metal batteries. Journal of Power Sources, 2021, 4.0 484, 229203. A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2021, 133, 1.6 13 3825-3834. Electrochemical Methods and Protocols for Characterization of Ceramic and Polymer Electrolytes 9 2.4 for Rechargeable Batteries. Batteries and Supercaps, 2021, 4, 596-606. Multi-storey corridor structured host for a large area capacity and high rate metallic lithium anode. 2.6 8 Electrochimica Acta, 2021, 365, 137341. Laser Patterning of Highâ€Massâ€Loading Graphite Anodes for Highâ€Performance Liâ€Ion Batteries. Batteries 2.4 and Supercaps, 2021, 4, 464-468. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, 9.5 165 strategies, and perspectives. Energy Storage Materials, 2021, 34, 515-535. Sodium Cyclopentadienide as a New Type of Electrolyte for Sodium Batteries. ChemElectroChem, 2021, 8,365-369. Advanced liquid electrolytes enable practical applications of high-voltage lithium–metal full 2.2 27 batteries. Chemical Communications, 2021, 57, 840-858. Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232. 3.2 SEI Formation on Sodium Metal Electrodes in Superconcentrated Ionic Liquid Electrolytes and the 4.0 34 Effect of Additive Water. ACS Applied Materials & amp; Interfaces, 2021, 13, 5706-5720. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 8.8 340 6,395-403.

294	Effects of Tin on the Morphological and Electrochemical Properties of Arc-Discharge Nanomaterials. Jom, 2021, 73, 847-855.	0.9	5
205	Advanced Li metal anode by fluorinated metathesis on conjugated carbon networks. Energy and	15.6	10

Environmental Science, 2021, 14, 940-954.

#

278

279

280

282

284

286

288

290

#	Article	IF	CITATIONS
296	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
297	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	15.6	27
298	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
299	Reactivity and Evolution of Ionic Phases in the Lithium Solid–Electrolyte Interphase. ACS Energy Letters, 2021, 6, 877-885.	8.8	22
300	In Situ Optical Investigations of Lithium Depositions on Pristine and Aged Lithium Metal Electrodes. Journal of the Electrochemical Society, 2021, 168, 020510.	1.3	5
301	Interface Aspects in Allâ€Solidâ€State Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2003939.	10.2	66
302	Robust Cycling of Ultrathin Li Metal Enabled by Nitrateâ€Preplanted Li Powder Composite. Advanced Energy Materials, 2021, 11, 2003769.	10.2	48
303	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	10.2	114
304	Compressive creep deformation of lithium foil at varied cell conditions. Journal of Power Sources, 2021, 488, 229404.	4.0	18
305	Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ (LLZO) Garnetâ€₹ype Solid Electrolyte. Batteries and Supercaps, 2021, 4, 1145-1155.	2.4	23
306	An Overview on Protecting Metal Anodes with Alloyâ€Type Coating. Batteries and Supercaps, 2021, 4, 1252-1266.	2.4	13
307	Electrochemical behavior of residual salts and an effective method to remove impurities in the formation of porous copper electrode for lithium metal batteries. International Journal of Energy Research, 2021, 45, 10738-10745.	2.2	4
308	An effective strategy for shielding polysulfides and regulating lithium deposition in lithium–sulfur batteries. Journal of Power Sources, 2021, 489, 229500.	4.0	14
309	Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Frontiers in Energy Research, 2021, 9, .	1.2	15
310	Local Substrate Heterogeneity Influences Electrochemical Activity of TEM Grid-Supported Battery Particles. Frontiers in Chemistry, 2021, 9, 651248.	1.8	1
311	Unravelling the Mechanism of Lithium Nucleation and Growth and the Interaction with the Solid Electrolyte Interface. ACS Energy Letters, 2021, 6, 1719-1728.	8.8	61
312	An anode-free Li metal cell with replenishable Li designed for long cycle life. Energy Storage Materials, 2021, 36, 251-256.	9.5	18
313	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056.	23.0	165

#	Article	IF	CITATIONS
314	On the Importance of Li Metal Morphology on the Cycling of Lithium Metal Polymer Cells. Journal of the Electrochemical Society, 2021, 168, 040505.	1.3	12
315	Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy Materials, 2021, 11, 2100470.	10.2	13
316	Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 267, 115067.	1.7	18
317	Multimodal cell with simultaneous electrochemical quartz crystal microbalance and <i>in operando</i> spectroscopic ellipsometry to understand thin film electrochemistry. Review of Scientific Instruments, 2021, 92, 053902.	0.6	6
318	Thermophysical abuse couplings in batteries: From electrodes to cells. MRS Bulletin, 2021, 46, 410-419.	1.7	2
319	Emerging applications of stimulated Raman scattering microscopy in materials science. Matter, 2021, 4, 1460-1483.	5.0	25
320	Regulated Li Electrodeposition Behavior through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 5132-5142.	2.5	20
321	Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries. Energy & Fuels, 2021, 35, 9187-9208.	2.5	14
322	Model Based Investigation of Lithium Deposition Including an Optimization of Fast Charging Lithium Ion Cells. Journal of the Electrochemical Society, 2021, 168, 050538.	1.3	5
323	Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous membranes for dendrite-free Lithium metal batteries. Energy Storage Materials, 2021, 37, 233-242.	9.5	41
324	Effects of Optimized Electrode Surface Roughness and Solid Electrolyte Interphase on Lithium Dendrite Growth. Energy Technology, 2021, 9, 2000968.	1.8	12
325	Strategies to anode protection in lithium metal battery: A review. InformaÄnÃ-Materiály, 2021, 3, 1333-1363.	8.5	140
326	Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Materials, 2021, 37, 315-324.	9.5	46
327	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
328	Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling. Journal of Alloys and Compounds, 2021, 865, 158748.	2.8	27
329	Tomography Imaging of Lithium Electrodeposits Using Neutron, Synchrotron X-Ray, and Laboratory X-Ray Sources: A Comparison. Frontiers in Energy Research, 2021, 9, .	1.2	10
330	Highly Stable Quasi‣olid‣tate Lithium Metal Batteries: Reinforced Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface by a Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339.	10.2	62
331	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12

#	Article	IF	CITATIONS
332	Stabilizing Li-metal host anode with LiF-rich solid electrolyte interphase. Nano Convergence, 2021, 8, 18.	6.3	12
333	Fast Li Plating Behavior Probed by X-ray Computed Tomography. Nano Letters, 2021, 21, 5254-5261.	4.5	19
334	Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. Nano Letters, 2021, 21, 7070-7078.	4.5	72
335	Evolution of Protrusions on Lithium Metal Anodes Stabilized by a Solid Block Copolymer Electrolyte Studied Using Time-Resolved X-ray Tomography. ACS Applied Materials & Interfaces, 2021, 13, 27006-27018.	4.0	11
336	High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes. Scientific Reports, 2021, 11, 13268.	1.6	28
337	Operando optical tracking of single-particle ion dynamics in batteries. Nature, 2021, 594, 522-528.	13.7	121
338	Determination of Electrolyte Transport Properties with a Multi-Reference-Electrode Cell. Journal of the Electrochemical Society, 2021, 168, 060509.	1.3	7
339	Electrolyte interface design for regulating Li dendrite growth in rechargeable Li-metal batteries: A theoretical study. Journal of Power Sources, 2021, 496, 229791.	4.0	14
340	A Lithium-Metal Anode with Ultra-High Areal Capacity (50 mAh cmâ^'2) by Gridding Lithium Plating/Stripping. Energy Storage Materials, 2021, 38, 190-199.	9.5	55
341	Characterizing the Microstructure of Separators in Lithium Batteries and Their Effects on Dendritic Growth. ACS Applied Energy Materials, 2021, 4, 7848-7861.	2.5	13
342	Operando Analysis of Interphase Dynamics in Anode-Free Solid-State Batteries with Sulfide Electrolytes. Journal of the Electrochemical Society, 2021, 168, 070557.	1.3	30
343	Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes. Journal of the Electrochemical Society, 2021, 168, 070536.	1.3	31
344	Effect of Building Block Connectivity and Ion Solvation on Electrochemical Stability and Ionic Conductivity in Novel Fluoroether Electrolytes. ACS Central Science, 2021, 7, 1232-1244.	5.3	34
345	On the Thermodynamic Origin of the Formation of Li-Dendrites in an Electrochemical Cell. Journal of the Electrochemical Society, 2021, 168, 100503.	1.3	5
346	Organic–Inorganic Hybrid SEI Induced by a New Lithium Salt for High-Performance Metallic Lithium Anodes. ACS Applied Materials & Interfaces, 2021, 13, 32886-32893.	4.0	21
347	Challenges in regulating interfacialâ€chemistry of the sodiumâ€metal anode for roomâ€temperature <scp>sodiumâ€sulfur</scp> batteries. Energy Storage, 2022, 4, e264.	2.3	18
348	Accelerated Growth of Electrically Isolated Lithium Metal during Battery Cycling. ACS Applied Materials & Interfaces, 2021, 13, 35750-35758.	4.0	18
349	3-Thiopheneboronic acid: an effective additive for regulation on electrode/electrolyte interphase of lithium metal battery with high-loading cathode. Electrochimica Acta, 2021, 386, 138485.	2.6	16

#	Article	IF	CITATIONS
350	Enhancing the Cycling Stability for Lithium-Metal Batteries by Localized High-Concentration Electrolytes with 2-Fluoropyridine Additive. ACS Applied Energy Materials, 2021, 4, 10234-10243.	2.5	18
351	Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach. ACS Energy Letters, 2021, 6, 3086-3095.	8.8	33
352	Rate Limitations in Composite Solid-State Battery Electrodes: Revealing Heterogeneity with <i>Operando</i> Microscopy. ACS Energy Letters, 2021, 6, 2993-3003.	8.8	33
353	Large Cumulative Capacity Enabled by Regulating Lithium Plating with Metal–Organic Framework Layers on Porous Carbon Nanotube Scaffolds. Advanced Functional Materials, 2021, 31, 2104899.	7.8	16
354	Dendrite-Free and Ultra-Long-Life Lithium Metal Anode Enabled via a Three-Dimensional Ordered Porous Nanostructure. ACS Applied Materials & Interfaces, 2021, 13, 41744-41752.	4.0	11
355	Strategies to Solve Lithium Battery Thermal Runaway: From Mechanism to Modification. Electrochemical Energy Reviews, 2021, 4, 633-679.	13.1	85
356	"Less is More′′: Ultra Low LiPF ₆ Concentrated Electrolyte for Efficient Liâ€lon Batteries. Batteries and Supercaps, 2021, 4, 1708-1719.	2.4	9
357	Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Materials, 2021, 39, 203-224.	9.5	59
358	Liquid Metal Welding to Suppress Li Dendrite by Equalized Heat Distribution. Advanced Functional Materials, 2021, 31, 2106740.	7.8	40
359	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86, 106142.	8.2	116
360	Impact of Lithiumâ€lon Coordination on Lithium Electrodeposition. Energy and Environmental Materials, 2023, 6, .	7.3	5
361	Enabling Argyrodite Sulfides as Superb Solidâ€State Electrolyte with Remarkable Interfacial Stability Against Electrodes. Energy and Environmental Materials, 2022, 5, 852-864.	7.3	43
362	Quantification of Efficiency in Lithium Metal Negative Electrodes via Operando X-ray Diffraction. Chemistry of Materials, 2021, 33, 7537-7545.	3.2	17
363	Mo ₂ C Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45651-45660.	4.0	7
364	In situ visualization of zinc plating in gel polymer electrolyte. Electrochimica Acta, 2021, 391, 138877.	2.6	6
365	Abrasive Blasting of Lithium Metal Surfaces Yields Clean and 3Dâ€Structured Lithium Metal Anodes with Superior Properties. Energy Technology, 2021, 9, 2100455.	1.8	3
366	Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage. Journal of Energy Chemistry, 2022, 66, 647-656.	7.1	16
367	Similarities in Lithium Growth at Vastly Different Rates. ChemElectroChem, 2021, 8, 3882-3893.	1.7	4

#	Article	IF	CITATIONS
368	Diffusion Enhancement to Stabilize Solid Electrolyte Interphase. Advanced Energy Materials, 2021, 11, 2101774.	10.2	21
369	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	6.6	11
370	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
371	Assessing LiF as coating material for Li metal electrodes. Journal of Applied Electrochemistry, 2022, 52, 339-355.	1.5	1
372	Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries. ACS Energy Letters, 2021, 6, 3734-3749.	8.8	76
373	Identifying Pitfalls in Lithium Metal Battery Characterization. Batteries and Supercaps, 2022, 5, .	2.4	5
374	In Situ Construction of Aramid Nanofiber Membrane on Li Anode as Artificial SEI Layer Achieving Ultraâ€High Stability. Small, 2021, 17, e2102347.	5.2	28
375	Highly stable and robust bi-electrodes interfacial protective films for practical lithium metal batteries. Journal of Power Sources, 2021, 509, 230370.	4.0	11
376	An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 602, 859-867.	5.0	29
377	Reactive surface coating of metallic lithium and its role in rechargeable lithium metal batteries. Electrochimica Acta, 2021, 397, 139270.	2.6	7
378	Ion competition and limiting dendrite growth models of hybrid-ion symmetric cell. Energy Storage Materials, 2021, 42, 268-276.	9.5	20
379	ZnF2 doped porous carbon nanofibers as separator coating for stable lithium-metal batteries. Chemical Engineering Journal, 2021, 424, 130346.	6.6	27
380	Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Materials, 2021, 43, 229-237.	9.5	75
381	In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment. Journal of Energy Chemistry, 2022, 66, 295-305.	7.1	21
382	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
383	Can a Transport Model Predict Inverse Signatures in Lithium Metal Batteries Without Modifying Kinetics?. Journal of the Electrochemical Society, 2020, 167, 160547.	1.3	7
384	Lithium stripping: anisotropic evolution and faceting of pits revealed by <i>operando</i> 3-D microscopy. Journal of Materials Chemistry A, 2021, 9, 21013-21023.	5.2	17
385	First ycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithiumâ€Metal Electrodes. Advanced Energy Materials, 2021, 11, 2003674.	10.2	18

#	Article	IF	CITATIONS
386	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	5.2	15
387	Rapid Oxidation and Reduction of Lithium for Improved Cycling Performance and Increased Homogeneity. ACS Applied Materials & Interfaces, 2021, 13, 2654-2661.	4.0	9
388	Unraveling the Mechanisms of Lithium Metal Plating/Stripping via In Situ/Operando Analytical Techniques. Advanced Energy Materials, 2021, 11, 2003004.	10.2	49
389	Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. , 2020, , 1193-1219.		1
390	The role of mechanical pressure on dendritic surface toward stable lithium metal anode. Nano Energy, 2020, 77, 105098.	8.2	27
391	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Interfaces, 2021, 13, 18-33.	4.0	41
392	Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using Symmetric Li-Metal Coin Cells. Journal of the Electrochemical Society, 2020, 167, 120526.	1.3	16
393	Editors' Choice—Perspective—Challenges in Moving to Multiscale Battery Models: Where Electrochemistry Meets and Demands More from Math. Journal of the Electrochemical Society, 2020, 167, 133501.	1.3	12
394	Reducing Dendrite Growth in Lithium Metal Batteries by Creeping Poiseuille and Couette Flows. Journal of the Electrochemical Society, 2020, 167, 160525.	1.3	6
395	A Quasi-gel SiO ₂ /Sodium Alginate (SA) Composite Electrolyte for Long-life Zinc-manganese Aqueous Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 909.	0.6	4
398	<i>Operando</i> video microscopy of Li plating and re-intercalation on graphite anodes during fast charging. Journal of Materials Chemistry A, 2021, 9, 23522-23536.	5.2	54
399	Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes. Advanced Materials, 2021, 33, e2105951.	11.1	212
400	Impact of the Solidâ€Electrolyte Interface on Dendrite Formation: A Case Study Based on Zinc Metal Electrodes. ChemElectroChem, 2022, 9, .	1.7	1
401	Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy. Journal of the Electrochemical Society, 2021, 168, 100517.	1.3	10
402	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.		0
403	Confining Electrodeposition of Metals in Structured Electrolytes. Springer Theses, 2019, , 59-79.	0.0	1
404	Preferential Stripping of a Lithium Protrusion Resulting in Recovery of a Planar Electrode. Journal of the Electrochemical Society, 2020, 167, 100553.	1.3	5
405	Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Metals, 2022, 41, 1255-1264.	3.6	31

#	Article	IF	CITATIONS
406	The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
407	Progress on continuum modeling of lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 5946-5966.	2.5	10
408	Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Materials, 2022, 44, 278-284.	9.5	22
409	Moisture-stimulated reversible thermochromic CsPbI3-xBrx films: In-situ spectroscopic-resolved structure and optical properties. Applied Surface Science, 2022, 573, 151484.	3.1	6
410	The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes. Journal of Power Sources, 2022, 520, 230817.	4.0	8
411	Artificial Alloy/Li ₃ N Double-Layer Enabling Stable High-Capacity Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 13132-13139.	2.5	10
412	Swallowing Lithium Dendrites in Allâ€Solidâ€State Battery by Lithiation with Silicon Nanoparticles. Advanced Science, 2022, 9, e2103786.	5.6	27
413	Atomistic discharge studies of sulfurized-polyacrylonitrile through ab initio molecular dynamics. Electrochimica Acta, 2022, 403, 139538.	2.6	4
414	Understanding the Impacts of Li Stripping Overpotentials at the Counter Electrode by Three-Electrode Coin Cell Measurements. Analytical Chemistry, 2021, 93, 15459-15467.	3.2	15
415	3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55227-55234.	4.0	17
416	Understanding the Battery Degradation Mechanism in All-solid-state Batteries via <i>In-situ</i> SEM. Microscopy and Microanalysis, 2021, 27, 105-106.	0.2	3
417	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	4.7	84
418	A self-optimized dual zinc/copper-electrolyte anodic interfaces by mechanical rolling toward zinc ion batteries with high capacity and long cycle life. Materials Today Energy, 2022, 23, 100897.	2.5	6
419	Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries. Energy Storage Materials, 2022, 46, 605-612.	9.5	51
420	Mechanistic Insight into Lithium Electrodeposition in Porous Host Architectures. Journal of Physical Chemistry C, 2021, 125, 25369-25375.	1.5	3
421	Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chemical Engineering Journal, 2022, 431, 133931.	6.6	33
422	Impact of nanomaterials on Li-ion battery anodes. Frontiers of Nanoscience, 2021, 19, 55-98.	0.3	1
423	Atomic layer deposition of thin-film sodium manganese oxide cathode materials for sodium ion batteries. Dalton Transactions, 2021, 50, 18128-18142.	1.6	7

#	Article	IF	CITATIONS
424	<i>In situ</i> x-ray photoelectron spectroscopy analysis of electrochemical interfaces in battery: Recent advances and remaining challenges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	16
425	A scalable, ecofriendly, and cost-effective lithium metal protection layer from a Post-it note. RSC Advances, 2021, 12, 346-354.	1.7	3
426	Composite polymer electrolyte with high inorganic additive contents to enable metallic lithium anode. Electrochimica Acta, 2022, 404, 139772.	2.6	12
427	Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Materials, 2022, 45, 969-1001.	9.5	36
428	Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134468.	6.6	18
429	Effect of Mg Cation Diffusion Coefficient on Mg Dendrite Formation. ACS Applied Materials & Interfaces, 2022, 14, 6499-6506.	4.0	14
430	Application of 3D mullite fiber matrix as a lithiophilic interlayer in lithium metal anodes. Dalton Transactions, 2022, 51, 4275-4283.	1.6	1
431	Homogenizing the Li-ion flux by multi-element alloying modified for 3D dendrite-free lithium anode. Energy Storage Materials, 2022, 48, 114-122.	9.5	11
432	Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 1463-1472.	5.2	10
433	"Soft Shorts―Hidden in Zinc Metal Anode Research. Joule, 2022, 6, 273-279.	11.7	192
434	Applications of stimulated Raman scattering (SRS) microscopy in materials science. , 2022, , 515-527.		2
435	Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity. Materials Advances, 2022, 3, 1139-1151.	2.6	8
436	Electroâ€Chemoâ€Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	105
437	Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy and Fuels, 2022, 6, 954-970.	2.5	11
438	The roles of nucleation and growth kinetics in determining Li metal morphology for Li metal batteries: columnar <i>versus</i> spherical growth. Journal of Materials Chemistry A, 2022, 10, 5520-5529.	5.2	13
439	An efficient gel polymer electrolyte for dendrite-free and long cycle life lithium metal batteries. Energy Storage Materials, 2022, 46, 352-365.	9.5	34
440	Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy, 2022, 94, 106883.	8.2	41
441	Non-collapsing 3D solid-electrolyte interphase for high-rate rechargeable sodium metal batteries. Nano Energy, 2022, 94, 106947.	8.2	15

#	Article	IF	CITATIONS
442	Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries. Journal of the Electrochemical Society, 2022, 169, 020571.	1.3	12
443	Sodium mechanics: Effects of temperature, strain rate, and grain rotation and implications for sodium metal batteries. Extreme Mechanics Letters, 2022, 52, 101644.	2.0	3
444	Lithium-ion battery degradation: how to model it. Physical Chemistry Chemical Physics, 2022, 24, 7909-7922.	1.3	73
445	The growth mechanism of lithium dendrites and its coupling to mechanical stress. Journal of Materials Chemistry A, 2022, 10, 5530-5539.	5.2	10
446	Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries. Physical Chemistry Chemical Physics, 2022, 24, 11086-11095.	1.3	3
447	A Biomimetic Polymer-Based Composite Coating Inhibits Zinc Dendrite Growth for High-Performance Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10384-10393.	4.0	12
448	Influence of Solvent System on the Electrochemical Properties of a closo-Borate Electrolyte Salt. Applied Sciences (Switzerland), 2022, 12, 2273.	1.3	1
449	An Electrochemically Polymerized Protective Layer for a Magnesium Metal Anode. ACS Applied Energy Materials, 2022, 5, 2613-2620.	2.5	13
450	Visualization of Sodium Metal Anodes via <i>Operando</i> X-Ray and Optical Microscopy: Controlling the Morphological Evolution of Sodium Metal Plating. ACS Applied Materials & Interfaces, 2022, 14, 10438-10446.	4.0	20
451	In operando visualization of redox flow battery in membrane-free microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
452	Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents. ACS Applied Energy Materials, 2022, 5, 2768-2779.	2.5	4
453	Effects of the Separator MOF-Al ₂ O ₃ Coating on Battery Rate Performance and Solid–Electrolyte Interphase Formation. ACS Applied Materials & Interfaces, 2022, 14, 13722-13732.	4.0	20
454	Mechanically Resilient Graphene Assembly Microspheres with Interlocked Nâ€Đoped Graphene Nanostructures Grown In Situ for Highly Stable Lithium Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	10
455	Promoting Mechanistic Understanding of Lithium Deposition and Solidâ€Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	47
456	Improving Cycling Stability of the Lithium Anode by a Spin-Coated High-Purity Li ₃ PS ₄ Artificial SEI Layer. ACS Applied Materials & Interfaces, 2022, 14, 15214-15224.	4.0	24
457	Understanding Li Plating and Stripping Behavior in Zero-Excess Li Metal Batteries Using Operando Dilatometry. Journal of the Electrochemical Society, 2022, 169, 030543.	1.3	14
458	Regulated lithium deposition behavior by chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode. Chemical Engineering Journal, 2022, 442, 136297.	6.6	20
459	In Situ Optical and Electrochemical Investigations of Lithium Depositions as a Function of Current Densities. Journal of the Electrochemical Society, 2022, 169, 040528.	1.3	5

#	Article	IF	CITATIONS
460	Dynamic Investigation of Battery Materials via Advanced Visualization: From Particle, Electrode to Cell Level. Advanced Materials, 2022, 34, e2200777.	11.1	21
461	In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Materials, 2022, 48, 384-392.	9.5	22
462	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	6.6	14
463	Regulating interfacial desolvation via a weakly coordinating solvent molecule enhances Li-ion storage at subzero temperatures. Chemical Engineering Science, 2022, 254, 117633.	1.9	3
464	Robust artificial interlayer for columnar sodium metal anode. Nano Energy, 2022, 97, 107203.	8.2	26
465	Li+ concentration waves in a liquid electrolyte of Li-ion batteries with porous graphite-based electrodes. Energy Storage Materials, 2022, 48, 475-486.	9.5	10
466	Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes. Chemical Engineering Journal, 2022, 442, 136245.	6.6	21
467	<i>Operando</i> Visualization of Morphological Evolution in Mg Metal Anode: Insight into Dendrite Suppression for Stable Mg Metal Batteries. ACS Energy Letters, 2022, 7, 162-170.	8.8	50
468	Interface Modification and Halide Substitution To Achieve High Ionic Conductivity in LiBH ₄ -Based Electrolytes for all-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1260-1269.	4.0	9
469	Mesoscale Interrogation Reveals Mechanistic Origins of Lithium Filaments along Grain Boundaries in Inorganic Solid Electrolytes. Advanced Energy Materials, 2022, 12, .	10.2	39
470	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	2.0	7
471	Free-Standing N, P Codoped Hollow Carbon Fibers as Efficient Hosts for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14191-14197.	2.5	8
472	Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part III. Development of a Simplified Measurement Setup. Journal of the Electrochemical Society, 2022, 169, 040552.	1.3	4
473	Parameter Identification of Lithium-Ion Batteries by Coupling Electrochemical Impedance Spectroscopy with a Physics-Based Model. Journal of the Electrochemical Society, 2022, 169, 040561.	1.3	6
474	Largeâ€Scale Integration of a Zinc Metasilicate Interface Layer Guiding Wellâ€Regulated Zn Deposition. Advanced Materials, 2022, 34, e2202188.	11.1	86
475	Thermodynamic Analysis of Initial Steps for Void Formation at Lithium/Solid Electrolyte Interphase Interfaces. ACS Energy Letters, 2022, 7, 1953-1959.	8.8	7
476	Thiophilic–Lithiophilic Hierarchically Porous Membrane-Enabled Full Lithium–Sulfur Battery with a Low N/P Ratio. ACS Applied Materials & Interfaces, 2022, 14, 23408-23419.	4.0	10
477	Stable Cycling of Lithium-Metal Batteries in Hydrofluoroether-Based Localized High-Concentration Electrolytes with 2-Fluoropyridine Additive. ACS Applied Energy Materials, 2022, 5, 5742-5749.	2.5	10

#	Article	IF	CITATIONS
478	Improving the Performance of Aqueous Zincâ€ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
479	<scp>Electronegativityâ€Induced Singleâ€Ion</scp> Conducting Polymer Electrolyte for <scp>Solidâ€State</scp> Lithium Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	11
480	Sea-Urchin-like Hierarchical Carbon Spheres with Conical Pores as a Three-Dimensional Lithium Host for Dendrite Suppression. ACS Applied Energy Materials, 2022, 5, 5919-5927.	2.5	0
481	Chemomechanics: Friend or foe of the "AND problem―of solid-state batteries?. Current Opinion in Solid State and Materials Science, 2022, 26, 101002.	5.6	5
482	Construction of Dendrite-free Lithium Metal Electrode Using Three-Dimensional Porous Copper and Zinc Coatings. Acta Chimica Sinica, 2022, 80, 517.	0.5	1
483	Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nature Materials, 2022, 21, 1050-1056.	13.3	84
484	Fullerene-Derivative C60-(OLi)n Modified Separators toward Stable Wide-Temperature Lithium Metal Batteries. Chemical Engineering Journal, 2022, 446, 137207.	6.6	9
485	Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis. Journal of Power Sources, 2022, 539, 231601.	4.0	21
486	Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. Journal of Materials Chemistry A, 2022, 10, 12588-12596.	5.2	42
487	Direct Detection of Lithium Exchange across the Solid Electrolyte Interphase by ⁷ Li Chemical Exchange Saturation Transfer. Journal of the American Chemical Society, 2022, 144, 9836-9844.	6.6	9
488	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. Advanced Functional Materials, 2022, 32, .	7.8	9
489	Tortuosity Modulation on Microspherical Assembly Host of Graphene Via In-Plane Nano-Perforations for Stable Li Metal Anode. SSRN Electronic Journal, 0, , .	0.4	0
490	Assessment on the Stable and High apacity Naâ^'Se Batteries with Carbonate Electrolytes. ChemElectroChem, 2022, 9, .	1.7	3
491	A reaction-dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes. Cell Reports Physical Science, 2022, 3, 100948.	2.8	8
492	Critical Role of Pits in Suppressing Li Dendrites Revealed by Continuum Mechanics Simulation and In Situ Experiment. Journal of the Electrochemical Society, 2022, 169, 060522.	1.3	4
493	Back to the Basics: Advanced Understanding of the As-Defined Solid Electrolyte Interphase on Lithium Metal Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
494	Residual Stress-Tailored Lithium Deposition and Dissolution Behaviors for Safe Lithium Metal Anode. SSRN Electronic Journal, 0, , .	0.4	0
495	A High-Performance Biomass Carbon Separator Loaded with Mno2 Designed for Lithium Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
496	Reliable electrochemical setup for <i>in situ</i> observations with an atmospheric SEM. Microscopy (Oxford, England), 2022, 71, 311-314.	0.7	2
497	Regulating the Polarization of Lithium Metal Anode via Active and Inactive 3D Conductive Mesh Structure. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
498	Uneven Stripping Behavior, an UnheededÂKiller of Mg Anodes. Advanced Materials, 2022, 34, .	11.1	25
499	High-Performance Photoelectrochemical Desalination Based on the Dye-Sensitized Bi ₂ O ₃ Anode. ACS Applied Materials & Interfaces, 2022, 14, 33024-33031.	4.0	7
500	Measuring the Nucleation Overpotential in Lithium Metal Batteries: Never Forget the Counter Electrode!. Journal of the Electrochemical Society, 2022, 169, 070509.	1.3	21
501	High-capacity, high-rate, and dendrite-free lithium metal anodes based on a 3D mixed electronic-ionic conductive and lithiophilic scaffold. Science China Materials, 2022, 65, 2989-2996.	3.5	1
502	High-Stability Lithium Metal Batteries Enabled by a Tetrahydrofuran-Based Electrolyte Mixture. ACS Applied Energy Materials, 2022, 5, 9437-9446.	2.5	11
503	Crystallographically Textured Electrodes for Rechargeable Batteries: Symmetry, Fabrication, and Characterization. Chemical Reviews, 2022, 122, 14440-14470.	23.0	37
504	Influence of Long-Term Storage Conditions on Lithium Metal Anode Surface in Liquid Carbonate-Based Electrolyte. Journal of the Electrochemical Society, 2022, 169, 080526.	1.3	1
505	Thermodynamic Factor for Facilitating Homogeneous Dendrite Growth in Alkali Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	12
506	Li Morphology Evolution during Initial Cycles in a Gel Composite Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 11362-11369.	2.5	4
507	Residual stress-tailored lithium deposition and dissolution behaviors for safe lithium metal anode. Journal of Alloys and Compounds, 2022, 927, 166776.	2.8	1
508	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
509	Ultra‣ow Concentration Electrolyte Enabling LiFâ€Rich SEI and Dense Plating/Stripping Processes for Lithium Metal Batteries. Advanced Science, 2022, 9, .	5.6	19
510	A high-performance biomass carbon separator loaded with MnO2 designed for lithium sulfur batteries. Solid State Sciences, 2022, 132, 106998.	1.5	2
511	Tortuosity modulation on microspherical assembly host of graphene via in-plane nano-perforations for stable Li metal anode. Carbon, 2022, 198, 289-300.	5.4	1
512	Visualization-based prediction of dendritic copper growth in electrochemical cells using convolutional long short-term memory. Energy and AI, 2022, 10, 100203.	5.8	3
513	Modeling the effects of pulse plating on dendrite growth in lithium metal batteries. Electrochimica Acta, 2022, 433, 141227.	2.6	5

#	Article	IF	CITATIONS
514	Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548, 232017.	4.0	10
515	Back to the basics: Advanced understanding of the as-defined solid electrolyte interphase on lithium metal electrodes. Journal of Power Sources, 2022, 549, 232118.	4.0	9
516	Developing ester-based fluorinated electrolyte with LiPO2F2 as an additive for high-rate and thermally robust anode-free lithium metal battery. Journal of Power Sources, 2022, 548, 232047.	4.0	7
517	Dendrite-free Zn anodes enabled by a hierarchical zincophilic TiO2 layer for rechargeable aqueous zinc-ion batteries. Applied Surface Science, 2022, 606, 154932.	3.1	19
518	A Composite Solid-State Electrolyte Comprised of Garnet-Type Li _{6.5} La ₃ Zr _{1.5} Ta _{0.1} Nb _{0.4} O ₁₂ Filler in PEO Matrix for High Energy Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
519	Saltâ€inâ€6alt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
520	Saltâ€inâ€5alt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
521	Designing Stable Electrode Interfaces from a Pyrrolidine-Based Electrolyte for Improving LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 14173-14180.	1.8	5
522	Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nature Energy, 2022, 7, 1031-1041.	19.8	34
523	Non-Invasive Detection of Lithium-Metal Battery Degradation. Energies, 2022, 15, 6904.	1.6	1
524	A Selfâ€Standing Flexible Gel Polymer Electrolyte for Dendriteâ€Free Lithiumâ€Metal Batteries. Batteries and Supercaps, 0, , .	2.4	3
525	Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 3761-3769.	8.8	12
526	Lithium deposition mechanism on Si and Cu substrates in the carbonate electrolyte. Energy and Environmental Science, 2022, 15, 5284-5299.	15.6	18
527	<i>In-situ</i> Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1337.	0.6	3
528	Regulating Na Electrodeposition by Sodiophilic Grafting onto Porosity-Gradient Gel Polymer Electrolytes for Dendrite-Free Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47650-47658.	4.0	5
529	Shape Control of Metal Nanostructures by Electrodeposition and their Applications in Electrocatalysis. Journal of the Electrochemical Society, 2022, 169, 112502.	1.3	3
530	Resolving Current-Dependent Regimes of Electroplating Mechanisms for Fast Charging Lithium Metal Anodes. Nano Letters, 2022, 22, 8224-8232.	4.5	32
531	Solvating power regulation enabled low concentration electrolyte for lithium batteries. Science Bulletin, 2022, 67, 2235-2244.	4.3	11

#	Article	IF	CITATIONS
532	Dendrite Suppression by Lithium-Ion Redistribution and Lithium Wetting of Lithium Zeolite Li ₂ (Al ₂ Si ₄ O ₁₂) in Liquid Electrolytes. ACS Applied Materials & Interfaces, 0, , .	4.0	3
533	Electrochemical behavior and morphological evolution of Li metal anode under high cycling capacity. Energy Storage Materials, 2023, 54, 146-155.	9.5	4
534	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
535	Using Numerical Models to Accelerate Electrolyte Transport Parameter Identification. Journal of the Electrochemical Society, 0, , .	1.3	0
536	Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Liâ€Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions. Advanced Science, 2023, 10, .	5.6	17
537	Lithiophilic liquid metal layer induced lithium plating/stripping in a 3D Cu matrix to mitigate lithium dendrites and volume expansion. Materials Chemistry Frontiers, 2023, 7, 315-324.	3.2	3
538	Modified lithium metal anode <i>via</i> anion-planting protection mechanisms for dendrite-free long-life lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 2754-2768.	5.2	7
539	Stabilization of the Li metal anode through constructing a LiZn alloy/polymer hybrid protective layer towards uniform Li deposition. Physical Chemistry Chemical Physics, 2022, 25, 124-130.	1.3	8
540	Chitosan-Carboxymethylcellulose Hydrogels as Electrolytes for Zinc–Air Batteries: An Approach to the Transition towards Renewable Energy Storage Devices. Batteries, 2022, 8, 265.	2.1	6
541	A Single Particle model with electrolyte and side reactions for degradation of lithium-ion batteries. Applied Mathematical Modelling, 2023, 121, 586-610.	2.2	6
542	A Review of Inhibit the Growth of Lithium Dendrite Strategies. Defect and Diffusion Forum, 0, 421, 75-82.	0.4	0
543	The Anion-Dominated Dynamic Coordination Field in the Electrolytes for High-Performance Lithium Metal Batteries. Energy Storage Materials, 2023, 55, 773-781.	9.5	17
544	A holistic review on the synthesis techniques of spinel structured lithium cobalt manganese tetroxide. , 2022, 32, 59-70.		0
545	Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy. Small, 2023, 19, .	5.2	12
546	A thin LiGa alloy layer from in-situ electroreduction to suppress anode dendrite formation in lithium-sulfur pouch cell. Chemical Engineering Journal, 2023, 455, 140707.	6.6	1
547	Electrochemical characterization of hexamethylguanidinium bis(fluorosulfonyl)imide [HMG][FSI] based electrolyte and its application in sodium metal batteries. JPhys Energy, 2023, 5, 014006.	2.3	3
548	A BF ₃ â€Doped MXene Dual‣ayer Interphase for a Reliable Lithiumâ€Metal Anode. Advanced Materials, 2023, 35, .	11.1	15
549	Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 2023, 4, .	4.7	51

#	Article	IF	CITATIONS
550	Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nature Communications, 2023, 14, .	5.8	16
551	Spatially Resolved Growth Mechanisms of a Lithium Dendrite Population. Journal of the Electrochemical Society, 0, , .	1.3	2
552	In situ construction of a stable composite solid electrolyte interphase for dendrite-free Zn batteries. Journal of Energy Chemistry, 2023, 79, 450-458.	7.1	14
553	Reversible Lithium Electroplating for High-Energy Rechargeable Batteries. Journal of the Electrochemical Society, O, , .	1.3	3
554	Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nature Communications, 2023, 14, .	5.8	25
555	A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research, 2023, 16, 8097-8138.	5.8	36
556	A Control-Oriented Reduced-Order Model for Lithium-Metal Batteries. , 2023, 7, 1165-1170.		2
557	Analysis of the lithium electrodeposition behavior in the charge process of lithium metal battery associated with overpotential. Journal of Power Sources, 2023, 557, 232536.	4.0	5
558	Dual-functional vinylpyrrolidone electrolyte additive as anode surface leveler and cathode catalyst for lithium Metal-Oxygen batteries. Chemical Engineering Journal, 2023, 458, 141383.	6.6	9
559	Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability. Nanoscale, 2023, 15, 3737-3748.	2.8	5
560	Insights into the Enhanced Interfacial Stability Enabled by Electronic Conductor Layers in Solid‧tate Li Batteries. Advanced Energy Materials, 2023, 13, .	10.2	10
561	On the Road to Stable Electrochemical Metal Deposition in Multivalent Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 2014-2032.	3.2	7
562	Understanding Lithium Dendrite Suppression by Hybrid Composite Separators: Indentation Measurements Informed by <i>Operando</i> X-ray Computed Tomography. ACS Applied Materials & Interfaces, 2023, 15, 8492-8501.	4.0	3
563	Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries. Applied Mechanics Reviews, 2023, 75, .	4.5	10
564	Multidimensional visualization of the dynamic evolution of LiÂmetal via inÂsitu/operando methods. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
565	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
566	A new fluorine-containing sulfone-based electrolyte for advanced performance lithium metal batteries. Journal of Energy Storage, 2023, 64, 107137.	3.9	1
567	Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm ^{–2} . ACS Applied Energy Materials, 2023, 6, 2515-2523.	2.5	3

#	Article	IF	CITATIONS
568	Selfâ€Adaptive and Electric Fieldâ€Driven Protective Layer with Anchored Lithium Deposition Enable Stable Lithium Metal Anode. Energy and Environmental Materials, 0, , .	7.3	7
569	Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nature Communications, 2023, 14, .	5.8	12
570	In situ crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery. Journal of Power Sources, 2023, 563, 232808.	4.0	2
571	Molecular brush: an ion-redistributor to homogenize fast Zn ²⁺ flux and deposition for calendar-life Zn batteries. Energy and Environmental Science, 2023, 16, 1610-1619.	15.6	36
572	In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries. Journal of Power Sources, 2023, 564, 232892.	4.0	10
573	Insights into the Morphological Evolution of Mossy Dendrites in Lithium Metal Symmetric and Full Cell: A Modelling Study. Journal of the Electrochemical Society, 2023, 170, 030529.	1.3	1
574	Anode Interfacial Issues in <scp>Solid tate</scp> Li Batteries: Mechanistic Understanding and Mitigating Strategies. Energy and Environmental Materials, 2023, 6, .	7.3	20
575	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Communications, 2023, 14, .	5.8	28
576	Assessing Coulombic Efficiency in Lithium Metal Anodes. Chemistry of Materials, 2023, 35, 2381-2393.	3.2	12
577	Recent advances in <i>in situ</i> and <i>operando</i> characterization techniques for Li ₇ La ₃ Zr ₂ O ₁₂ -based solid-state lithium batteries. Materials Horizons, 2023, 10, 1479-1538.	6.4	7
578	Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17, 1354-1371.	2.3	2
579	Filament Growth and Related Instabilities during Adsorbate Suppressed Electrodeposition. Langmuir, 2023, 39, 4924-4935.	1.6	0
580	Influence of Lithium Metal Deposition on Thermal Stability: Combined DSC and Morphology Analysis of Cyclic Aged Lithium Metal Batteries. Journal of the Electrochemical Society, 0, , .	1.3	1
581	Small Molecules, Great Powers: Chemistry of Small Organoâ€Chalcogenide Molecules in Rechargeable Liâ€Sulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	6
582	Biobased supramolecular ionic networks with optimized crystallinity and mechanical properties as promising dynamic materials for eutectogels design. Materials Today Chemistry, 2023, 30, 101525.	1.7	0
583	Ingress of Li into Solid Electrolytes: Cracking and Sparsely Filled Cracks. Small Structures, 2023, 4, .	6.9	2
584	Self-Assembly Monolayer Inspired Stable Artificial Solid Electrolyte Interphase Design for Next-Generation Lithium Metal Batteries. Nano Letters, 2023, 23, 4014-4022.	4.5	10
585	Tailoring Conversionâ€Reactionâ€Induced Alloy Interlayer for Dendriteâ€Free Sulfideâ€Based Allâ€Solidâ€State Lithiumâ€Metal Battery. Advanced Science, 2023, 10, .	5.6	8

#	Article	IF	CITATIONS
589	Highly Soluble Lithium Nitrate-Containing Additive for Carbonate-Based Electrolyte in Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 2440-2446.	8.8	7
612	Li-S Batteries: Challenges, Achievements and Opportunities. Electrochemical Energy Reviews, 2023, 6, .	13.1	22
635	Alkali and alkaline earth metals in liquid salts for supercapatteries. , 2024, 2, 101-124.		0