Drastic Enhancement of Photocatalytic Activities over I Porous g ₃N₄ Nanosheets u

Small 12, 4431-4439 DOI: 10.1002/smll.201601668

Citation Report

#	Article	IF	CITATIONS
1	A novel 2D/2D carbonized poly-(furfural alcohol)/g-C3N4 nanocomposites with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon, 2017, 115, 486-492.	5.4	54
2	Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Applied Catalysis B: Environmental, 2017, 206, 531-537.	10.8	110
3	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3992-3996.	7.2	374
4	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	5.8	376
5	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie, 2017, 129, 4050-4054.	1.6	87
6	Facile transformation of low cost melamine–oxalic acid into porous graphitic carbon nitride nanosheets with high visible-light photocatalytic performance. RSC Advances, 2017, 7, 14372-14381.	1.7	36
7	Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy, 2017, 36, 331-340.	8.2	168
8	Construction of dual-channel for optimizing Z-scheme photocatalytic system. Applied Catalysis B: Environmental, 2017, 212, 80-88.	10.8	75
9	Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4. Applied Catalysis B: Environmental, 2017, 218, 137-146.	10.8	79
10	Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Carbon, 2017, 121, 463-471.	5.4	94
11	Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 1421-1434.	1.7	72
12	Morphology and defects regulation of carbon nitride by hydrochloric acid to boost visible light absorption and photocatalytic activity. Applied Catalysis B: Environmental, 2017, 217, 629-636.	10.8	99
13	Hollow CuS Microcube Electrocatalysts for CO ₂ Reduction Reaction. ChemElectroChem, 2017, 4, 2593-2598.	1.7	39
14	Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 14103-14110.	2.8	91
15	Synthesis of 3D porous MoS ₂ /g-C ₃ N ₄ heterojunction as a high efficiency photocatalyst for boosting H ₂ evolution activity. RSC Advances, 2017, 7, 40727-40733.	1.7	42
16	Reduced Oxygenated <i>g</i> ₃ N ₄ with Abundant Nitrogen Vacancies for Visibleâ€Light Photocatalytic Applications. Chemistry - A European Journal, 2017, 23, 15466-15473.	1.7	62
17	Preparation of Carbonâ€Rich <i>g</i> ₃ N ₄ Nanosheets with Enhanced Visible Light Utilization for Efficient Photocatalytic Hydrogen Production. Small, 2017, 13, 1701552.	5.2	142
18	Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C 3 N 4 nanosheets. Applied Surface Science, 2017, 425, 535-546.	3.1	63

#	Article	IF	Citations
19	Mellitic Triimide-Doped Carbon Nitride as Sunlight-Driven Photocatalysts for Hydrogen Peroxide Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 6478-6485.	3.2	92
20	A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 204, 335-345.	10.8	295
21	2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter?. Frontiers in Materials, 2017, 4, .	1.2	201
22	Facile construction of phosphate incorporated graphitic carbon nitride with mesoporous structure and superior performance for H2 production. International Journal of Hydrogen Energy, 2018, 43, 5591-5602.	3.8	24
23	Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Materials Characterization, 2018, 139, 89-99.	1.9	61
24	Tailoring TiO ₂ Nanotubeâ€Interlaced Graphite Carbon Nitride Nanosheets for Improving Visibleâ€Lightâ€Driven Photocatalytic Performance. Advanced Science, 2018, 5, 1700844.	5.6	66
25	A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution. Carbon, 2018, 136, 160-167.	5.4	33
26	Facile two-step treatment of carbon nitride for preparation of highly efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 541-547.	10.8	19
27	Facile fabrication of nanosized graphitic carbon nitride sheets with efficient charge separation for mitigation of toxic pollutant. Chemical Engineering Journal, 2018, 342, 30-40.	6.6	47
28	Doping effect of non-metal group in porous ultrathin g-C ₃ N ₄ nanosheets towards synergistically improved photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 5239-5245.	2.8	86
29	Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Applied Surface Science, 2018, 441, 85-98.	3.1	94
30	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	5.5	773
31	Hydrothermally Induced Oxygen Doping of Graphitic Carbon Nitride with a Highly Ordered Architecture and Enhanced Photocatalytic Activity. ChemSusChem, 2018, 11, 700-708.	3.6	96
32	Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226, 1-9.	10.8	292
33	Photoassisted Construction of Holey Defective g ₃ N ₄ Photocatalysts for Efficient Visibleâ€Lightâ€Driven H ₂ O ₂ Production. Small, 2018, 14, 1703142.	5.2	353
34	Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Materials Research Bulletin, 2018, 100, 322-332.	2.7	75
35	Self-modification of g-C ₃ N ₄ with its quantum dots for enhanced photocatalytic activity. Catalysis Science and Technology, 2018, 8, 2617-2623.	2.1	69
36	Preparation of phenyl group functionalized g-C3N4 nanosheets with extended electron delocalization for enhanced visible-light photocatalytic activity. New Journal of Chemistry, 2018, 42, 6756-6762.	1.4	19

#	Article	IF	CITATIONS
37	Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Applied Catalysis B: Environmental, 2018, 224, 222-229.	10.8	135
38	Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Applied Catalysis B: Environmental, 2018, 224, 60-68.	10.8	125
39	Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 2018, 221, 670-680.	10.8	122
40	Porous g-C 3 N 4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride. Chinese Journal of Chemical Engineering, 2018, 26, 753-760.	1.7	36
41	Enhanced Solar Fuel H ₂ Generation over g-C ₃ N ₄ Nanosheet Photocatalysts by the Synergetic Effect of Noble Metal-Free Co ₂ P Cocatalyst and the Environmental Phosphorylation Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 816-826.	3.2	201
42	Katalyse der Kohlenstoffdioxidâ€Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	1.6	27
43	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	7.2	361
44	Wrinkled Ultrathin Graphitic C ₃ N ₄ Nanosheets for Photocatalytic Degradation of Organic Wastewater. ACS Applied Nano Materials, 2018, 1, 6733-6741.	2.4	71
45	Carbon-nitride-based core–shell nanomaterials: synthesis and applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 20280-20301.	1.1	9
46	Photocatalytic Properties and Mechanistic Insights into Visible Lightâ€Promoted Aerobic Oxidation of Sulfides to Sulfoxides via Tin Porphyrinâ€Based Porous Aromatic Frameworks. Advanced Synthesis and Catalysis, 2018, 360, 4402-4411.	2.1	67
47	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous g ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 13758-13762.	1.6	172
48	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous g ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 13570-13574.	7.2	432
49	Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. Journal of Catalysis, 2018, 366, 237-244.	3.1	68
50	One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-Light Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2018, 10, 20521-20529.	4.0	81
51	Coaddition of Phosphorus and Proton to Graphitic Carbon Nitride for Synergistically Enhanced Visible Light Photocatalytic Degradation and Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8167-8177.	3.2	28
52	Crystalâ€Face Tailored Graphitic Carbon Nitride Films for Highâ€Performance Photoelectrochemical Cells. ChemSusChem, 2018, 11, 2497-2501.	3.6	34
53	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Science China Chemistry, 2018, 61, 1205-1213.	4.2	50
54	Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Applied Catalysis B: Environmental, 2018, 238, 592-598.	10.8	171

#	Article	IF	CITATIONS
55	In Situ Growth of Pd Nanosheets on g ₃ N ₄ Nanosheets with Well ontacted Interface and Enhanced Catalytic Performance for 4â€Nitrophenol Reduction. Small, 2018, 14, e1801812.	5.2	74
56	Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Science China Materials, 2018, 61, 1159-1166.	3.5	126
57	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 2018, 30, e1801600.	11.1	36
58	Photoresponsive polymeric carbon nitride-based materials: Design and application. Materials Today, 2019, 23, 72-86.	8.3	82
59	Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112028.	2.0	23
60	Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H ₂ evolution and CO ₂ reduction. Dalton Transactions, 2019, 48, 12070-12079.	1.6	21
61	Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 20223-20228.	5.2	56
62	Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. Applied Catalysis B: Environmental, 2019, 258, 118011.	10.8	38
63	Oxygenâ€Functionalized and Ni ^{+<i>x</i>} (<i>x=</i> 2,â€3)â€Coordinated Graphitic Carbon Nitride Nanosheets with Longâ€Life Deepâ€Trap States and their Direct Solarâ€Lightâ€Driven Hydrogen Evolution Activity. ChemSusChem, 2019, 12, 4293-4303.	3.6	29
64	Protonationâ€Assisted Exfoliation of Nâ€Containing 2D Conjugated Polymers. Small, 2019, 15, e1903643.	5.2	25
65	Green exfoliation of graphitic carbon nitride towards decolourization of Congo-Red under solar irradiation. Journal of Environmental Chemical Engineering, 2019, 7, 103456.	3.3	45
66	Ultrathin Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Degradation of Pollutants under Visible Light. ChemistrySelect, 2019, 4, 11815-11821.	0.7	8
67	Improvement of hydrogen production under solar light using cobalt (II) phosphide hydroxide co-doped g-C3N4 photocatalyst. Rendiconti Lincei, 2019, 30, 699-706.	1.0	8
68	Design of D–A ₁ –A ₂ Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 9438-9445.	5.5	172
69	Effects of the preparation method of Pt/g-C ₃ N ₄ photocatalysts on their efficiency for visible-light hydrogen production. Dalton Transactions, 2019, 48, 15068-15073.	1.6	39
70	Combining iodic acid and nitric acid to fabricate carbon nitride tubes for enhanced hydrogen evolution under visible light. Catalysis Science and Technology, 2019, 9, 266-270.	2.1	19
71	A gas bubble exfoliation method to prepare g-C3N4 nanosheets with enhanced photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 147-155.	2.0	21
72	Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 247, 24-48.	10.8	309

#	Article	IF	CITATIONS
73	Conjugated polymer dots/graphitic carbon nitride nanosheet heterojunctions for metal-free hydrogen evolution photocatalysis. Journal of Materials Chemistry A, 2019, 7, 303-311.	5.2	64
74	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257, 117855.	10.8	244
75	Se-modified polymeric carbon nitride nanosheets with improved photocatalytic activities. Journal of Catalysis, 2019, 375, 104-112.	3.1	44
76	Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies. Journal of Materials Science: Materials in Electronics, 2019, 30, 11706-11713.	1.1	12
77	Fabrication of protonated g-C ₃ N ₄ nanosheets as promising proton conductive materials. Chemical Communications, 2019, 55, 7414-7417.	2.2	18
78	Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. FlatChem, 2019, 15, 100109.	2.8	21
79	Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 11584-11612.	5.2	174
80	Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 250-258.	2.3	49
81	Prussian blue derived Fe ₂ N for efficiently improving the photocatalytic hydrogen evolution activity of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2019, 9, 2571-2577.	2.1	32
82	Protonated supramolecular complex-induced porous graphitic carbon nitride nanosheets as bifunctional catalyst for water oxidation and organic pollutant degradation. Journal of Materials Science, 2019, 54, 7637-7650.	1.7	16
83	Nitrogen Vacancies-Assisted Enhanced Plasmonic Photoactivities of Au/g-C ₃ N ₄ Crumpled Nanolayers: A Novel Pathway toward Efficient Solar Light-Driven Photocatalysts. Industrial & Engineering Chemistry Research, 2019, 58, 3698-3706.	1.8	32
84	Phosphorylation of Polymeric Carbon Nitride Photoanodes with Increased Surface Valence Electrons for Solar Water Splitting. ChemSusChem, 2019, 12, 2605-2608.	3.6	35
85	Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation. Materials Chemistry and Physics, 2019, 226, 34-43.	2.0	54
86	Facile and Scalable Fabrication of Porous gâ€C 3 N 4 Nanosheets with Nitrogen Defects and Oxygenâ€Đoping for Synergistically Promoted Visible Light Photocatalytic H 2 Evolution. Energy Technology, 2019, 7, 1800886.	1.8	16
87	Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2019, 243, 253-261.	10.8	110
88	Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: Transformation mechanism and toxicity assessment. Applied Catalysis B: Environmental, 2019, 242, 337-348.	10.8	108
89	Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Applied Catalysis B: Environmental, 2019, 242, 67-75.	10.8	87
90	Rational construction of plasmon Au assisted ferroelectric-BaTiO3/Au/g-C3N4 Z-scheme system for efficient photocatalysis. Catalysis Today, 2020, 355, 311-318.	2.2	51

#	Article	IF	Citations
91	Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Applied Catalysis B: Environmental, 2020, 261, 118201.	10.8	161
92	Surface engineering of hollow carbon nitride microspheres for efficient photoredox catalysis. Chemical Engineering Journal, 2020, 381, 122593.	6.6	49
93	Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 260, 118182.	10.8	20
94	Promoting nitrogen photofixation over a periodic WS ₂ @TiO ₂ nanoporous film. Journal of Materials Chemistry A, 2020, 8, 1059-1065.	5.2	44
95	Constructing Builtâ€in Electric Field in Ultrathin Graphitic Carbon Nitride Nanosheets by N and O Codoping for Enhanced Photocatalytic Hydrogen Evolution Activity. Small, 2020, 16, e1905700.	5.2	79
96	Zinc porphyrin-based electron donor–acceptor-conjugated microporous polymer for the efficient photocatalytic oxidative coupling of amines under visible light. Applied Catalysis A: General, 2020, 590, 117352.	2.2	21
97	KOH-Assisted Band Engineering of Polymeric Carbon Nitride for Visible Light Photocatalytic Oxygen Reduction to Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 594-603.	3.2	57
98	Enhanced carriers separation efficiency in g-C3N4 modified with sulfonic groups for efficient photocatalytic Cr(VI) reduction. Materials Research Bulletin, 2020, 122, 110681.	2.7	22
99	Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating. Progress in Organic Coatings, 2020, 139, 105448.	1.9	26
100	Efficient sulfadiazine degradation via in-situ epitaxial grow of Graphitic Carbon Nitride (g-C3N4) on carbon dots heterostructures under visible light irradiation: Synthesis, mechanisms and toxicity evaluation. Journal of Colloid and Interface Science, 2020, 561, 696-707.	5.0	79
101	Three-dimensional P-doped porous g-C3N4 nanosheets as an efficient metal-free photocatalyst for visible-light photocatalytic degradation of Rhodamine B model pollutant. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 249-262.	2.7	37
102	Z‑Scheme cathodic photoelectrochemical sensors for detection of hydrogen sulfide based on AgCl-Ag coupled with porous carbon nitride. Applied Surface Science, 2020, 532, 147424.	3.1	10
103	Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, Biocompatibility and Mechanism. Journal of Environmental Chemical Engineering, 2020, 8, 104612.	3.3	18
104	Graphitic Carbon Nitride-Based Photocatalytic Materials: Preparation Strategy and Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 16048-16085.	3.2	96
105	Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review. Research on Chemical Intermediates, 2020, 46, 5133-5164.	1.3	39
106	Wavelength dependent luminescence decay kinetics in â€~quantum-confined' g-C ₃ N ₄ nanosheets exhibiting high photocatalytic efficiency upon plasmonic coupling. Journal of Materials Chemistry A, 2020, 8, 20581-20592.	5.2	16
107	Few Layer g-C ₃ N ₄ Dispersed Quaternary Phosphonium Ionic Liquid for Highly Efficient Catalytic Oxidative Desulfurization of Fuel. Energy & Fuels, 2020, 34, 12379-12387.	2.5	18
108	2D/1D protonated g-C3N4/α-MnO2 Z-scheme heterojunction with enhanced visible-light photocatalytic efficiency. Ceramics International, 2020, 46, 25905-25914.	2.3	23

#	Article	IF	CITATIONS
109	2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 2020, 41, 270-303.	8.3	214
110	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
111	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. ACS Sustainable Chemistry and Engineering, 2020, 8, 14386-14396.	3.2	39
112	Twoâ€photon Absorption in a Defectâ€engineered Carbon Nitride Polymer Drives Redâ€light Photocatalysis. ChemCatChem, 2020, 12, 4185-4197.	1.8	10
113	Edge activation of an inert polymeric carbon nitride matrix with boosted absorption kinetics and near-infrared response for efficient photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 11761-11772.	5.2	42
114	Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2, 1377-1413.	5.0	254
115	Bi2O2Se as a novel co-catalyst for photocatalytic hydrogen evolution reaction. Chemical Engineering Journal, 2020, 400, 125931.	6.6	45
116	Promoting charge separation in dual defect mediated Z-scheme MoS2/g-C3N4 photocatalysts for enhanced photocatalytic degradation activity: synergistic effect insight. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124668.	2.3	44
117	Synthesis of graphitic carbon nitrideâ \in "Nanostructured photocatalyst. , 2020, , 279-304.		1
118	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301.	5.3	159
119	Ultrathin Phosphateâ€Modulated Co Phthalocyanine/gâ€C ₃ N ₄ Heterojunction Photocatalysts with Single Co–N ₄ (II) Sites for Efficient O ₂ Activation. Advanced Science, 2020, 7, 2001543.	5.6	99
120	2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Applied Catalysis B: Environmental, 2020, 268, 118738.	10.8	417
121	Scalable one-pot synthesis of phosphorus-doped g-C3N4 nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Diamond and Related Materials, 2020, 104, 107734.	1.8	22
122	Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation. Applied Catalysis B: Environmental, 2020, 269, 118845.	10.8	85
123	Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horizons, 2020, 5, 765-786.	4.1	152
124	Post-annealed graphite carbon nitride nanoplates obtained by sugar-assisted exfoliation with improved visible-light photocatalytic performance. Journal of Colloid and Interface Science, 2020, 567, 369-378.	5.0	14
125	Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light. Environmental Pollution, 2020, 260, 114070.	3.7	39
126	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134

#	Article	IF	CITATIONS
127	In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions. Applied Catalysis A: General, 2020, 592, 117434.	2.2	41
128	A novel Agl/BiOl/pg-C3N4 composite with enhanced photocatalytic activity for removing methylene orange, tetracycline and E. coli. Dyes and Pigments, 2020, 177, 108253.	2.0	26
129	Z-scheme heterostructure of Fe-doped SnO2 decorated layered g-C3N4 with enhanced photocatalytic activity under simulated solar light irradiation. Optical Materials, 2020, 101, 109769.	1.7	21
130	Enhanced and selective photocatalytic reduction of CO ₂ by H ₂ O over strategically doped Fe and Cr into porous boron carbon nitride. Catalysis Science and Technology, 2020, 10, 2663-2680.	2.1	21
131	A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution. Carbon, 2020, 163, 234-243.	5.4	81
132	Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light. Chemical Engineering Journal, 2021, 404, 126455.	6.6	32
133	Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 2021, 405, 126806.	6.6	234
134	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	3.1	34
135	Atomically defined Co on two-dimensional TiO2 nanosheet for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 420, 127681.	6.6	40
136	Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042.	5.2	34
137	Facile one-step synthesis of porous graphene-like g-C3N4 rich in nitrogen vacancies for enhanced H2 production from photocatalytic aqueous-phase reforming of methanol. International Journal of Hydrogen Energy, 2021, 46, 197-208.	3.8	25
138	One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI). Journal of Materials Science and Technology, 2021, 71, 211-220.	5.6	22
139	Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions. Science Bulletin, 2021, 66, 275-283.	4.3	61
140	2D materials and their heterostructures for photocatalytic water splitting and conversion of CO ₂ to value chemicals and fuels. JPhys Energy, 2021, 3, 022003.	2.3	33
141	Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3, 100051.	10.1	87
142	Unravelling the favorable photocatalytic effect of hydrogenation process on the novel g-C3N4-TiO2 catalysts for water purification. Diamond and Related Materials, 2021, 114, 108292.	1.8	14
143	Metal-free in situ carbon-nanotube-modified mesoporous graphitic carbon nitride nanocomposite with enhanced visible light photocatalytic performance. Research on Chemical Intermediates, 2021, 47, 3349-3362.	1.3	6
144	Benzoyl isothiocyanate as a precursor to design of ultrathin and high-crystalline g-C3N4-based donor–acceptor conjugated copolymers for superior photocatalytic H2 production. Chemical Engineering Journal, 2021, 410, 127791.	6.6	60

#	Article	IF	CITATIONS
145	g-C3N4-Stabilised Organic–Inorganic Halide Perovskites for Efficient Photocatalytic Selective Oxidation of Benzyl Alcohol. Catalysts, 2021, 11, 505.	1.6	5
146	Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method. Chemical Engineering Journal, 2021, 411, 128400.	6.6	67
147	2D Graphitic Carbon Nitride for Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2102540.	7.8	190
148	Tin-manganese-nickel oxide thin films prepared by thermal evaporation for photosensor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115126.	1.7	5
149	On P-doping of graphitic carbon nitride with hexachlorotriphosphazene as a source of phosphorus. Applied Surface Science, 2021, 552, 149490.	3.1	17
150	Efficient promotion and transfer of excited charge carriers in phosphorus doped and Ni complex modified g-C3N4. Catalysis Today, 2021, 370, 161-172.	2.2	27
151	Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature. Applied Surface Science, 2021, 550, 149368.	3.1	49
152	1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2021, 46, 25436-25447.	3.8	75
153	Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies. Journal of Hazardous Materials, 2021, 413, 125376.	6.5	104
154	Highly Mesoporous g-C3N4 with Uniform Pore Size Distribution via the Template-Free Method to Enhanced Solar-Driven Tetracycline Degradation. Nanomaterials, 2021, 11, 2041.	1.9	23
155	Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe(III) active sites. Chemical Engineering Journal, 2021, 423, 130095.	6.6	18
156	Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Separation and Purification Technology, 2021, 274, 118973.	3.9	48
157	Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 1603-1612.	5.0	25
158	Facile <i>in situ</i> reductive synthesis of both nitrogen deficient and protonated g-C ₃ N ₄ nanosheets for the synergistic enhancement of visible-light H ₂ evolution. Chemical Science, 2020, 11, 2716-2728.	3.7	55
159	Optimizing the Oxygen Vacancies Concentration of Thin NiO Nanosheets for Efficient Selective CO ₂ Photoreduction. Solar Rrl, 2021, 5, 2100703.	3.1	17
160	One step-polymerization for constructing 1D/2D oxygen doped g-C3N4 isotype heterojunctions with highly improved visible-light-driven photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9, 106587.	3.3	13
161	Carbon defective carbon nitride with large specific surface area by hot oxygen etching for promoting photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127732.	2.3	12
162	Fabrication of g-C3N4 Nanosheets Anchored With Controllable CdS Nanoparticles for Enhanced Visible-Light Photocatalytic Performance. Frontiers in Chemistry, 2021, 9, 746031.	1.8	4

#	Article	IF	CITATIONS
163	The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2021, 58, 92-95.	2.2	19
164	Nitric acid-assisted growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO2 conversion. Chemical Engineering Journal, 2022, 434, 133867.	6.6	37
165	Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 431, 134101.	6.6	74
166	Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022, 5, 18-54.	2.4	41
167	Porous Nitrogen-Defected Carbon Nitride Derived from A Precursor Pretreatment Strategy for Efficient Photocatalytic Degradation and Hydrogen Evolution. Langmuir, 2022, 38, 828-837.	1.6	19
168	Self-assembly of porous g-C3N4 and montmorillonite: characterization, performance test, and mechanism analysis. Journal of Materials Science: Materials in Electronics, 2022, 33, 3631-3647.	1.1	1
169	Preparation of g-C3N4 Nanosheet/WO3/Graphene Oxide Ternary Nanocomposite Z-scheme Photocatalyst with Enhanced Visible Light Photocatalytic Activity. Journal of Cluster Science, 2023, 34, 273-283.	1.7	3
170	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
171	Engineering a Carbon-Iodine covalent bond charge transport channel in γ-CuI/Polymeric carbon nitride for solar Light-Driven hydrogen production. FlatChem, 2022, 31, 100330.	2.8	10
172	Insights into the Role of Protonation in Covalent Triazine Framework-Based Photocatalytic Hydrogen Evolution. Chemistry of Materials, 2022, 34, 1481-1490.	3.2	18
173	One-Step Calcination Method to Gain Exfoliated G-C3n4/Moo2 Composites for Photocatalytic Hydrogen Evolution Performance Enhancement. SSRN Electronic Journal, 0, , .	0.4	0
174	One-step fabrication of mesoporous sulfur-doped carbon nitride for highly selective photocatalytic transformation of native lignin to monophenolic compounds. Chinese Chemical Letters, 2023, 34, 107298.	4.8	14
175	Long afterglow phosphor driven g-C3N4 photocatalyst for continuous water purification under light and dark conditions. Journal of Solid State Chemistry, 2022, 310, 123057.	1.4	7
176	Surface Physicochemistry Modification and Structural Nanoarchitectures of gâ€C ₃ N ₄ for Wastewater Remediation and Solar Fuel Generation. Advanced Materials Technologies, 2022, 7, .	3.0	19
177	Tailorâ€Engineered 2D Cocatalysts: Harnessing Electron–Hole Redox Center of 2D gâ€C ₃ N ₄ Photocatalysts toward Solarâ€ŧoâ€Chemical Conversion and Environmental Purification. Advanced Functional Materials, 2022, 32, .	7.8	93
178	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
179	Exfoliation of graphitic carbon nitride and homogeneous loading of Cu2O catalyst. Solid State Sciences, 2022, 129, 106915.	1.5	4
180	Synergy of Nitrogen Vacancies and Nanodiamond Decoration in G-C3n4 for Boosting Co2 Photoreduction. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
181	Synergy of nitrogen vacancies and nanodiamond decoration in g-C3N4 for boosting CO2 photoreduction. Applied Surface Science, 2022, 600, 154199.	3.1	10
182	Phosphorus modified and Cul incorporated polymeric g-C3N4 photocatalyst for efficient photocatalytic hydrogen production under direct solar light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 284, 115873.	1.7	7
183	Biosafe Bi2O2Se ultrathin nanosheet for water disinfection via solar-induced photothermal synergistic effect. Journal of Hazardous Materials, 2022, 440, 129808.	6.5	7
184	Use of Carbon Nitrides as Photoactive Supports in Singleâ€Atom Heterogeneous Catalysis for Synthetic Purposes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11
185	A p–n heterostructural g-C ₃ N ₄ /PANI composite for the remediation of heavy metals and organic pollutants in water. New Journal of Chemistry, 2022, 46, 15937-15949.	1.4	2
186	Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16, 3524-3535.	5.8	19
187	Boosting the photo-induced charge transfer in melon by lengthening the melon chains through a facile regrowth approach. Nano Research, 0, , .	5.8	1
188	Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. Science and Technology of Advanced Materials, 2022, 23, 587-616.	2.8	4
189	Fabrication of novel direct Z-scheme + isotype heterojunction photocatalyst g-C ₃ N ₄ /TiO ₂ with peroxymonosulfate (PMS) activation synergy and 2D/0D structure. Catalysis Science and Technology, 2022, 12, 7199-7207.	2.1	3
190	Effect of temperature on the synthesis of g-C3N4/montmorillonite and its visible-light photocatalytic properties. Clays and Clay Minerals, 2022, 70, 555-565.	0.6	4
191	Advanced Two-Dimensional Materials for Green Hydrogen Generation: Strategies toward Corrosion Resistance Seawater Electrolysis─Review and Future Perspectives. Energy & Fuels, 2022, 36, 13417-13450.	2.5	18
192	One-Step Calcination to Gain Exfoliated g-C3N4/MoO2 Composites for High-Performance Photocatalytic Hydrogen Evolution. Molecules, 2022, 27, 7178.	1.7	2
193	Benzotriazole corrosion inhibitor loaded nanocontainer based on g-C3N4 and hollow polyaniline spheres towards enhancing anticorrosion performance of waterborne epoxy coatings. Progress in Organic Coatings, 2023, 174, 107276.	1.9	6
194	Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting. Nano-Micro Letters, 2022, 14, .	14.4	21
195	Epoxy resin composites reinforced with sheet stripping oxidized carbon nitride. Journal of Materials Science, 2022, 57, 20187-20196.	1.7	1
196	Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. Journal of Water Process Engineering, 2022, 50, 103315.	2.6	5
197	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
198	Unraveling the phosphorus-nitrogen bridge in carbon quantum dots/carbon nitride for efficient photodegradation of organic contaminants. Carbon, 2023, 204, 284-294.	5.4	13

ARTICLE IF CITATIONS Orderâ[^] disorder interfaces in a graphitic carbon nitride-nanoclay composite for improved 199 2.9 2 photodynamic antibiotics. Communications Materials, 2022, 3, . Dual-strategy modification on g-C3N4 for highly efficient inactivation of Microcystis aeruginosa under visible light. , 2022, 1, 316-324. Highly efficient photocatalytic hydrogen production by platinum modified ferroelectric SrBi4Ti4O15. 201 3.9 6 Separation and Purification Technology, 2023, 309, 123058. S-doped C₃N₅ derived from thiadiazole for efficient photocatalytic hydrogen 24 evolution. Journal of Materials Chemistry A, 2023, 11, 12837-12845. Synergistic effect of exfoliation and substitutional doping in graphitic carbon nitride for photocatalytic H₂O₂ production and H₂ generation: a 203 2.1 6 comparison and kinetic study. Catalysis Science and Technology, 2023, 13, 1448-1458. Enhanced driving force and charge separation efficiency of protonated anthraquinone for C–H 204 photooxygenation of alkanes by proton-coupled electron transfer. Green Chemistry, 2023, 25, 4.6 2757-2770. A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for 205 2.9 17 energy conversion and storage applications. Materials Today Physics, 2023, 34, 101080. One-pot synthesis of porous graphitic carbon nitride with rich nitrogen vacancies and oxygen 206 1.7 heteroatoms for boosting photocatalytic performance. Optical Materials, 2023, 139, 113773. Role of interfacial AuNPs in solid-state direct Z-scheme MoS2/Au/g-C3N4 heterojunction nanocomposite's pollutant degradation activity under sunlight. Colloids and Surfaces A: 207 2.3 6 Physicochemical and Engineering Aspects, 2023, 667, 131365. Fusiform CuC2O4 loaded porous biochar derived from phosphoric acid-activated bagasse for gaseous 208 3.3 ammonia capture. Journal of Environmental Chemical Engineering, 2023, 11, 109466. Photocatalytic Activities of g-C3N4 (CN) Treated with Nitric Acid Vapor for the Degradation of 209 4 1.3 Pollutants in Wastewater. Materials, 2023, 16, 2177. Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. Chinese 4.8 Chemical Letters, 2023, 34, 108306. Synergistic Functionality of Dopants and Defects in Coâ€Phthalocyanine/Bâ€CN Zâ€Scheme Photocatalysts 211 5.2 10 for Promoting Photocatalytic CO₂ Reduction Reactions. Small, 2023, 19, . Photocatalytic Degradation of Diclofenac by Nitrogen-Doped Carbon Quantum Dot-Graphitic Carbon 1.6 Nitride (CNQD). Catalysts, 2023, 13, 735. Different Dimensionalities, Morphological Advancements and Engineering of gâ€C₃N₄â€Based Nanomaterials for Energy Conversion and Storage. Chemical 213 2.9 12

CITATION REPORT

213 gâ€C₃N₄â€Based Nanomaterials for Energy Conversion and Storage. Chemical 2.9 Record, 2023, 23, .