ER-mitochondria contacts couple mtDNA synthesis wit cells

Science 353, aaf5549 DOI: 10.1126/science.aaf5549

Citation Report

#	Article	IF	CITATIONS
1	Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Frontiers in Cell and Developmental Biology, 2016, 4, 107.	1.8	296
2	A finer look at a fine cellular meshwork. Science, 2016, 354, 415-416.	6.0	3
3	The organelle replication connection. Nature, 2016, 538, 326-327.	13.7	2
4	Blocking iNOS and endoplasmic reticulum stress synergistically improves insulin resistance in mice. Molecular Metabolism, 2017, 6, 206-218.	3.0	27
5	Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells. Journal of the American Chemical Society, 2017, 139, 3651-3662.	6.6	69
6	POLG2 deficiency causes adultâ€onset syndromic sensory neuropathy, ataxia and parkinsonism. Annals of Clinical and Translational Neurology, 2017, 4, 4-14.	1.7	13
7	The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium, 2017, 62, 1-15.	1.1	193
8	Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. Cell Chemical Biology, 2017, 24, 404-414.	2.5	102
9	Actin Cytoskeleton-Mediated Constriction of Membrane Organelles via Endoplasmic Reticulum Scaffolding. ACS Biomaterials Science and Engineering, 2017, 3, 2727-2732.	2.6	9
10	Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nature Reviews Cardiology, 2017, 14, 342-360.	6.1	114
11	Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy?. Journal of Cellular Physiology, 2017, 232, 3234-3243.	2.0	11
12	The mitochondria–endoplasmic reticulum contact sites: a signalling platform for cell death. Current Opinion in Cell Biology, 2017, 47, 52-63.	2.6	86
13	Mitochondrial DNA in innate immune responses and inflammatory pathology. Nature Reviews Immunology, 2017, 17, 363-375.	10.6	658
14	Mitochatting – If only we could be a fly on the cell wall. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1469-1480.	1.9	27
15	Mitochondria–organelle contact sites: the plot thickens. Biochemical Society Transactions, 2017, 45, 477-488.	1.6	17
16	The mobility of mitochondria: Intercellular trafficking in health and disease. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 15-20.	0.9	27
17	Expanding perspectives on the significance of mitophagy in cancer. Seminars in Cancer Biology, 2017, 47, 110-124.	4.3	131
18	Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact with Other Organelles. Biological and Medical Physics Series, 2017, , 3-39.	0.3	1

#	Article	IF	CITATIONS
19	Connection of Protein Transport and Organelle Contact Sites in Mitochondria. Journal of Molecular Biology, 2017, 429, 2148-2160.	2.0	29
20	Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nature Communications, 2017, 8, 15754.	5.8	155
21	Calcium Transport and Signaling in Mitochondria. , 2017, 7, 623-634.		168
22	α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathologica, 2017, 134, 129-149.	3.9	262
23	From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochemistry International, 2017, 109, 171-183.	1.9	54
24	The mechanisms and functions of interorganelle interactions. Molecular Biology of the Cell, 2017, 28, 703-704.	0.9	5
25	Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5–dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Molecular Biology of the Cell, 2017, 28, 396-410.	0.9	77
26	Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nature Protocols, 2017, 12, 2215-2231.	5.5	83
27	Perspective on architecture and assembly of membrane contact sites. Biology of the Cell, 2017, 109, 400-408.	0.7	7
28	Bioinspired approach toward molecular electrets: synthetic proteome for materials. Pure and Applied Chemistry, 2017, 89, 1777-1797.	0.9	10
29	The constriction and scission machineries involved in mitochondrial fission. Journal of Cell Science, 2017, 130, 2953-2960.	1.2	187
30	Role of Endoplasmic Reticulum-Mitochondria Communication in Type 2 Diabetes. Advances in Experimental Medicine and Biology, 2017, 997, 171-186.	0.8	51
31	Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane. Advances in Experimental Medicine and Biology, 2017, 997, 33-47.	0.8	56
32	The monoplastidic bottleneck in algae and plant evolution. Journal of Cell Science, 2018, 131, .	1.2	33
33	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	4.5	249
34	Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Scientific Reports, 2017, 7, 11257.	1.6	50
35	Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum–mitochondrial contacts. Journal of Biological Chemistry, 2017, 292, 16382-16392.	1.6	70
36	The Role of Skeletal Muscle Estrogen Receptors in Metabolic Homeostasis and Insulin Sensitivity. Advances in Experimental Medicine and Biology, 2017, 1043, 257-284.	0.8	12

ARTICLE IF CITATIONS # A Bi-fluorescence complementation system to detect associations between the Endoplasmic reticulum 37 1.6 28 and mitochondria. Scientific Reports, 2017, 7, 17467. Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. Journal of Cell Biology, 2017, 216, 2.3 98 4123-4139. A novel fluorescent reporter detects plastic remodeling of mitochondria-ER contact sites. Journal of 39 1.2 66 Cell Science, 2018, 131, . Proteostasis in cardiac health and disease. Nature Reviews Cardiology, 2017, 14, 637-653. 6.1 133 Piecing Together the Patchwork of Contact Sites. Trends in Cell Biology, 2017, 27, 214-229. 41 140 3.6 Interorganelle Communication between Mitochondria and the Endolysosomal System. Frontiers in 1.8 Cell and Developmental Biology, 2017, 5, 95. Protein Localization at Mitochondria-ER Contact Sites in Basal and Stress Conditions. Frontiers in 43 1.8 15 Cell and Developmental Biology, 2017, 5, 107. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular 44 1.8 164 Sciences, 2017, 18, 1576. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. 45 1.3 73 Frontiers in Oncology, 2017, 7, 174. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15. Organization and dynamics of yeast mitochondrial nucleoids. Proceedings of the Japan Academy Series 47 1.6 32 B: Physical and Biological Sciences, 2017, 93, 339-359. ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial 105 DNA and cholesterol metabolism. Brain, 2017, 140, 1595-1610. Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death and Differentiation, 2018, 25, 49 5.0 54 1671-1685. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 6.0 581 2018, 359, . Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. 51 2.347 Journal of Cell Biology, 2018, 217, 1601-1611. Disruption of ERâ[^] mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death and Disease, 2018, 9, 327. 54 Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the 53 2.0 62 present. Journal of Lipid Research, 2018, 59, 923-944. Organelles: The Emerging Signalling Chart ofÂMitochondrial Dynamics. Current Biology, 2018, 28, 54 1.8 R73-R75.

#	Article	IF	CITATIONS
55	Mitochondrial network complexity emerges from fission/fusion dynamics. Scientific Reports, 2018, 8, 363.	1.6	65
56	Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Annals of the Rheumatic Diseases, 2018, 77, 1053-1062.	0.5	80
57	Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature, 2018, 554, 382-386.	13.7	564
58	Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. Molecular Cell, 2018, 69, 9-23.e6.	4.5	102
59	ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discovery, 2018, 4, 2.	3.1	49
60	Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicology Letters, 2018, 285, 156-167.	0.4	58
61	Neutrophil-specific knockout demonstrates a role for mitochondria in regulating neutrophil motility in zebrafish. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	52
62	Endoplasmic Reticulum–Mitochondrial Contactology: Structure and Signaling Functions. Trends in Cell Biology, 2018, 28, 523-540.	3.6	381
63	The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death and Disease, 2018, 9, 388.	2.7	165
64	The regulation of tumor cell physiology by mitochondrial dynamics. Biochemical and Biophysical Research Communications, 2018, 500, 9-16.	1.0	42
65	Integrative functions of the mitochondrial contact site and cristae organizing system. Seminars in Cell and Developmental Biology, 2018, 76, 191-200.	2.3	45
66	Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends in Cell Biology, 2018, 28, 67-76.	3.6	186
67	INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. Journal of Cell Biology, 2018, 217, 251-268.	2.3	246
68	The ever-growing complexity of the mitochondrial fission machinery. Cellular and Molecular Life Sciences, 2018, 75, 355-374.	2.4	157
69	Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nature Reviews Molecular Cell Biology, 2018, 19, 77-92.	16.1	369
71	Subcellular connectomic analyses of energy networks in striated muscle. Nature Communications, 2018, 9, 5111.	5.8	104
72	Stress Coping Strategies in the Heart: An Integrated View. Frontiers in Cardiovascular Medicine, 2018, 5, 168.	1.1	17
73	Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells, 2018, 7, 238.	1.8	59

#	Article	IF	CITATIONS
74	Reflections on a seminal paper in conservation biology: the legacy of Peters and Darling (1985). Pacific Conservation Biology, 2018, 24, 267.	0.5	2
75	SYBR Gold dye enables preferential labelling of mitochondrial nucleoids and their time-lapse imaging by structured illumination microscopy. PLoS ONE, 2018, 13, e0203956.	1.1	18
76	Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 2018, 175, 1430-1442.e17.	13.5	427
77	Mechanical forces on cellular organelles. Journal of Cell Science, 2018, 131, .	1.2	50
78	A novel lysosomeâ€ŧoâ€mitochondria signaling pathway disrupted by amyloidâ€Î² oligomers. EMBO Journal, 2018, 37, .	3.5	47
79	Separating and Segregating the Human Mitochondrial Genome. Trends in Biochemical Sciences, 2018, 43, 869-881.	3.7	37
80	The peroxisome: an update on mysteries 2.0. Histochemistry and Cell Biology, 2018, 150, 443-471.	0.8	217
81	Failure is not an option – mitochondrial genome segregation in trypanosomes. Journal of Cell Science, 2018, 131, .	1.2	56
82	Spatial Separation of Mitochondrial Calcium Uptake and Extrusion for Energy-Efficient Mitochondrial Calcium Signaling in the Heart. Cell Reports, 2018, 24, 3099-3107.e4.	2.9	50
83	Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell. Scientific Reports, 2018, 8, 8122.	1.6	35
84	Mitochondrial maintenance under oxidative stress depends on mitochondrial but not nuclear $\hat{l}\pm$ isoform of OGG1. Journal of Cell Science, 2018, 131, .	1.2	21
85	The impact of ERα action on muscle metabolism and insulin sensitivity – Strong enough for aÂman, made for a woman. Molecular Metabolism, 2018, 15, 20-34.	3.0	47
86	The mitochondria in lung fibrosis: friend or foe?. Translational Research, 2018, 202, 1-23.	2.2	38
87	Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nature Cell Biology, 2018, 20, 755-765.	4.6	401
88	Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends in Genetics, 2018, 34, 682-692.	2.9	130
89	Here, there, and everywhere: The importance of ER membrane contact sites. Science, 2018, 361, .	6.0	471
90	Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays in Biochemistry, 2018, 62, 287-296.	2.1	120
91	Mitochondrial dynamics: overview of molecular mechanisms. Essays in Biochemistry, 2018, 62, 341-360.	2.1	795

ARTICLE IF CITATIONS # Mitochondrial genome variability: the effect on cellular functional activity. Therapeutics and 92 0.9 7 Clinical Risk Management, 2018, Volume 14, 237-245. Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes, 2018, 9, 165. 1.0 Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication 94 Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. Journal of 1.7 51 Neuroscience, 2018, 38, 7505-7515. Mitochondrial Tethers and Their Impact on Lifespan in Budding Yeast. Frontiers in Cell and 1.8 Developmental Biology, 2017, 5, 120. Sensing the Stress: A Role for the UPRmt and UPRam in the Quality Control of Mitochondria. 96 1.8 49 Frontiers in Cell and Developmental Biology, 2018, 6, 31. Plastic mitochondria-endoplasmic reticulum (ER) contacts use chaperones and tethers to mould their structure and signaling. Current Opinion in Cell Biology, 2018, 53, 61-69. 2.6 ATAD3 controls mitochondrial cristae structure, influencing mtDNA replication and cholesterol 98 1.2 68 levels in muscle. Journal of Cell Science, 2018, 131, . Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature, 2018, 558, 90 13.7 219 401-405. 100 Mitochondrial plasticity in cell fate regulation. Journal of Biological Chemistry, 2019, 294, 13852-13863. 1.6 98 Metabolic implications of organelle–mitochondria communication. EMBO Reports, 2019, 20, e47928. 94 IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. 102 187 5.8 Nature Communications, 2019, 10, 3726. DNA Replication in Human Mitochondria. Biochemistry (Moscow), 2019, 84, 884-895. A Novel Communication Pathway Between Lysosomes and Mitochondria Is Disrupted in Alzheimer's 104 0.4 1 Disease. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641986585. MOTSâ€c: A Mitochondrialâ€Encoded Regulator of the Nucleus. BioEssays, 2019, 41, e1900046. 1.2 Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. 106 2.2 44 Movement Disorders, 2019, 34, 1547-1561. Apogossypol-mediated reorganisation of the endoplasmic reticulum antagonises mitochondrial fission and apoptosis. Cell Death and Disease, 2019, 10, 521. Increased ER–mitochondria tethering promotes axon regeneration. Proceedings of the National 108 3.3 63 Academy of Sciences of the United States of America, 2019, 116, 16074-16079. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic l²-cells. Mitochondrion, 2019, 49, 245-258.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
110	Mitochondrial Network State Scales mtDNA Genetic Dynamics. Genetics, 2019, 212, 142	9-1443.	1.2	46
111	The role of autophagy and mitophagy in cancers. Archives of Physiology and Biochemistry 281-289.	y, 2022, 128,	1.0	17
112	Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and netwo Biology, 2019, 9, 190126.	rks. Open	1.5	69
113	Characterization of the C584R variant in the mtDNA depletion syndrome gene FBXL4, revolve for FBXL4 as a regulator of mitochondrial fusion. Biochimica Et Biophysica Acta - Mol Basis of Disease, 2019, 1865, 165536.	veals a novel ecular	1.8	25
114	Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochond Integrity. International Journal of Molecular Sciences, 2019, 20, 4311.	Irial DNA	1.8	68
115	The Good and the Bad of Mitochondrial Breakups. Trends in Cell Biology, 2019, 29, 888-9	900.	3.6	122
116	MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cere involvement. Acta Neuropathologica, 2019, 138, 1013-1031.	bellar	3.9	31
117	The Mitochondria–Endoplasmic Reticulum Contacts and Their Critical Role in Aging and Age-Associated Diseases. Frontiers in Cell and Developmental Biology, 2019, 7, 172.	H	1.8	105
118	Fascin Controls Metastatic Colonization and Mitochondrial Oxidative Phosphorylation by Remodeling Mitochondrial Actin Filaments. Cell Reports, 2019, 28, 2824-2836.e8.	,	2.9	54
119	Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLo: 2019, 17, e3000355.	5 Biology,	2.6	39
120	ER-Mitochondria Communication in Cells of the Innate Immune System. Cells, 2019, 8, 1	088.	1.8	38
121	The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Archive Biochemistry and Biophysics, 2019, 670, 82-93.	rs of	1.4	60
122	Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into doma ER–mitochondria contacts. Journal of Cell Biology, 2019, 218, 1353-1369.	ains at	2.3	69
123	Role of Mitochondria in the Regulation of Kidney Function and Metabolism in Type 2 Dial 287-300.	petes., 2019,,		0
124	Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion, 2019	, 49, 269-283.	1.6	117
125	The R941L mutation in MYH14 disrupts mitochondrial fission and associates with peripheneuropathy. EBioMedicine, 2019, 45, 379-392.	eral	2.7	37
126	Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLoS Ge 2019, 15, e1008085.	netics,	1.5	116
127	Reshaping membranes to build mitochondrial DNA. PLoS Genetics, 2019, 15, e1008140.		1.5	6

ARTICLE IF CITATIONS # Role of GTPases in the regulation of mitochondrial dynamics in Parkinson's disease. Experimental Cell 128 1.2 5 Research, 2019, 382, 111460. Endoplasmic reticulum mitochondria contacts modulate apoptosis of renal cells and its implications 129 2.7 in diabetic neuropathy. EBioMedicine, 2019, 44, 24-25. Fluorescent Tools to Analyze Peroxisome–Endoplasmic Reticulum Interactions in Mammalian Cells. 130 0.4 13 Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641984864. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. International Review of Neurobiology, 2019, 145, 67-82. Mitochondrial DNA: Structure, Genetics, Replication and Defects., 2019, , 127-152. 132 0 Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells, 2019, 8, 379. 1.8 134 Proteolytic regulation of mitochondrial dynamics. Mitochondrion, 2019, 49, 289-304. 1.6 13 Regulation and Function of Mitochondria–Lysosome Membrane Contact Sites in Cellular 3.6 203 Homeostasis. Trends in Cell Biology, 2019, 29, 500-513. 136 Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287. 5.8 435 Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction 2.3 to Hepatosteatosis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 763-781. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and 138 5.8 59 bioenergetics defects. Nature Communications, 2019, 10, 1371. The Expanding and Unexpected Functions of Mitochondria Contact Sites. Trends in Cell Biology, 2019, 29. 580-590. Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers, 2019, 11, 343. 140 1.7 18 Modulation of mitochondrial dysfunction for treatment of disease. Bioorganic and Medicinal 141 1.0 Chemistry Letters, 2019, 29, 1270-1277. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells, 142 1.8 65 2019, 8, 175. Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and 143 53 mtSSB. Nucleic Acids Research, 2019, 47, 3680-3698. Mitochondria: the panacea to improve oocyte quality?. Annals of Translational Medicine, 2019, 7, 144 0.7 19 789-789. Condensin II protein dysfunction impacts mitochondrial respiration and stress response. Journal of 145 1.2 Cell Science, 2019, 132, .

#	Article	IF	CITATIONS
146	Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxidants and Redox Signaling, 2019, 31, 275-317.	2.5	112
147	Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 290-303.	1.2	26
148	Mitochondria-associated endoplasmic reticulum membranes in the heart. Archives of Biochemistry and Biophysics, 2019, 662, 201-212.	1.4	21
149	Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperoneâ€responsive myopathy. EMBO Journal, 2019, 38, .	3.5	34
150	The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Molecular Metabolism, 2019, 21, 51-67.	3.0	83
151	MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 303-312.	3.3	80
152	Mitochondrial Morphofunction in Mammalian Cells. Antioxidants and Redox Signaling, 2019, 30, 2066-2109.	2.5	75
153	Mitochondrial proteostasis in the context of cellular and organismal health and aging. Journal of Biological Chemistry, 2019, 294, 5396-5407.	1.6	136
154	Mrx6 regulates mitochondrial DNA copy number in <i>Saccharomyces cerevisiae</i> by engaging the evolutionarily conserved Lon protease Pim1. Molecular Biology of the Cell, 2020, 31, 527-545.	0.9	22
155	Mitochondrial Dynamics and Its Involvement in Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 235-259.	9.6	644
156	Unfolded protein responseâ€nediated modulation of mesenchymal stem cells. IUBMB Life, 2020, 72, 187-197.	1.5	9
157	Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation. Human Molecular Genetics, 2020, 29, 177-188.	1.4	30
158	Visualizing Mitochondrial Form and Function within the Cell. Trends in Molecular Medicine, 2020, 26, 58-70.	3.5	55
159	The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, 2020, 21, 7-24.	16.1	386
160	The role of mitochondria-associated membranes in cellular homeostasis and diseases. International Review of Cell and Molecular Biology, 2020, 350, 119-196.	1.6	77
161	Mitochondrial division, fusion and degradation. Journal of Biochemistry, 2020, 167, 233-241.	0.9	40
162	Power to the daughters – mitochondrial and mtDNA transmission during cell division. Biological Chemistry, 2020, 401, 533-546.	1.2	6
163	Mitochondria-Associated Endoplasmic Reticulum Membranes in the Pathogenesis of Type 2 Diabetes Mellitus. Frontiers in Cell and Developmental Biology, 2020, 8, 571554.	1.8	27

#	Article	IF	CITATIONS
164	Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. Journal of Biological Chemistry, 2020, 295, 17588-17601.	1.6	14
165	Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Frontiers in Physiology, 2020, 11, 1054.	1.3	5
166	Improved Split-GFP Systems for Visualizing Organelle Contact Sites in Yeast and Human Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 571388.	1.8	15
167	The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Frontiers in Physiology, 2020, 11, 541040.	1.3	120
168	Safeguarding mitochondrial genomes in higher eukaryotes. Nature Structural and Molecular Biology, 2020, 27, 687-695.	3.6	30
169	Molecular Basis of Mitochondrial and Peroxisomal Division Machineries. International Journal of Molecular Sciences, 2020, 21, 5452.	1.8	14
170	Maintaining social contacts: The physiological relevance of organelle interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118800.	1.9	52
171	mtDNA replication, maintenance, and nucleoid organization. , 2020, , 3-33.		4
172	A connection in life and death: The BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. International Review of Cell and Molecular Biology, 2020, 353, 255-284.	1.6	18
173	Solid-phase inclusion as a mechanism for regulating unfolded proteins in the mitochondrial matrix. Science Advances, 2020, 6, eabc7288.	4.7	9
174	Estrogen receptor α controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
175	Human mitochondrial transcription and translation. , 2020, , 35-70.		0
176	Mechanisms of onset and accumulation of mtDNA mutations. , 2020, , 195-219.		0
177	Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER–mitochondria contact sites. Journal of Cell Science, 2020, 133, .	1.2	23
178	Intimate Relations—Mitochondria and Ageing. International Journal of Molecular Sciences, 2020, 21, 7580.	1.8	20
179	Insight into human Miro1/2 domain organization based on the structure of its N-terminal GTPase. Journal of Structural Biology, 2020, 212, 107656.	1.3	17
180	The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes. Life, 2020, 10, 164.	1.1	46
181	ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nature Communications, 2020, 11, 4471.	5.8	58

#	Article	IF	CITATIONS
182	Reweaving the Fabric of Mitochondrial Contact Sites in Astrocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 592651.	1.8	3
183	Drp1 Tubulates the ER in a GTPase-Independent Manner. Molecular Cell, 2020, 80, 621-632.e6.	4.5	35
184	Techniques for investigating mitochondrial gene expression. BMB Reports, 2020, 53, 3-9.	1.1	8
185	UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells. Scientific Reports, 2020, 10, 8182.	1.6	32
186	Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease. Journal of Clinical Medicine, 2020, 9, 1440.	1.0	54
187	Mitochondria focused neurotherapeutics for spinal cord injury. Experimental Neurology, 2020, 330, 113332.	2.0	31
188	Mitochondrial function in immune cells in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165845.	1.8	115
189	Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Frontiers in Endocrinology, 2020, 11, 374.	1.5	97
190	Endoplasmic Reticulum–Mitochondria Contact Sites and Neurodegeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 428.	1.8	43
191	Mitochondrial Inheritance in Phytopathogenic Fungi—Everything Is Known, or Is It?. International Journal of Molecular Sciences, 2020, 21, 3883.	1.8	15
192	Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases?. Endocrine Reviews, 2020, 41, .	8.9	76
193	Isolation of mitochondria-associated ER membranes. Methods in Cell Biology, 2020, 155, 33-44.	0.5	12
194	Inter-Organelle Membrane Contact Sites and Mitochondrial Quality Control during Aging: A Geroscience View. Cells, 2020, 9, 598.	1.8	23
195	Endoplasmic reticulum–associated degradation regulates mitochondrial dynamics in brown adipocytes. Science, 2020, 368, 54-60.	6.0	107
196	Pathogenic Effect of GDAP1 Gene Mutations in a Yeast Model. Genes, 2020, 11, 310.	1.0	11
197	Interaction Between Mitochondrial DNA Variants and Mitochondria/Endoplasmic Reticulum Contact Sites: A Perspective Review. DNA and Cell Biology, 2020, 39, 1431-1443.	0.9	1
198	The Impact of Skeletal Muscle ERÎ \pm on Mitochondrial Function and Metabolic Health. Endocrinology, 2020, 161, .	1.4	32
199	Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson's Disease. Cells, 2020, 9, 233.	1.8	44

#	Article	IF	CITATIONS
200	Imaging Mitochondrial Functions: From Fluorescent Dyes to Genetically-Encoded Sensors. Genes, 2020, 11, 125.	1.0	27
201	Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light: Science and Applications, 2020, 9, 11.	7.7	82
202	Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mechanisms of Ageing and Development, 2020, 186, 111212.	2.2	174
203	Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Review of Proteomics, 2020, 17, 119-136.	1.3	6
204	Molecular Characterization of New FBXL4 Mutations in Patients With mtDNA Depletion Syndrome. Frontiers in Genetics, 2019, 10, 1300.	1.1	7
205	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. American Journal of Human Genetics, 2020, 106, 272-279.	2.6	33
206	Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells, 2020, 9, 1065.	1.8	50
207	Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Frontiers in Microbiology, 2020, 11, 640.	1.5	11
208	Reciprocal Regulation of Mitochondrial Fission and Fusion. Trends in Biochemical Sciences, 2020, 45, 564-577.	3.7	132
209	A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cellular and Molecular Life Sciences, 2020, 77, 4729-4745.	2.4	16
210	Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	107
211	Better to keep in touch: investigating interâ€organelle crossâ€ŧalk. FEBS Journal, 2021, 288, 740-755.	2.2	13
212	Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. Chemosphere, 2021, 262, 127878.	4.2	34
213	How does fascin promote cancer metastasis?. FEBS Journal, 2021, 288, 1434-1446.	2.2	38
214	ERα in the Control of Mitochondrial Function and Metabolic Health. Trends in Molecular Medicine, 2021, 27, 31-46.	3.5	15
215	The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cellular and Molecular Life Sciences, 2021, 78, 1305-1328.	2.4	105
216	Mitofusin-2 in the Nucleus Accumbens Regulates Anxiety and Depression-like Behaviors Through Mitochondrial and Neuronal Actions. Biological Psychiatry, 2021, 89, 1033-1044.	0.7	55
217	Mitochondria-Associated Endoplasmic Reticulum Membranes in Breast Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 629669.	1.8	10

#	Article	IF	CITATIONS
220	ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk—Signaling Beyond (ER) Stress Response. Biomolecules, 2021, 11, 173.	1.8	48
221	Mitochondrial fission is a critical modulator of mutant APP-induced neural toxicity. Journal of Biological Chemistry, 2021, 296, 100469.	1.6	12
222	Impaired mitochondrial dynamics in disease. , 2021, , 57-90.		0
223	Selfâ€assembly of multiâ€component mitochondrial nucleoids via phase separation. EMBO Journal, 2021, 40, e107165.	3.5	36
224	Function and regulation of the divisome for mitochondrial fission. Nature, 2021, 590, 57-66.	13.7	179
225	Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduction and Targeted Therapy, 2021, 6, 65.	7.1	137
226	Dynamic properties of mitochondria during human corticogenesis. Development (Cambridge), 2021, 148, .	1.2	13
227	Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines, 2021, 9, 227.	1.4	25
228	Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules, 2021, 11, 496.	1.8	10
230	Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Frontiers in Immunology, 2021, 12, 624919.	2.2	47
231	Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium, 2021, 94, 102343.	1.1	64
232	Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease. Frontiers in Endocrinology, 2021, 12, 660095.	1.5	59
233	Organelle dynamics of endothelial mitochondria in diabetic angiopathy. European Journal of Pharmacology, 2021, 895, 173865.	1.7	9
235	Convolutional neural networks predict mitochondrial structures from label-free microscopy images. , 2021, , .		2
236	Motor proteins at the mitochondriaâ \in "cytoskeleton interface. Journal of Cell Science, 2021, 134, .	1.2	64
238	Mitochondrial membrane tension governs fission. Cell Reports, 2021, 35, 108947.	2.9	43
239	Quality control of the mitochondrion. Developmental Cell, 2021, 56, 881-905.	3.1	148
240	Mitochondrial quality control protects photoreceptors against oxidative stress in the H2O2-induced models of retinal degeneration diseases. Cell Death and Disease, 2021, 12, 413.	2.7	20

~		~	
(11		REPO	דסר
\sim	IAL	IL PU	ואכ

#	Article	IF	CITATIONS
241	The Complex Dance of Organelles during Mitochondrial Division. Trends in Cell Biology, 2021, 31, 241-253.	3.6	36
242	Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. Communications Biology, 2021, 4, 584.	2.0	7
243	Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 2021, 593, 435-439.	13.7	323
244	Endoplasmic Reticulum–Mitochondria Contact Sites—Emerging Intracellular Signaling Hubs. Frontiers in Cell and Developmental Biology, 2021, 9, 653828.	1.8	30
245	Three-dimensional ATUM-SEM reconstruction and analysis of hepatic endoplasmic reticulum‒organelle interactions. Journal of Molecular Cell Biology, 2021, 13, 636-645.	1.5	2
246	Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing. Light: Science and Applications, 2021, 10, 97.	7.7	35
247	Extracellular mitochondria in the cerebrospinal fluid (CSF): Potential types and key roles in central nervous system (CNS) physiology and pathogenesis. Mitochondrion, 2021, 58, 255-269.	1.6	21
250	VPS13D interacts with VCP/p97 and negatively regulates ER- mitochondrial interactions. Molecular Biology of the Cell, 2021, 32, mbc.E21-03-0097.	0.9	14
251	Endoplasmic reticulumâ^'mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death and Disease, 2021, 12, 657.	2.7	16
253	Potential of Mitochondrial Genome Editing for Human Fertility Health. Frontiers in Genetics, 2021, 12, 673951.	1.1	5
254	A Continuous Addâ€On Probe Reveals the Nonlinear Enlargement of Mitochondria in Lightâ€Activated Oncosis. Advanced Science, 2021, 8, e2004566.	5.6	22
255	FAM134B-Mediated ER-Phagy in Mg2+-Free Solution-Induced Mitochondrial Calcium Homeostasis and Cell Death in Epileptic Hippocampal Neurons. Neurochemical Research, 2021, 46, 2485-2494.	1.6	12
257	Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Research, 0, 10, 606.	0.8	3
258	Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells, 2021, 10, 2195.	1.8	17
259	Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death and Disease, 2021, 12, 794.	2.7	6
260	Mitochondria-associated membrane-modulated Ca2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sciences, 2021, 278, 119511.	2.0	23
261	Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline. Annual Review of Genomics and Human Genetics, 2021, 22, 55-80.	2.5	6
262	Pathogenic DNM1L Variant (1085G>A) Linked to Infantile Progressive Neurological Disorder: Evidence of Maternal Transmission by Germline Mosaicism and Influence of a Contemporary in cis Variant (1535T>C). Genes, 2021, 12, 1295.	1.0	4

#	Article	IF	CITATIONS
263	Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke. Frontiers in Aging Neuroscience, 2021, 13, 721428.	1.7	29
264	Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biology, 2021, 19, 193.	1.7	14
265	Controlling the topology of mammalian mitochondrial DNA. Open Biology, 2021, 11, 210168.	1.5	19
266	Novel Insight into the Potential Pathogenicity of Mitochondrial Dysfunction Resulting from PLP1 Duplication Mutations in Patients with Pelizaeus–Merzbacher Disease. Neuroscience, 2021, 476, 60-71.	1.1	4
267	Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coordination Chemistry Reviews, 2021, 444, 214019.	9.5	66
268	TFAM knockdown-triggered mtDNA-nucleoid aggregation and a decrease in mtDNA copy number induce the reorganization of nucleoid populations and mitochondria-associated ER-membrane contacts. Biochemistry and Biophysics Reports, 2021, 28, 101142.	0.7	2
269	Mitochondrial connections with immune system in Zebrafish. Fish and Shellfish Immunology Reports, 2021, 2, 100019.	0.5	5
270	Signaling in the crowded cell. Current Opinion in Structural Biology, 2021, 71, 43-50.	2.6	8
271	Progression of kidney disease as a maladaptive response to injury. , 2022, , 213-220.		0
272	The ER-mitochondria Ca2+ signaling in cancer progression: Fueling the monster. International Review of Cell and Molecular Biology, 2021, 363, 49-121.	1.6	15
273	Membrane organization Topography and Functions of Membrane Contact Sites. , 2021, , 821-837.		0
274	Mitochondria Dynamics: Definition, Players and Associated Disorders. , 2021, , 119-142.		0
275	Organelle size scaling over embryonic development. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e376.	5.9	15
276	DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. Advances in Experimental Medicine and Biology, 2020, 1241, 77-100.	0.8	8
277	Advances Towards Therapeutic Approaches for mtDNA Disease. Advances in Experimental Medicine and Biology, 2019, 1158, 217-246.	0.8	5
278	The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nature Reviews Molecular Cell Biology, 2018, 19, 109-120.	16.1	451
279	Mitochondrial RNA granules are fluid condensates positioned by membrane dynamics. Nature Cell Biology, 2020, 22, 1180-1186.	4.6	39
280	MICOS subcomplexes assemble independently on the mitochondrial inner membrane in proximity to ER contact sites. Journal of Cell Biology, 2020, 219, .	2.3	27

#	Article	IF	CITATIONS
281	Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. Journal of Experimental Botany, 2021, 72, 4102-4118.	2.4	20
289	Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. , 2020, 4, 384-428.		11
290	Nutrient-induced Mitochondrial Activation (NiMA): A Novel Lysosome-to-Mitochondria Signaling Pathway Disrupted by Amyloid Oligomers. SSRN Electronic Journal, 0, , .	0.4	1
291	Role of prostaglandin E2 receptor 4 in the modulation of apoptosis and mitophagy during ischemia/reperfusion injury in the kidney. Molecular Medicine Reports, 2019, 20, 3337-3346.	1.1	9
292	Miga-mediated endoplasmic reticulum–mitochondria contact sites regulate neuronal homeostasis. ELife, 2020, 9, .	2.8	31
293	Subcellular Specialization of Mitochondrial Form and Function in Skeletal Muscle Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 757305.	1.8	32
294	Progress on the Physiological Function of Mitochondrial DNA and Its Specific Detection and Therapy. ChemBioChem, 2022, 23, .	1.3	2
296	A preferred sequence for organelle inheritance during polarized cell growth. Journal of Cell Science, 2021, 134, .	1.2	8
305	Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. International Journal of Molecular Sciences, 2021, 22, 11847.	1.8	49
306	The mitochondrial network in Parkinson's disease. , 2020, , 123-138.		0
308	Structure and Function of the Mitochondrion. Biological and Medical Physics Series, 2020, , 141-161.	0.3	0
309	Lysosomes and Peroxisomes. Biological and Medical Physics Series, 2020, , 277-332.	0.3	1
310	Using Two-Dimensional Intact Mitochondrial DNA (mtDNA) Agarose Gel Electrophoresis (2D-IMAGE) to Detect Changes in Topology Associated with Mitochondrial Replication, Transcription, and Damage. Methods in Molecular Biology, 2020, 2119, 25-42.	0.4	2
311	Balancing life and death: BCLâ€⊋ family members at diverse ER–mitochondrial contact sites. FEBS Journal, 2022, 289, 7075-7112.	2.2	20
312	Just how many holes…?. Journal of General Physiology, 2020, 152, .	0.9	1
313	Mitochondrial DNA in innate immune responses against infectious diseases. Biochemical Society Transactions, 2020, 48, 2823-2838.	1.6	5
316	Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress. PLoS ONE, 2020, 15, e0242700.	1.1	3
317	Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases?. Frontiers in Neuroscience, 2021, 15, 746873.	1.4	17

#	Article	IF	CITATIONS
318	Mitochondrial TFAM as a Signaling Regulator between Cellular Organelles: A Perspective on Metabolic Diseases. Diabetes and Metabolism Journal, 2021, 45, 853-865.	1.8	16
319	Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophysical Reviews, 2021, 13, 967-981.	1.5	7
320	A new automated tool to quantify nucleoid distribution within mitochondrial networks. Scientific Reports, 2021, 11, 22755.	1.6	10
322	Monitoring and Modulating mtDNA G-Quadruplex Dynamics Reveal Its Close Relationship to Cell Glycolysis. Journal of the American Chemical Society, 2021, 143, 20779-20791.	6.6	45
323	Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron, 2022, 110, 967-976.e8.	3.8	43
324	Effect of blueberry extract on energetic metabolism, levels of brain-derived neurotrophic factor, and Ca2+-ATPase activity in the hippocampus and cerebral cortex of rats submitted to ketamine-induced mania-like behavior. Metabolic Brain Disease, 2022, 37, 835-847.	1.4	5
325	Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells, 2022, 11, 416.	1.8	7
327	The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2022, 18, 1789-1808.	1.7	5
328	MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nature Cell Biology, 2021, 23, 1271-1286.	4.6	105
329	The relevance of organelle interactions in cellular senescence. Theranostics, 2022, 12, 2445-2464.	4.6	15
330	Mitochondrial Fragmentation in a High Homocysteine Environment in Diabetic Retinopathy. Antioxidants, 2022, 11, 365.	2.2	8
331	Autophagy deficiency abolishes liver mitochondrial DNA segregation. Autophagy, 2022, 18, 2397-2408.	4.3	6
332	Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. Seminars in Cell and Developmental Biology, 2023, 143, 37-45.	2.3	10
333	The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Frontiers in Cell and Developmental Biology, 2022, 10, 858286.	1.8	29
334	In situ cryo-electron tomography reveals local cellular machineries for axon branch development. Journal of Cell Biology, 2022, 221, .	2.3	15
335	ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer's disease models. Nature Communications, 2022, 13, 1121.	5.8	24
336	Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Molecular Metabolism, 2022, 60, 101481.	3.0	29
337	Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells. Ecotoxicology and Environmental Safety, 2022, 235, 113438.	2.9	22

#	Article	IF	CITATIONS
338	Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death and Disease, 2022, 13, 296.	2.7	13
339	Cancer/Testis Antigen 55 is required for cancer cell proliferation and mitochondrial DNA maintenance. Mitochondrion, 2022, 64, 19-26.	1.6	2
340	Mfn2 Regulates High Glucose-Induced MAMs Dysfunction and Apoptosis in Podocytes via PERK Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 769213.	1.8	33
341	DNA-Unresponsive Platinum(II) Complex Induces ERS-Mediated Mitophagy in Cancer Cells. Journal of Medicinal Chemistry, 2022, 65, 520-530.	2.9	27
342	New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2021, 97, 559-572.	1.6	3
344	Regulation of Mitochondrial Function by the Actin Cytoskeleton. Frontiers in Cell and Developmental Biology, 2021, 9, 795838.	1.8	28
345	The role of mitochondrial dynamics in mtDNA maintenance. Journal of Cell Science, 2021, 134, .	1.2	10
346	Mitochondrial DNA Transport in Drosophila Neurons. Methods in Molecular Biology, 2022, 2431, 409-416.	0.4	2
347	High-Resolution Imaging of Mitochondria and Mitochondrial Nucleoids in Differentiated SH-SY5Y Cells. Methods in Molecular Biology, 2022, 2431, 291-310.	0.4	2
348	Intercellular Transport of Mitochondria: Molecular Mechanisms and Role in Maintaining Energy Homeostasis in Tissues. Cell and Tissue Biology, 2022, 16, 97-113.	0.2	1
349	SOD1 mediates lysosome-to-mitochondria communication and its dysregulation by amyloid-β oligomers. Neurobiology of Disease, 2022, 169, 105737.	2.1	7
350	What Is the Role of Mitochondrial Fission in Neurologic Disease?. Neurology, 2022, 98, 662-668.	1.5	1
371	The ER-Mitochondria Interface as a Dynamic Hub for T Cell Efficacy in Solid Tumors. Frontiers in Cell and Developmental Biology, 2022, 10, 867341.	1.8	4
372	Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nature Communications, 2022, 13, 2340.	5.8	29
373	The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology, 2022, 19, 723-736.	6.1	62
375	Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. International Journal of Molecular Sciences, 2022, 23, 5418.	1.8	8
376	Novel roles of RTN4 and CLIMP-63 in regulating mitochondrial structure, bioenergetics and apoptosis. Cell Death and Disease, 2022, 13, 436.	2.7	7
377	Prognostic significance of dynamin-related protein 1 expression in advanced lung adenocarcinoma. Pathology Research and Practice, 2022, 234, 153931.	1.0	0

#	Article	IF	Citations
378	Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell and Bioscience, 2022, 12, 66.	2.1	60
381	AKAP1 contributes to impaired mtDNA replication and mitochondrial dysfunction in podocytes of diabetic kidney disease. International Journal of Biological Sciences, 2022, 18, 4026-4042.	2.6	8
382	A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. Journal of Cell Biology, 2022, 221, .	2.3	23
383	Fission Impossible (?)—New Insights into Disorders of Peroxisome Dynamics. Cells, 2022, 11, 1922.	1.8	5
384	Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. Membranes, 2022, 12, 625.	1.4	2
385	Mitochondria as Cellular and Organismal Signaling Hubs. Annual Review of Cell and Developmental Biology, 2022, 38, 179-218.	4.0	52
386	Mitohormesis and mitochondrial dynamics in the regulation of stem cell fate. Journal of Cellular Physiology, 2022, 237, 3435-3448.	2.0	4
387	Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. Journal of Hematology and Oncology, 2022, 15, .	6.9	53
388	Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts. Nature Communications, 2022, 13, .	5.8	25
390	In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Lowâ€power Laser. Angewandte Chemie, 2022, 134, .	1.6	3
391	Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041261.	2.3	9
392	Mitofusin 2 Integrates Mitochondrial Network Remodelling, Mitophagy and Renewal of Respiratory Chain Proteins in Neurons after Oxygen and Glucose Deprivation. Molecular Neurobiology, 2022, 59, 6502-6518.	1.9	6
393	In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Lowâ€power Laser. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
394	ER as master regulator of membrane trafficking and organelle function. Journal of Cell Biology, 2022, 221, .	2.3	31
395	Metabolic Regulation of Mitochondrial Dynamics and Cardiac Function. , 2022, , 197-211.		0
396	Long COVID-19 and the Heart: Is Cardiac Mitochondria the Missing Link?. Antioxidants and Redox Signaling, 0, , .	2.5	6
397	DarT-mediated mtDNA damage induces dynamic reorganization and selective segregation of mitochondria. Journal of Cell Biology, 2022, 221, .	2.3	4
400	Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Research, 0, 10, 606.	0.8	1

#	Article	IF	CITATIONS
401	Life in lockdown: Orchestrating endoplasmic reticulum and lysosome homeostasis for quiescent cells. Molecular Cell, 2022, 82, 3526-3537.	4.5	2
402	Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. ELife, 0, 11, .	2.8	8
403	Mitochondria from the Outside in: The Relationship Between Inter-Organelle Crosstalk and Mitochondrial Internal Organization. Contact (Thousand Oaks (Ventura County, Calif)), 2022, 5, 251525642211332.	0.4	4
405	Fundamental roles for inter-organelle communication in aging. Biochemical Society Transactions, 2022, 50, 1389-1402.	1.6	4
406	Resistin impairs mitochondrial homeostasis via cyclase-associated protein 1-mediated fission, leading to obesity-induced metabolic diseases. Metabolism: Clinical and Experimental, 2023, 138, 155343.	1.5	6
407	Mitochondrial nucleoid trafficking regulated by the inner-membrane AAA-ATPase ATAD3A modulates respiratory complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
408	The metabolism and function of phospholipids in Mitochondria. , 2023, 1, 2-12.		8
409	Mitochondrial dysfunction, aging, and the mitochondrial unfolded protein response in <i>Caenorhabditis elegans</i> . Genetics, 2022, 222, .	1.2	9
410	Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure. Nature Communications, 2022, 13, .	5.8	9
411	Mitochondria as a toxicological target for fungicides. , 2023, , 493-526.		Ο
412	The role of Mitochondrial Fission Proteins in Mitochondrial Dynamics in Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 14725.	1.8	15
413	Mitochondria-associated niches in health and disease. Journal of Cell Science, 2022, 135, .	1.2	1
414	Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 2022, 23, 14663.	1.8	16
415	Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	16
417	Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science, 2022, 378, .	6.0	22
418	Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends in Neurosciences, 2023, 46, 137-152.	4.2	29
419	Peanut AhmTERF1 Regulates Root Growth by Modulating Mitochondrial Abundance. Genes, 2023, 14, 209.	1.0	0
420	Mitochondrial genome recovery by ATFS-1 is essential for development after starvation. Cell Reports, 2022, 41, 111875.	2.9	2

ARTICLE IF CITATIONS # Advances in Human Mitochondria-Based Therapies. International Journal of Molecular Sciences, 2023, 421 1.8 6 24,608. An AAA-ATPase links mitochondrial division with DNA nucleoids. Proceedings of the National Academy 422 3.3 of Sciences of the United States of America, 2022, 119, . VAP-A intrinsically disordered regions enable versatile tethering at membrane contact sites. 425 3.1 14 Developmental Cell, 2023, 58, 121-138.e9. Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. International 426 1.8 Journal of Molecular Sciences, 2023, 24, 3414. A Concerted Redox―and Lightâ€Activated Agent for Controlled Multimodal Therapy against Hypoxic 427 11.1 8 Cancer Cells. Advanced Materials, 2023, 35, . The key role of proteostasis at mitochondria-associated endoplasmic reticulum membrane in vanadium-induced nephrotoxicity using a proteomic strategy. Science of the Total Environment, 2023, 869, 161741. A novel fluorescent endoplasmic reticulum marker for superâ€resolution imaging in live cells. FEBS 429 1.3 2 Letters, 2023, 597, 693-701. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. 1.8 Frontiers in Cell and Developmental Biology, 0, 11, . Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with 431 2.0 7 other organelles. Cell Death Discovery, 2023, 9, . Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions. Experimental Cell Research, 2023, 1.2 424, 113512 DRP1 mutations associated with EMPF1 encephalopathy alter mitochondrial membrane potential and 433 1.2 8 metabolic programs. Journal of Cell Science, 2023, 136, . m6A methylation-induced NR1D1 ablation disrupts the HSC circadian clock and promotes hepatic 3.1 fibrosis. Pharmacological Research, 2023, 189, 106704. Chemical inhibition of mitochondrial fission via targeting the DRP1-receptor interaction. Cell 435 2.5 3 Chemical Biology, 2023, 30, 278-294.e11. Mitochondrial stress and aging: Lessons from C. elegans. Seminars in Cell and Developmental Biology, 2.3 2024, 154, 69-76. Visualize the Distribution and Dynamics of Mitochondrial DNA (mtDNA) Nucleoids with Multiple 437 0 0.4 Labeling Strategies. Methods in Molecular Biology, 2023, , 79-88. In Situ Analysis of Mitochondrial DNA Synthesis Using Metabolic Labeling Coupled to Fluorescence Microscopy. Methods in Molecular Biológy, 2023, , 99-106. Determinants and outcomes of mitochondrial dynamics. Molecular Cell, 2023, 83, 857-876. 439 4.5 36 440 Spastic Paraplegia Type 7 (SPG7)., 2023, , 691-695.

#	Article	IF	CITATIONS
441	Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. , 2023, .		1
442	Mitochondrial DNA Release in Innate Immune Signaling. Annual Review of Biochemistry, 2023, 92, 299-332.	5.0	21

é¶...å^†è¾¨æ[~]¾å¾®æ^åƒæŠ€æœ⁻在细胞å™rç›,互作ç"¨ç"ç©¶ä,çš"å²"ç"ï¼^特é,€ï¼‰. Hongwai Yu Jiguang Gong@heng/Infra

445	Mitochondrial Dynamics as Potential Modulators of Hormonal Therapy Effectiveness in Males. Biology, 2023, 12, 547.	1.3	1
446	Possible frequent multiple mitochondrial DNA copies in a single nucleoid in HeLa cells. Scientific Reports, 2023, 13, .	1.6	1
447	Pathogen vacuole membrane contact sites $\hat{a} \in $ close encounters of the fifth kind. MicroLife, 2023, 4, .	1.0	5
448	Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods in Molecular Biology, 2023, , 83-104.	0.4	1
449	Epigenetic regulation of chondrocytes affected by mitochondria through mechanotransduction in osteoarthritis. Medicine in Novel Technology and Devices, 2023, 18, 100230.	0.9	Ο
451	The multiple links between actin and mitochondria. Nature Reviews Molecular Cell Biology, 2023, 24, 651-667.	16.1	8