Twenty years on: the impact of fragments on drug disco

Nature Reviews Drug Discovery 15, 605-619 DOI: 10.1038/nrd.2016.109

Citation Report

#	Article	IF	CITATIONS
1	Going Small: Using Biophysical Screening to Implement Fragment Based Drug Discovery. , 0, , .		1
2	Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data. Journal of Biomolecular NMR, 2016, 66, 195-208.	1.6	19
3	Mycobacterium tuberculosis Malate Synthase Structures with Fragments Reveal a Portal for Substrate/Product Exchange. Journal of Biological Chemistry, 2016, 291, 27421-27432.	1.6	25
4	Identification of DNA primase inhibitors via a combined fragment-based and virtual screening. Scientific Reports, 2016, 6, 36322.	1.6	18
5	Selective targeting of epigenetic reader domains. Expert Opinion on Drug Discovery, 2017, 12, 449-463.	2.5	17
6	Proteinâ€Templated Formation of an Inhibitor of the Blood Coagulation Factorâ€Xa through a Backgroundâ€Free Amidation Reaction. Angewandte Chemie - International Edition, 2017, 56, 3718-3722.	7.2	28
7	Do Fragments and Crystallization Additives Bind Similarly to Drug-like Ligands?. Journal of Chemical Information and Modeling, 2017, 57, 1197-1209.	2.5	14
8	Discovery of Clinical Candidate 1-{[(2 <i>S</i> ,3 <i>S</i> ,4 <i>S</i>)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoline-6-carbo (PF-06650833), a Potent, Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4 (IRAK4), by Fragment-Based Drug Design, Journal of Medicinal Chemistry, 2017, 60, 5521-5542.	oxamide 2.9	112
9	Discovery of a B-Cell Lymphoma 6 Protein–Protein Interaction Inhibitor by a Biophysics-Driven Fragment-Based Approach. Journal of Medicinal Chemistry, 2017, 60, 4358-4368.	2.9	40
10	Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. Journal of Medicinal Chemistry, 2017, 60, 4093-4098.	2.9	30
11	Substrate mediated enzyme prodrug therapy. Advanced Drug Delivery Reviews, 2017, 118, 24-34.	6.6	29
12	Discovery and structure-guided fragment-linking of 4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a pyruvate kinase M2 activator. Bioorganic and Medicinal Chemistry, 2017, 25, 3540-3546.	1.4	25
13	Application of in-vitro screening methods on hypoxia inducible factor prolyl hydroxylase inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3891-3899.	1.4	7
14	Proteintemplat-gesteuerte Bildung eines Inhibitors des Koagulationsfaktors Xa durch eine Amidierung ohne Hintergrundreaktion. Angewandte Chemie, 2017, 129, 3772-3776.	1.6	7
15	Drugging the undruggable: targeting challenging E3 ligases for personalized medicine. Future Medicinal Chemistry, 2017, 9, 347-350.	1.1	25
16	Hot-Spotting with Thermal Scanning: A Ligand- and Structure-Independent Assessment of Target Ligandability. Journal of Medicinal Chemistry, 2017, 60, 4923-4931.	2.9	18
17	Fragmentâ€based drug discovery as alternative strategy to the drug development for neglected diseases. Chemical Biology and Drug Design, 2017, 90, 1067-1078.	1.5	17
18	Privileged Structures Revisited. Angewandte Chemie - International Edition, 2017, 56, 7971-7974.	7.2	85

TATION REDO

#	Article	IF	CITATIONS
19	The potential use of single-particle electron microscopy as a tool for structure-based inhibitor design. Acta Crystallographica Section D: Structural Biology, 2017, 73, 534-540.	1.1	8
20	Sustainable Practices in Medicinal Chemistry Part 2: Green by Design. Journal of Medicinal Chemistry, 2017, 60, 5955-5968.	2.9	17
21	Identifying Protein Allosteric Transitions for Drug Discovery with 1Dâ€NMR. ChemMedChem, 2017, 12, 901-904.	1.6	5
22	Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors. Journal of Molecular Graphics and Modelling, 2017, 74, 73-82.	1.3	17
23	Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives. Journal of Virology, 2017, 91, .	1.5	109
24	Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery. Drug Discovery Today, 2017, 22, 681-689.	3.2	16
25	Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products. Bioorganic and Medicinal Chemistry, 2017, 25, 921-925.	1.4	35
26	Harnessing the Versatility of Optical Biosensors for Target-Based Small-Molecule Drug Discovery. ACS Sensors, 2017, 2, 10-15.	4.0	27
27	Filling Blank Spots on the Map: Identification of Ligand Binding Modes and Interacting Water Molecules for Brd4-BD1 by WaterLOGSY Titrations. Journal of Medicinal Chemistry, 2017, 60, 8706-8707.	2.9	2
28	A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm, 2017, 8, 1970-1981.	3.5	289
29	Fragment-based approach to identify IDO1 inhibitor building blocks. European Journal of Medicinal Chemistry, 2017, 141, 169-177.	2.6	17
30	Crystal structure and functional characterization of <scp>SF</scp> 216 from <i>Shigella flexneri</i> . FEBS Letters, 2017, 591, 3692-3703.	1.3	1
31	Increase of enzyme activity through specific covalent modification with fragments. Chemical Science, 2017, 8, 7772-7779.	3.7	36
32	What is the future for fragment-based drug discovery?. Future Medicinal Chemistry, 2017, 9, 1457-1460.	1.1	9
33	14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacological Research, 2017, 125, 114-121.	3.1	50
34	Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry, 2017, 60, 8160-8169.	2.9	32
35	Directing evolution: the next revolution in drug discovery?. Nature Reviews Drug Discovery, 2017, 16, 681-698.	21.5	70
36	Allosteric Tuning of Caspaseâ€7: A Fragmentâ€Based Drug Discovery Approach. Angewandte Chemie, 2017, 129, 14635-14639.	1.6	0

#	Article	IF	CITATIONS
37	A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs. Scientific Reports, 2017, 7, 11969.	1.6	35
38	Allosteric Tuning of Caspaseâ€7: A Fragmentâ€Based Drug Discovery Approach. Angewandte Chemie - International Edition, 2017, 56, 14443-14447.	7.2	11
39	Discovery of Inhibitors of Four Bromodomains by Fragment-Anchored Ligand Docking. Journal of Chemical Information and Modeling, 2017, 57, 2584-2597.	2.5	21
40	Multiâ€ŧarget Fragments Display Versatile Binding Modes. Molecular Informatics, 2017, 36, 1700042.	1.4	7
41	A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. Accounts of Chemical Research, 2017, 50, 2007-2016.	7.6	45
42	The Ligand Binding Landscape of Diacylglycerol Kinases. Cell Chemical Biology, 2017, 24, 870-880.e5.	2.5	46
43	In Silicon Approach for Discovery of Chemopreventive Agents. Current Pharmacology Reports, 2017, 3, 184-195.	1.5	4
44	Computer-aided drug design: time to play with novel chemical matter. Expert Opinion on Drug Discovery, 2017, 12, 977-980.	2.5	14
45	Privilegierte Strukturen neu betrachtet. Angewandte Chemie, 2017, 129, 8079-8083.	1.6	8
46	Identification of a New Zinc Binding Chemotype by Fragment Screening. Journal of Medicinal Chemistry, 2017, 60, 7333-7349.	2.9	18
47	Strategies for Tackling Drug Resistance in Tuberculosis. , 2017, , 89-112.		1
48	Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A adenosine receptor binding site. Scientific Reports, 2017, 7, 6398.	1.6	44
49	Structure-Guided Discovery of Novel, Potent, and Orally Bioavailable Inhibitors of Lipoprotein-Associated Phospholipase A2. Journal of Medicinal Chemistry, 2017, 60, 10231-10244.	2.9	24
50	High-Confidence Protein–Ligand Complex Modeling by NMR-Guided Docking Enables Early Hit Optimization. Journal of the American Chemical Society, 2017, 139, 17824-17833.	6.6	18
51	Substituted, Fused, Tricyclic 6,7â€Dihydroâ€1 <i>H</i> ,5 <i>H</i> â€pyrido[1,2,3â€ <i>de</i>]quinoxalineâ€3â€an Isocyanideâ€Abetted Cycloaddition Reaction. European Journal of Organic Chemistry, 2017, 2017, 6413-6416.	nines by 1.2	7
52	High-Throughput Chemical Probing of Full-Length Protein–Protein Interactions. ACS Combinatorial Science, 2017, 19, 763-769.	3.8	14
53	DINC 2.0: A New Protein–Peptide Docking Webserver Using an Incremental Approach. Cancer Research, 2017, 77, e55-e57.	0.4	100
54	Pushing the Limits of Detection of Weak Binding Using Fragment-Based Drug Discovery: Identification of New Cyclophilin Binders. Journal of Molecular Biology, 2017, 429, 2556-2570.	2.0	16

#	Article	IF	CITATIONS
55	Biophysics: for HTS hit validation, chemical lead optimization, and beyond. Expert Opinion on Drug Discovery, 2017, 12, 897-907.	2.5	20
56	Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin. Analytica Chimica Acta, 2017, 984, 211-222.	2.6	17
57	Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis, 2017, 106, 44-52.	0.8	3
58	Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm, 2017, 8, 13-20.	3.5	8
59	Fragment-to-Lead Medicinal Chemistry Publications in 2015. Journal of Medicinal Chemistry, 2017, 60, 89-99.	2.9	47
60	A new â€~golden age' for the antitubercular target InhA. Drug Discovery Today, 2017, 22, 492-502.	3.2	46
61	Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discovery Today, 2017, 22, 546-554.	3.2	36
62	Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery, 2017, 16, 101-114.	21.5	971
63	Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 3372-3377.	2.3	115
64	Fragment-Based Lead Discovery. Annual Reports in Medicinal Chemistry, 2017, , 371-439.	0.5	14
65	Survival of the Fittest Computational Chemists, Computers, and Reference Works (Over a 30-Year) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
66	Gentle, fast and effective crystal soaking by acoustic dispensing. Acta Crystallographica Section D: Structural Biology, 2017, 73, 246-255.	1.1	74
67	Fragment-based drug discovery and its application to challenging drug targets. Essays in Biochemistry, 2017, 61, 475-484.	2.1	57
68	Mass spectrometry for fragment screening. Essays in Biochemistry, 2017, 61, 465-473.	2.1	15
69	Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules, 2017, 22, 1399.	1.7	32
70	Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays in Biochemistry, 2017, 61, 505-516.	2.1	163
71	Structure-based drug design: aiming for a perfect fit. Essays in Biochemistry, 2017, 61, 431-437.	2.1	75
72	Current perspectives in fragment-based lead discovery (FBLD). Essays in Biochemistry, 2017, 61, 453-464.	2.1	122

# 73	ARTICLE Chemical genetics and strigolactone perception. F1000Research, 2017, 6, 975.	IF 0.8	CITATIONS
74	The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery. Essays in Biochemistry, 2017, 61, 495-503.	2.1	12
75	Discovery of Novel KRAS-PDEδ Inhibitors by Fragment-Based Drug Design. Journal of Medicinal Chemistry, 2018, 61, 2604-2610.	2.9	26
76	Fragment screening for drug leads by weak affinity chromatography (WAC-MS). Methods, 2018, 146, 26-38.	1.9	21
77	Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors. Journal of Chemical Information and Modeling, 2018, 58, 683-691.	2.5	20
78	Trendbericht Biochemie 2017: Proteinvermittelte dynamische kombinatorische Chemie. Nachrichten Aus Der Chemie, 2018, 66, 281-283.	0.0	0
80	cat-ELCCA: catalyzing drug discovery through click chemistry. Chemical Communications, 2018, 54, 6531-6539.	2.2	19
81	A Strategy to Aminate Pyridines, Diazines, and Pharmaceuticals via Heterocyclic Phosphonium Salts. Organic Letters, 2018, 20, 2607-2610.	2.4	49
82	Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation. European Journal of Medicinal Chemistry, 2018, 151, 450-461.	2.6	57
83	Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. Journal of Medicinal Chemistry, 2018, 61, 6421-6467.	2.9	79
84	Crystallography and the development of therapeutic medicines. IUCrJ, 2018, 5, 118-119.	1.0	3
85	Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews Drug Discovery, 2018, 17, 333-352.	21.5	182
86	Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infectious Diseases, 2018, 4, 431-444.	1.8	50
87	Targeting the MAPK Pathway in RAS Mutant Cancers. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031492.	2.9	41
88	Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nature Reviews Drug Discovery, 2018, 17, 167-181.	21.5	294
89	Binding-Site Compatible Fragment Growing Applied to the Design of β ₂ -Adrenergic Receptor Ligands. Journal of Medicinal Chemistry, 2018, 61, 1118-1129.	2.9	39
90	Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nature Chemistry, 2018, 10, 8-16.	6.6	143
91	Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death and Differentiation, 2018, 25, 3-6.	5.0	47

#	Article	IF	CITATIONS
92	Using <i>tert</i> -Butyl Groups in a Ligand To Identify Its Binding Site on a Protein. ACS Medicinal Chemistry Letters, 2018, 9, 109-113.	1.3	4
93	DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information. Annual Review of Biochemistry, 2018, 87, 479-502.	5.0	294
94	Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. Drug Discovery Today, 2018, 23, 605-615.	3.2	77
95	Fragmentâ€Based Phenotypic Lead Discovery: Cellâ€Based Assay to Target Leishmaniasis. ChemMedChem, 2018, 13, 1377-1386.	1.6	10
96	When fragments link: a bibliometric perspective on the development of fragment-based drug discovery. Drug Discovery Today, 2018, 23, 1596-1609.	3.2	36
97	General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept. Scientific Reports, 2018, 8, 4327.	1.6	41
98	Design and synthesis of a fragment set based on twisted bicyclic lactams. Bioorganic and Medicinal Chemistry, 2018, 26, 3030-3033.	1.4	18
99	Inhibition of Akt and other AGC kinases: A target for clinical cancer therapy?. Seminars in Cancer Biology, 2018, 48, 70-77.	4.3	28
100	The impact of structural biology in medicine illustrated with four case studies. Journal of Molecular Medicine, 2018, 96, 9-19.	1.7	7
101	Generative Recurrent Networks for <i>De Novo</i> Drug Design. Molecular Informatics, 2018, 37, 1700111.	1.4	305
102	NMR studies of ligand binding. Current Opinion in Structural Biology, 2018, 48, 16-22.	2.6	48
103	Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Proteinâ€Detected NMR Spectroscopy. ChemBioChem, 2018, 19, 448-458.	1.3	13
104	Deconstructing Lipid Kinase Inhibitors by Chemical Proteomics. Biochemistry, 2018, 57, 231-236.	1.2	18
105	Fragment-Based Drug Discovery of Phosphodiesterase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1415-1424.	2.9	17
106	Biophysical screening in fragment-based drug design: a brief overview. Bioscience Horizons, 2018, 11, .	0.6	12
107	19F multiple-quantum coherence NMR spectroscopy for probing protein–ligand interactions. RSC Advances, 2018, 8, 40687-40692.	1.7	3
108	Step IIIa: Biological Hit Discovery Through High-Throughput Screening (HTS): Random Approaches and Rational Design. , 2018, , 77-113.		0
109	Step IIIb: The Drug-Like Chemical Diversity Pool: Diverse and Targeted Compound Collections. , 2018, , 115-177.		0

#	Article	IF	CITATIONS
110	Imaginative Order from Reasonable Chaos: Conformation-Driven Activity and Reactivity in Exploring Protein–Ligand Interactions. Australian Journal of Chemistry, 2018, 71, 917.	0.5	0
111	Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science, 2018, 362, 799-804.	6.0	145
112	A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays. Methods in Enzymology, 2018, 610, 135-165.	0.4	11
113	Solvents to Fragments to Drugs: MD Applications in Drug Design. Molecules, 2018, 23, 3269.	1.7	25
114	Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening. International Journal of Molecular Sciences, 2018, 19, 3664.	1.8	3
115	AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discovery, 2018, 8, 1582-1597.	7.7	310
116	A road map for prioritizing warheads for cysteine targeting covalent inhibitors. European Journal of Medicinal Chemistry, 2018, 160, 94-107.	2.6	80
117	The role of small-angle scattering in structure-based screening applications. Biophysical Reviews, 2018, 10, 1295-1310.	1.5	10
118	Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections. Frontiers in Chemistry, 2018, 6, 460.	1.8	51
119	DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. Journal of the American Chemical Society, 2018, 140, 15859-15867.	6.6	83
120	Small-Molecule Screening for Genetic Diseases. Annual Review of Genomics and Human Genetics, 2018, 19, 263-288.	2.5	9
121	Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2. Journal of Medicinal Chemistry, 2018, 61, 4978-4992.	2.9	42
122	†Tethering' fragment-based drug discovery to identify inhibitors of the essential respiratory membrane protein type II NADH dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2239-2243.	1.0	10
123	Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochemical Journal, 2018, 475, 2043-2055.	1.7	35
124	Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Scientific Reports, 2018, 8, 8142.	1.6	45
125	Metal–ligand interactions in drug design. Nature Reviews Chemistry, 2018, 2, 100-112.	13.8	124
126	Applications of NMR Spectroscopy in FBDD. , 2018, , 2211-2231.		2
127	Identification of Thiourea-Based Inhibitors of the B-Cell Lymphoma 6 BTB Domain via NMR-Based Fragment Screening and Computer-Aided Drug Design. Journal of Medicinal Chemistry, 2018, 61, 7573-7588.	2.9	35

ARTICLE IF CITATIONS Overview of NMR in Drug Design., 2018, , 1971-1981. 0 128 Identification of an auxiliary druggable pocket in the DNA gyrase ATPase domain using fragment 129 3.5 probes. MedChemComm, 2018, 9, 1619-1629. On the Implication of Water on Fragmentâ€toâ€Ligand Growth in Kinase Binding Thermodynamics. 130 1.6 8 ChemMedChem, 2018, 13, 1988-1996. Fragment-Based Drug Discovery for Developing Inhibitors of Protein-Protein Interactions., 2018,, 135-176. Heterocyclic Iodoniums for the Assembly of Oxygen-Bridged Polycyclic Heteroarenes with Water as 132 2.4 42 the Oxygen Source. Organic Letters, 2018, 20, 4815-4818. Chemistryâ€driven Hitâ€toâ€lead Optimization Guided by Structureâ€based Approaches. Molecular 1.4 Informatics, 2018, 37, e1800059. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo-134 0.4 20 and Exonuclease Activities. Methods in Enzymology, 2018, 601, 205-241. Structure-guided engineering of TGF-Î²s for the development of novel inhibitors and probing 1.4 mechanism. Bioorganic and Medicinal Chemistry, 2018, 26, 5239-5246. Allosteric Activation of GDP-Bound Ras Isoforms by Bisphenol Derivative Plasticisers. International 136 1.8 11 Journal of Molecular Sciences, 2018, 19, 1133. NMR-Fragment Based Virtual Screening: A Brief Overview. Molecules, 2018, 23, 233. 1.7 Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors. Inorganic Chemistry, 2018, 57, 138 1.9 29 9538-9543. In silico fragment-based drug design with SEED. European Journal of Medicinal Chemistry, 2018, 156, 2.6 907-917. 140 Computer-Aided Drug Design in Epigenetics. Frontiers in Chemistry, 2018, 6, 57. 1.8 51 Generation of Polar Semiâ€Saturated Bicyclic Pyrazoles for Fragmentâ€Based Drugâ€Discovery Campaigns.. Chemistry - A European Journal, 2018, 24, 10443-10451. 141 1.7 Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1–Nuclear Factor Erythroid 2-Related 142 Factor 2 (Keap1 $\hat{e}^{(n)}$ Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases. 2.9 71 Journal of Medicinal Chemistry, 2018, 61, 8088-8103. Synthesis of Enantiomerically Pure 6-Substituted-Piperazine-2-Acetic Acid Esters as Intermediates for 143 Library Production. Journal of Organic Chemistry, 2018, 83, 6541-6555. Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert 144 1.522 Opinion on Therapeutic Targets, 2018, 22, 745-763. 145 Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 2018, 17, 709-727. 21.5 391

ARTICLE IF CITATIONS # Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Current Topics in 146 0.7 2 Microbiology and Immunology, 2018, 420, 175-210. Insights into the development of chemical probes for RNA. Nucleic Acids Research, 2018, 46, 8025-8037. 6.5 Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox. SLAS 148 1.4 25 Discovery, 2018, 23, 881-897. DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical 149 sciences. Biological Chemistry, 2018, 399, 691-710. Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug Discovery, 150 21.5 304 2018, 17, 471-492. Where Do Recent Small Molecule Clinical Development Candidates Come From?. Journal of Medicinal Chemistry, 2018, 61, 9442-9468. Molecular modeling of neurological membrane proteins â[^] from binding sites to synapses. 152 1.0 3 Neuroscience Letters, 2019, 700, 38-49. Advances with weak affinity chromatography for fragment screening. Expert Opinion on Drug 2.5 Discovery, 2019, 14, 1125-1135. 154 How Size Matters: Diversity for Fragment Library Design. Molecules, 2019, 24, 2838. 1.7 21 Fragment Binding Pose Predictions Using Unbiased Simulations and Markov-State Models. Journal of 2.3 Chemical Theory and Computation, 2019, 15, 4974-4981. Stereoselective Palladium-Catalyzed 1,3-Arylboration of Unconjugated Dienes for Expedient Synthesis 156 39 5.5of 1,3-Disubstituted Cyclohexanes. ACS Catalysis, 2019, 9, 8555-8560. Using Physicochemical Measurements to Influence Better Compound Design. SLAS Discovery, 2019, 24, 1.4 24 791-801. Cells, drugs and NMR. Journal of Magnetic Resonance, 2019, 306, 202-212. 158 1.2 45 Protein-protein interaction modulators: advances, successes and remaining challenges. Biophysical 159 1.5 Reviews, 2019, 11, 559-581. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega, 160 19 1.6 2019, 4, 11642-11656. Cycloaddition Strategies for the Synthesis of Diverse Heterocyclic Spirocycles for Fragmentâ€Based 1.2 Drug Discovery. European Journal of Organic Chemistry, 2019, 2019, 5219-5229. 1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery. Journal of Enzyme 162 2.531 Inhibition and Medicinal Chemistry, 2019, 34, 1218-1225. Molecular Docking-assisted Protein Chip Screening of Inhibitors for Bcl-2 Family Protein-protein Interaction to Discover Anticancer Agents by Fragment-based Approach. Biochip Journal, 2019, 13, 260-268.

#	Article	IF	Citations
164	Exhaustive Repertoire of Druggable Cavities at Protein–Protein Interfaces of Known Three-Dimensional Structure. Journal of Medicinal Chemistry, 2019, 62, 9732-9742.	2.9	17
165	Discovery of Pyrazolocarboxamides as Potent and Selective Receptor Interacting Protein 2 (RIP2) Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1518-1523.	1.3	20
166	Shortcuts to schistosomiasis drug discovery: The state-of-the-art. Annual Reports in Medicinal Chemistry, 2019, , 139-180.	0.5	3
167	Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 7188-7217.	1.2	33
168	Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nature Chemistry, 2019, 11, 1113-1123.	6.6	93
169	Development of a Fragment-Based Screening Assay for the Focal Adhesion Targeting Domain Using SPR and NMR. Molecules, 2019, 24, 3352.	1.7	10
170	Extending the Detection Limit in Fragment Screening of Proteins Using Reverse Micelle Encapsulation. ACS Chemical Biology, 2019, 14, 2224-2232.	1.6	7
171	Discovery of novel allosteric site and covalent inhibitors of FBPase with potent hypoglycemic effects. European Journal of Medicinal Chemistry, 2019, 184, 111749.	2.6	13
172	Design, synthesis and algicides activities of thiourea derivatives as the novel scaffold aldolase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 805-812.	1.4	12
173	The nature of ligand efficiency. Journal of Cheminformatics, 2019, 11, 8.	2.8	61
174	Fragment-Based Structural Optimization of a Natural Product Itampolin A as a p38α Inhibitor for Lung Cancer. Marine Drugs, 2019, 17, 53.	2.2	7
175	Access to 3D Alicyclic Amine-Containing Fragments through Transannular C–H Arylation. Synlett, 2019, 30, 417-422.	1.0	17
176	Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines. Chemical Science, 2019, 10, 2264-2271.	3.7	79
177	Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opinion on Drug Discovery, 2019, 14, 735-753.	2.5	70
178	Identifying Novel Anti-Osteoporosis Leads with a Chemotype-Assembly Approach. Journal of Medicinal Chemistry, 2019, 62, 5885-5900.	2.9	16
179	Optimization of novel reversible Bruton's tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorganic and Medicinal Chemistry, 2019, 27, 2905-2913.	1.4	14
180	Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations. Journal of Chemical Information and Modeling, 2019, 59, 2035-2045.	2.5	22
181	Inhibition of autotransporter biogenesis by small molecules. Molecular Microbiology, 2019, 112, 81-98.	1.2	20

#	Article	IF	CITATIONS
182	Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Computational Biology and Chemistry, 2019, 80, 374-383.	1.1	7
183	AKT as a Therapeutic Target for Cancer. Cancer Research, 2019, 79, 1019-1031.	0.4	523
184	Real-Time Insights into Biological Events: In-Cell Processes and Protein-Ligand Interactions. Biophysical Journal, 2019, 116, 239-247.	0.2	35
185	Recent Advances in the Synthesis and Reactivity of Isothiazoles. Advanced Synthesis and Catalysis, 2019, 361, 3050-3067.	2.1	46
186	Crystallographic screening using ultra-low-molecular-weight ligands to guide drug design. Drug Discovery Today, 2019, 24, 1081-1086.	3.2	60
187	Fragment Hits: What do They Look Like and How do They Bind?. Journal of Medicinal Chemistry, 2019, 62, 3381-3394.	2.9	53
188	Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor. ChemMedChem, 2019, 14, 1115-1127.	1.6	18
189	Unveiling the druggable RNA targets and small molecule therapeutics. Bioorganic and Medicinal Chemistry, 2019, 27, 2149-2165.	1.4	39
190	Approaches for the discovery of metalloâ€Î²â€lactamase inhibitors: A review. Chemical Biology and Drug Design, 2019, 94, 1427-1440.	1.5	24
191	Perspective on Antibacterial Lead Identification Challenges and the Role of Hypothesis-Driven Strategies. SLAS Discovery, 2019, 24, 440-456.	1.4	7
192	Binding mode information improves fragment docking. Journal of Cheminformatics, 2019, 11, 24.	2.8	13
193	cryoEMâ€Guided Development of Antibiotics for Drugâ€Resistant Bacteria. ChemMedChem, 2019, 14, 527-531.	1.6	20
194	A bright future for fragment-based drug discovery: what does it hold?. Expert Opinion on Drug Discovery, 2019, 14, 413-416.	2.5	50
195	Applications of Dissolution-DNP for NMR Screening. Methods in Enzymology, 2019, 615, 501-526.	0.4	15
196	Exploiting the furo[2,3-b]pyridine core against multidrug-resistant Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 974-977.	1.0	12
197	PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discovery Today: Technologies, 2019, 31, 15-27.	4.0	458
198	A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24500-24506.	3.3	43
199	Biophysical methods in early drug discovery. ADMET and DMPK, 2019, 7, 222-241.	1.1	17

#	Article	IF	CITATIONS
200	Integration of novel strategy and methods: total synthesis of antitumor lasonolide A. Strategies and Tactics in Organic Synthesis, 2019, , 107-138.	0.1	1
201	Heterocyclic iodoniums as versatile synthons to approach diversified polycyclic heteroarenes. RSC Advances, 2019, 9, 33170-33179.	1.7	17
202	Protein–Small Molecule Interactions by WaterLOGSY. Methods in Enzymology, 2019, 615, 477-500.	0.4	22
203	Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. Journal of Lipid Research, 2019, 60, 299-311.	2.0	12
204	Allosteric Activation of Striatal-Enriched Protein Tyrosine Phosphatase (STEP, PTPN5) by a Fragment-like Molecule. Journal of Medicinal Chemistry, 2019, 62, 306-316.	2.9	29
205	BCL-2 Protein Family Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2019, 1877, 217-231.	0.4	1
206	Dengue drug discovery: Progress, challenges and outlook. Antiviral Research, 2019, 163, 156-178.	1.9	71
207	Assessing molecular interactions with biophysical methods using the validation cross. Biochemical Society Transactions, 2019, 47, 63-76.	1.6	4
208	GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nature Reviews Drug Discovery, 2019, 18, 59-82.	21.5	179
209	Diversity-oriented synthesis of bicyclic fragments containing privileged azines. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 248-251.	1.0	10
210	Overcoming Drug Resistance through the Development of Selective Inhibitors of UDP-Glucuronosyltransferase Enzymes. Journal of Molecular Biology, 2019, 431, 258-272.	2.0	17
211	NMR screening and studies of target – ligand interactions. Russian Chemical Reviews, 2019, 88, 59-98.	2.5	7
212	Virtual Compound Libraries in Computer-Assisted Drug Discovery. Journal of Chemical Information and Modeling, 2019, 59, 644-651.	2.5	55
213	Applications of In-Cell NMR in Structural Biology and Drug Discovery. International Journal of Molecular Sciences, 2019, 20, 139.	1.8	33
214	Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chemical Biology, 2019, 26, 9-15.	2.5	119
215	Evolution of commercially available compounds for HTS. Drug Discovery Today, 2019, 24, 390-402.	3.2	53
216	RNA Display Methods for the Discovery of Bioactive Macrocycles. Chemical Reviews, 2019, 119, 10360-10391.	23.0	160
217	Applications of Metabolic Phenotyping in Pharmaceutical Research and Development. , 2019, , 407-447.		2

#	Article	IF	CITATIONS
218	Rapid Assembly of Saturated Nitrogen Heterocycles in Oneâ€Pot: Diazoâ€Heterocycle "Stitching―by N–H Insertion and Cyclization. Angewandte Chemie, 2019, 131, 1472-1476.	1.6	13
219	A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semiâ€ S aturated Heterobicyclic Fragments. European Journal of Organic Chemistry, 2019, 2019, 1341-1349.	1.2	6
220	NAOMInext – Synthetically feasible fragment growing in a structure-based design context. European Journal of Medicinal Chemistry, 2019, 163, 747-762.	2.6	10
221	Rapid Assembly of Saturated Nitrogen Heterocycles in Oneâ€Pot: Diazoâ€Heterocycle "Stitching―by N–H Insertion and Cyclization. Angewandte Chemie - International Edition, 2019, 58, 1458-1462.	7.2	54
222	Advances in Lead Generation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 517-524.	1.0	25
223	Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. Journal of Medicinal Chemistry, 2019, 62, 2218-2244.	2.9	115
224	Computational fragment-based design of Wee1 kinase inhibitors with tricyclic core scaffolds. Structural Chemistry, 2019, 30, 213-226.	1.0	3
225	Plant natural fragments, an innovative approach for drug discovery. Phytochemistry Reviews, 2020, 19, 1141-1156.	3.1	5
226	Lipoproteinâ€associated phospholipase A2: The story continues. Medicinal Research Reviews, 2020, 40, 79-134.	5.0	104
227	Proteinâ€protein interactions as antibiotic targets: A medicinal chemistry perspective. Medicinal Research Reviews, 2020, 40, 469-494.	5.0	42
228	Multi-target QSAR modelling of chemo-genomic data analysis based on Extreme Learning Machine. Knowledge-Based Systems, 2020, 188, 104977.	4.0	26
229	In silico screening of modulators of magnesium dissolution. Corrosion Science, 2020, 163, 108245.	3.0	38
230	The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry - A European Journal, 2020, 26, 1196-1237.	1.7	97
231	Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations. Journal of Drug Targeting, 2020, 28, 154-165.	2.1	12
232	The 3F Library: Fluorinated Fsp ³ â€Rich Fragments for Expeditious ¹⁹ Fâ€NMR Based Screening. Angewandte Chemie, 2020, 132, 2224-2230.	1.6	10
233	The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cellular and Molecular Life Sciences, 2020, 77, 1483-1495.	2.4	18
234	Development of a Web-Based Laboratory Class to Reduce the Challenges in Teaching Fragment-Based Drug Design. Journal of Chemical Education, 2020, 97, 427-436.	1.1	15
235	Fragment-to-Lead Medicinal Chemistry Publications in 2018. Journal of Medicinal Chemistry, 2020, 63, 4430-4444	2.9	61

#	Article	IF	CITATIONS
236	Interaction Energetics and Druggability of the Protein–Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry, 2020, 59, 563-581.	1.2	28
237	The 3F Library: Fluorinated Fsp ³ â€Rich Fragments for Expeditious ¹⁹ Fâ€NMR Based Screening. Angewandte Chemie - International Edition, 2020, 59, 2204-2210.	7.2	49
238	Thermodynamic profiling for fragment-based lead discovery and optimization. Expert Opinion on Drug Discovery, 2020, 15, 117-129.	2.5	7
239	Pharmacological Targeting of IRE1 in Cancer. Trends in Cancer, 2020, 6, 1018-1030.	3.8	59
240	Many small steps towards a COVID-19 drug. Nature Communications, 2020, 11, 5048.	5.8	18
241	Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nature Communications, 2020, 11, 5047.	5.8	376
242	Combining fragment docking with graph theory to improve ligand docking for homology model structures. Journal of Computer-Aided Molecular Design, 2020, 34, 1237-1259.	1.3	4
243	Is it time for biocatalysis in fragment-based drug discovery?. Chemical Science, 2020, 11, 11104-11112.	3.7	20
244	An electrophilic warhead library for mapping the reactivity and accessibility of tractable cysteines in protein kinases. European Journal of Medicinal Chemistry, 2020, 207, 112836.	2.6	28
245	A Singleâ€Stranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970.	5.6	30
246	Re-engineering natural products to engage new biological targets. Natural Product Reports, 2020, 37, 1395-1403.	5.2	38
247	Structural biology of human GPCR drugs and endogenous ligands - insights from NMR spectroscopy. Methods, 2020, 180, 79-88.	1.9	4
248	SyntaLinker: automatic fragment linking with deep conditional transformer neural networks. Chemical Science, 2020, 11, 8312-8322.	3.7	72
249	Auto In Silico Ligand Directing Evolution to Facilitate the Rapid and Efficient Discovery of Drug Lead. IScience, 2020, 23, 101179.	1.9	22
250	Fragment-Based Discovery of Novel Non-Hydroxamate LpxC Inhibitors with Antibacterial Activity. Journal of Medicinal Chemistry, 2020, 63, 14805-14820.	2.9	18
251	Computational Fragment-Based Design Facilitates Discovery of Potent and Selective Monoamine Oxidase-B (MAO-B) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 15021-15036.	2.9	23
252	Discovery of allosteric binding sites by crystallographic fragment screening. Current Opinion in Structural Biology, 2020, 65, 209-216.	2.6	16
253	Shape-Based Descriptors for Efficient Structure-Based Fragment Growing. Journal of Chemical Information and Modeling, 2020, 60, 6269-6281.	2.5	5

#	Article	IF	CITATIONS
254	Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 5262.	1.8	34
255	Targeting epigenetic reader domains by chemical biology. Current Opinion in Chemical Biology, 2020, 57, 82-94.	2.8	20
256	NMR as a "Gold Standard―Method in Drug Design and Discovery. Molecules, 2020, 25, 4597.	1.7	48
257	Arranging Small Molecules with Subnanometer Precision on DNA Origami Substrates for the Singleâ€Molecule Investigation of Protein–Ligand Interactions. Small Structures, 2020, 1, 2000038.	6.9	31
258	Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures. Communications Chemistry, 2020, 3, .	2.0	11
259	Computer-Aided Analysis of Multiple SARS-CoV-2 Therapeutic Targets: Identification of Potent Molecules from African Medicinal Plants. Scientifica, 2020, 2020, 1-25.	0.6	8
260	Application of Fragment-Based Drug Discovery to Versatile Targets. Frontiers in Molecular Biosciences, 2020, 7, 180.	1.6	95
261	Expanded DNA and RNA Trinucleotide Repeats in Myotonic Dystrophy Type 1 Select Their Own Multitarget, Sequence-Selective Inhibitors. Biochemistry, 2020, 59, 3463-3472.	1.2	8
262	Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells. ACS Chemical Biology, 2020, 15, 2324-2330.	1.6	5
263	Targeting the Initiator Protease of the Classical Pathway of Complement Using Fragment-Based Drug Discovery. Molecules, 2020, 25, 4016.	1.7	9
264	LEADS-FRAG: A Benchmark Data Set for Assessment of Fragment Docking Performance. Journal of Chemical Information and Modeling, 2020, 60, 6544-6554.	2.5	7
265	Combining structure and genomics to understand antimicrobial resistance. Computational and Structural Biotechnology Journal, 2020, 18, 3377-3394.	1.9	17
266	Comprehensive and Highâ€Throughput Exploration of Chemical Space Using Broadband ¹⁹ Fâ€NMRâ€Based Screening. Angewandte Chemie - International Edition, 2020, 59, 14809-1481	7 ^{7.2}	24
267	An aza-nucleoside, fragment-like inhibitor of the DNA repair enzyme alkyladenine glycosylase (AAG). Bioorganic and Medicinal Chemistry, 2020, 28, 115507.	1.4	3
268	Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Chemical Science, 2020, 11, 10792-10801.	3.7	11
269	Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS Discovery, 2020, 25, 869-894.	1.4	23
270	Selection of DNAâ€Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angewandte Chemie, 2020, 132, 15075-15082.	1.6	7
271	Selection of DNAâ€Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angewandte Chemie - International Edition, 2020, 59, 14965-14972.	7.2	38

#	Article	IF	CITATIONS
272	High-Throughput Screening for the Discovery of Enzyme Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 10742-10772.	2.9	47
273	Comprehensive and Highâ€Throughput Exploration of Chemical Space Using Broadband 19 Fâ€NMRâ€Based Screening. Angewandte Chemie, 2020, 132, 14919-14927.	1.6	3
274	Developing polo-like kinase 1 inhibitors. Future Medicinal Chemistry, 2020, 12, 869-871.	1.1	9
275	New approaches to antibacterial drug discovery. , 2020, , 223-248.		1
276	Protein–fragment complex structures derived by NMR molecular replacement. RSC Medicinal Chemistry, 2020, 11, 591-596.	1.7	10
277	Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry - A European Journal, 2020, 26, 8676-8688.	1.7	74
278	Machine Learning Algorithm Identifies an Antibiotic Vocabulary for Permeating Gram-Negative Bacteria. Journal of Chemical Information and Modeling, 2020, 60, 2838-2847.	2.5	21
279	Targeting a critical step in fungal hexosamine biosynthesis. Journal of Biological Chemistry, 2020, 295, 8678-8691.	1.6	16
280	A novel podophyllotoxin derivative with higher anti-tumor activity produced via 4′-demethylepipodophyllotoxin biotransformation by Penicillium purpurogenum. Process Biochemistry, 2020, 96, 220-227.	1.8	4
281	Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical Libraries (REFiL _X). Journal of Medicinal Chemistry, 2020, 63, 6863-6875.	2.9	16
282	Fragment Linking Strategies for Structure-Based Drug Design. Journal of Medicinal Chemistry, 2020, 63, 11420-11435.	2.9	53
283	Paramagnetic NMR in drug discovery. Journal of Biomolecular NMR, 2020, 74, 287-309.	1.6	40
284	A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design. Journal of Medicinal Chemistry, 2020, 63, 7127-7142.	2.9	14
285	Efficient affinity ranking of fluorinated ligands by 19F NMR: CSAR and FastCSAR. Journal of Biomolecular NMR, 2020, 74, 579-594.	1.6	8
286	Targeting epigenetic protein–protein interactions with small-molecule inhibitors. Future Medicinal Chemistry, 2020, 12, 1305-1326.	1.1	12
287	Computational design of substrate selective inhibition. PLoS Computational Biology, 2020, 16, e1007713.	1.5	4
288	Cov_FB3D: A De Novo Covalent Drug Design Protocol Integrating the BA-SAMP Strategy and Machine-Learning-Based Synthetic Tractability Evaluation. Journal of Chemical Information and Modeling, 2020, 60, 4388-4402.	2.5	12
289	Recent developments in the use of fluorine NMR in synthesis and characterisation. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 118-119, 1-9.	3.9	9

#	Article	IF	CITATIONS
290	Synthetic Approaches to a Challenging and Unusual Structure—An Amino-Pyrrolidine Guanine Core. Molecules, 2020, 25, 797.	1.7	2
291	Discovery of a novel kinase hinge binder fragment by dynamic undocking. RSC Medicinal Chemistry, 2020, 11, 552-558.	1.7	10
292	Fragment-oriented synthesis: β-elaboration of cyclic amine fragments using enecarbamates as platform intermediates. Chemical Communications, 2020, 56, 8802-8805.	2.2	22
293	Descubrimiento de fármacos basado en imagenologÃa de células vivas. Revista Colombiana De Ciencias QuÃmico Farmacéuticas, 2020, 49, .	0.3	2
294	NMR spectroscopy: the swiss army knife of drug discovery. Journal of Biomolecular NMR, 2020, 74, 509-519.	1.6	10
295	Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2020, 6, 2192-2201.	1.8	13
296	Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Research, 2020, 48, 8099-8112.	6.5	20
297	A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules, 2020, 25, 2974.	1.7	11
298	The rise of molecular simulations in fragment-based drug design (FBDD): an overview. Drug Discovery Today, 2020, 25, 1693-1701.	3.2	29
299	Impact of the Protein Data Bank on antineoplastic approvals. Drug Discovery Today, 2020, 25, 837-850.	3.2	24
300	A Modular Approach to Dibenzoâ€fused ϵâ€Lactams: Palladiumâ€Catalyzed Bridgingâ€Câ^'H Activation. Angewandte Chemie - International Edition, 2020, 59, 18261-18266.	7.2	35
301	A Modular Approach to Dibenzoâ€fused ïµâ€Lactams: Palladiumâ€Catalyzed Bridgingâ€Câ^'H Activation. Angewandte Chemie, 2020, 132, 18418-18423.	1.6	8
302	CcpNmr AnalysisScreen, a new software programme with dedicated automated analysis tools for fragment-based drug discovery by NMR. Journal of Biomolecular NMR, 2020, 74, 565-577.	1.6	8
303	FragPELE: Dynamic Ligand Growing within a Binding Site. A Novel Tool for Hit-To-Lead Drug Design. Journal of Chemical Information and Modeling, 2020, 60, 1728-1736.	2.5	14
304	From Substrate to Fragments to Inhibitor Active <i>In Vivo</i> against <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2020, 6, 422-435.	1.8	14
305	Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophysical Reviews, 2020, 12, 85-104.	1.5	137
306	Substituted 1-methyl-4-phenylpyrrolidin-2-ones – Fragment-based design of N-methylpyrrolidone-derived bromodomain inhibitors. European Journal of Medicinal Chemistry, 2020, 191, 112120.	2.6	8
307	Targeting the Class A Carbapenemase GES-5 via Virtual Screening. Biomolecules, 2020, 10, 304.	1.8	1

#	Article	IF	CITATIONS
308	In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, 2020, 8, 93.	1.8	122
309	MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacological Research, 2020, 155, 104695.	3.1	29
310	DNA-Encoded Library Screening as Core Platform Technology in Drug Discovery: Its Synthetic Method Development and Applications in DEL Synthesis. Journal of Medicinal Chemistry, 2020, 63, 6578-6599.	2.9	106
311	Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Organic Letters, 2020, 22, 1046-1051.	2.4	57
312	Binding patterns and structure–activity relationship of CDK8 inhibitors. Bioorganic Chemistry, 2020, 96, 103624.	2.0	6
313	Identification and structural characterization of small molecule fragments targeting Zika virus NS2B-NS3 protease. Antiviral Research, 2020, 175, 104707.	1.9	15
317	DNA Encoded Libraries: A Visitor's Guide. Israel Journal of Chemistry, 2020, 60, 268-280.	1.0	51
318	Fsp3-rich and diverse fragments inspired by natural products as a collection to enhance fragment-based drug discovery. Chemical Communications, 2020, 56, 2280-2283.	2.2	28
319	Synthesis of <i>N</i> â€Carbonyl Acridanes as Highly Potent Inhibitors of Tubulin Polymerization <i>via</i> Oneâ€Pot Copperâ€Catalyzed Dual Arylation of Nitriles with Cyclic Diphenyl Iodoniums. Advanced Synthesis and Catalysis, 2020, 362, 2030-2038.	2.1	14
320	Efficient Synthesis of 1,4-Thiazepanones and 1,4-Thiazepanes as 3D Fragments for Screening Libraries. Organic Letters, 2020, 22, 3946-3950.	2.4	12
321	Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors. Analytica Chimica Acta, 2020, 1113, 26-35.	2.6	18
322	On-DNA hit validation methodologies for ligands identified from DNA-encoded chemical libraries. Biochemical and Biophysical Research Communications, 2020, 533, 235-240.	1.0	10
323	Fluorine NMR functional screening: from purified enzymes to human intact living cells. Journal of Biomolecular NMR, 2020, 74, 613-631.	1.6	20
324	Applied Biophysical Methods in Fragment-Based Drug Discovery. SLAS Discovery, 2020, 25, 471-490.	1.4	17
325	Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies. International Journal of Molecular Sciences, 2020, 21, 2527.	1.8	11
326	Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Frontiers in Pharmacology, 2020, 11, 397.	1.6	126
327	Liganding Functional Tyrosine Sites on Proteins Using Sulfur–Triazole Exchange Chemistry. Journal of the American Chemical Society, 2020, 142, 8270-8280.	6.6	56
328	Library Design Strategies To Accelerate Fragmentâ€Based Drug Discovery. Chemistry - A European Journal, 2020, 26, 11391-11403.	1.7	24

#	Article	IF	CITATIONS
329	A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Biomolecules, 2020, 10, 518.	1.8	5
330	Design and Synthesis of 56 Shapeâ€Diverse 3D Fragments. Chemistry - A European Journal, 2020, 26, 8969-8975.	1.7	38
331	Revisiting biomolecular NMR spectroscopy for promoting small-molecule drug discovery. Journal of Biomolecular NMR, 2020, 74, 501-508.	1.6	5
332	Augmenting Hit Identification by Virtual Screening Techniques in Small Molecule Drug Discovery. Journal of Chemical Information and Modeling, 2020, 60, 4144-4152.	2.5	18
333	Covalent fragment libraries in drug discovery. Drug Discovery Today, 2020, 25, 983-996.	3.2	65
334	Modeling Covalent Protein-Ligand Interactions. , 2021, , 174-189.		0
335	Pharmacophore-guided fragment-based design of novel mammalian target of rapamycin inhibitors: extra precision docking, fingerprint-based 2D and atom-based 3D-QSAR modelling. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1155-1173.	2.0	10
336	Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. ChemMedChem, 2021, 16, 292-300.	1.6	19
337	Exploring new targets and chemical space with affinity selection-mass spectrometry. Nature Reviews Chemistry, 2021, 5, 62-71.	13.8	45
338	Chemical molecularâ€based approach to overcome multidrug resistance in cancer by targeting Pâ€glycoprotein (Pâ€gp). Medicinal Research Reviews, 2021, 41, 525-555.	5.0	150
339	Using NMR Spectroscopy in the Fragmentâ€Based Drug Discovery of Smallâ€Molecule Anticancer Targeted Therapies. ChemMedChem, 2021, 16, 725-742.	1.6	9
340	Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. European Journal of Medicinal Chemistry, 2021, 213, 113055.	2.6	8
341	Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjugate Chemistry, 2021, 32, 63-72.	1.8	13
342	The future of covalent inhibition. Annual Reports in Medicinal Chemistry, 2021, 56, 267-284.	0.5	0
343	Installation of an aryl boronic acid function into the external section of -aryl-oxazolidinones: Synthesis and antimicrobial evaluation. European Journal of Medicinal Chemistry, 2021, 211, 113002.	2.6	13
344	Mining Natural Products for Macrocycles to Drug Difficult Targets. Journal of Medicinal Chemistry, 2021, 64, 1054-1072.	2.9	25
345	Blueprint for cancer research: Critical gaps and opportunities. Ca-A Cancer Journal for Clinicians,	157.7	47
	2021, 71, 107-139.		

#	Article	IF	CITATIONS
347	Scopy: an integrated negative design python library for desirable HTS/VS database design. Briefings in Bioinformatics, 2021, 22, .	3.2	21
348	E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 476.	1.8	18
349	Fragment based drug design: Connecting small substructures for a bioactive lead. , 2021, , 235-253.		0
350	Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chemical Science, 2021, 12, 12036-12045.	3.7	40
351	Conservation of binding properties in protein models. Computational and Structural Biotechnology Journal, 2021, 19, 2549-2566.	1.9	2
352	Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Medicinal Chemistry, 2021, 12, 353-362.	1.7	17
353	Fragment dissolved molecular dynamics: a systematic and efficient method to locate binding sites. Physical Chemistry Chemical Physics, 2021, 23, 3123-3134.	1.3	3
354	Emergent synthetic methods for the modular advancement of sp ³ -rich fragments. Chemical Science, 2021, 12, 4646-4660.	3.7	51
355	Fragment-based covalent ligand discovery. RSC Chemical Biology, 2021, 2, 354-367.	2.0	65
356	Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. Journal of Biological Chemistry, 2021, 296, 100559.	1.6	23
357	Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Computational and Structural Biotechnology Journal, 2021, 19, 2246-2255.	1.9	28
358	A Perspective on the Analytical Challenges Encountered in High-Throughput Experimentation. Organic Process Research and Development, 2021, 25, 354-364.	1.3	28
359	Latency, thermal stability, and identification of an inhibitory compound of mirolysin, a secretory protease of the human periodontopathogen Tannerella forsythia. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1267-1281.	2.5	3
360	Development and biological applications of sulfur–triazole exchange (SuTEx) chemistry. RSC Chemical Biology, 2021, 2, 322-337.	2.0	18
361	SAR-by-NMR. , 2021, , 1-4.		0
362	Biomarkers. , 2022, , 693-724.		5
363	Fragment Screening by NMR. Methods in Molecular Biology, 2021, 2263, 247-270.	0.4	3
364	Virtual Libraries for Docking Methods: Guidelines for the Selection and the Preparation. , 2021, , 99-117.		1

ARTICLE IF CITATIONS # Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry, 2021, 12, 365 1.7 35 321-329. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. 1.6 Journal of Biological Chemistry, 2021, 296, 100240. 367 Computational Drug Target Tractability Analysis., 2021, , 145-153. 1 The Perturbed Freeâ€Energy Landscape: Linking Ligand Binding to Biomolecular Folding. ChemBioChem, 368 2021, 22, 1499-1516. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment 369 2.9 10 Assembling Approach. Journal of Medicinal Chemistry, 2021, 64, 2010-2023. MCSS-Based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. Journal of Chemical Theory and Computation, 2021, 17, 2599-2618. 2.3 What makes a good fragment in fragment-based drug discovery?. Expert Opinion on Drug Discovery, 372 2.5 16 2021, 16, 723-726. Piecing the fragments together: Dynamical insights into the enhancement of BRD4-BD1 (BET protein) druggability in cancer chemotherapy using novel 8-methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one derivatives. Current Pharmaceutical Biotechnology, 2021, 22, . Genetic and structural validation of phosphomannomutase as a cell wall target in <i>Aspergillus 374 1.2 7 fumigatus</i>. Molecular Microbiology, 2021, 116, 245-259. Pseudo Natural Productsâ€"Chemical Evolution of Natural Product Structure. Angewandte Chemie, 1.6 2021, 133, 15837-15855. Pseudo Natural Productsâ€"Chemical Evolution of Natural Product Structure. Angewandte Chemie -376 7.2 73 International Edition, 2021, 60, 15705-15723. Ubiquitinâ€^e proteasome system and the role of its inhibitors in cancer therapy. Open Biology, 2021, 11, 1.5 200390. Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell 379 2.9 16 Lymphoma and Beyond. Journal of Medicinal Chemistry, 2021, 64, 4333-4358. A COVID moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy. Journal of Biomolecular NMR, 2021, 75, 167-178. 380 1.6 Fragment-Based Design of a Potent MAT2a Inhibitor and <i>in Vivo</i> Evaluation in an MTAP Null 381 2.9 19 Xenograft Model. Journal of Medicinal Chemistry, 2021, 64, 6814-6826. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Science Advances, 2021, 7, . Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to 384 2.9 30 Reconstruct New Potent Compounds. Journal of Medicinal Chemistry, 2021, 64, 4623-4661. Discovery of a Cellâ€Active SuTEx Ligand of Prostaglandin Reductase 2. ChemBioChem, 2021, 22, 2134-2139. 1.3

#	Article	IF	CITATIONS
386	The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors—A Spin-Off Discovery from Fragment Screening. Molecules, 2021, 26, 3010.	1.7	6
387	Pharmaceutical applications of framework nucleic acids. Acta Pharmaceutica Sinica B, 2022, 12, 76-91.	5.7	16
388	Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends in Pharmacological Sciences, 2021, 42, 385-397.	4.0	25
389	Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2. BioMed Research International, 2021, 2021, 1-14.	0.9	3
390	PPI Modulators of E6 as Potential Targeted Therapeutics for Cervical Cancer: Progress and Challenges in Targeting E6. Molecules, 2021, 26, 3004.	1.7	6
391	A structural perspective on targeting the <scp>RTK</scp> /Ras/ <scp>MAP</scp> kinase pathway in cancer. Protein Science, 2021, 30, 1535-1553.	3.1	17
393	Probing the Surface of a Parasite Drug Target Thioredoxin Glutathione Reductase Using Small Molecule Fragments. ACS Infectious Diseases, 2021, 7, 1932-1944.	1.8	9
394	CAVIAR: a method for automatic cavity detection, description and decomposition into subcavities. Journal of Computer-Aided Molecular Design, 2021, 35, 737-750.	1.3	12
395	Inspecting the Mechanism of Fragment Hits Binding on SARSâ€CoVâ€2 M ^{pro} by Using Supervised Molecular Dynamics (SuMD) Simulations. ChemMedChem, 2021, 16, 2075-2081.	1.6	12
396	Enantioselective total synthesis of sesquiterpenoid phellilane L and its diastereomer. Tetrahedron, 2021, 87, 132110.	1.0	0
397	Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Frontiers in Immunology, 2021, 12, 642383.	2.2	10
398	Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions. Journal of the American Chemical Society, 2021, 143, 8454-8464.	6.6	28
399	An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB—Utilizing a Reversible Covalent Tethering Approach. Journal of Medicinal Chemistry, 2021, 64, 8423-8436.	2.9	15
400	DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacology and Translational Science, 2021, 4, 1265-1279.	2.5	120
401	Fast Mek1 Hit Identification with TRIC Technology Correlates Well with Other Biophysical Methods. SLAS Discovery, 2021, 26, 1014-1019.	1.4	3
402	Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chemical Biology, 2021, 28, 1014-1031.	2.5	62
404	Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends in Pharmacological Sciences, 2021, 42, 551-565.	4.0	22
405	Structures of the <i>Plasmodium falciparum</i> heat-shock protein 70-x ATPase domain in complex with chemical fragments identify conserved and unique binding sites. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 262-268.	0.4	3

#	Article	IF	CITATIONS
407	Absorbing knowledge from an emerging field: The role of interfacing by proponents in big pharma. Technovation, 2022, 110, 102363.	4.2	3
408	Engineered protein-small molecule conjugates empower selective enzyme inhibition. Cell Chemical Biology, 2022, 29, 328-338.e4.	2.5	8
409	Fragmentâ€Based Drug Discovery for RNA Targets. ChemMedChem, 2021, 16, 2588-2603.	1.6	11
410	Unmasking of crucial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. Journal of Molecular Structure, 2021, 1237, 130366.	1.8	6
411	Fragment-Screening and Automation at the Swiss Light Source Macromolecular Crystallography Beamlines. Nihon Kessho Gakkaishi, 2021, 63, 232-235.	0.0	2
412	Dual Bcl-XL /Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorganic and Medicinal Chemistry, 2021, 44, 116282.	1.4	2
413	Protein–Small Molecule Interactions in Native Mass Spectrometry. Chemical Reviews, 2022, 122, 7327-7385.	23.0	46
414	Non-Extensive Fragmentation of Natural Products and Pharmacophore-Based Virtual Screening as a Practical Approach to Identify Novel Promising Chemical Scaffolds. Frontiers in Chemistry, 2021, 9, 700802.	1.8	1
415	Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1168-1182.	1.1	11
416	Structural and molecular bases to IRE1 activity modulation. Biochemical Journal, 2021, 478, 2953-2975.	1.7	7
417	Fragment-to-lead tailored in silico design. Drug Discovery Today: Technologies, 2021, 40, 44-57.	4.0	6
418	A Step Towards NRF2â€ÐNA Interaction Inhibitors by Fragmentâ€Based NMR Methods. ChemMedChem, 2021, 16, 3576-3587.	1.6	3
419	NMR spectroscopy of the main protease of SARS oVâ€2 and fragmentâ€based screening identify three protein hotspots and an antiviral fragment. Angewandte Chemie, 2021, 133, 25632.	1.6	2
420	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
421	Tandem Nenitzescu Reaction/Nucleophilic Aromatic Substitution to Form Novel Pyrido Fused Indole Frameworks. European Journal of Organic Chemistry, 2021, 2021, 4865-4875.	1.2	4
422	Identification of new building blocks by fragment screening for discovering GyrB inhibitors. Bioorganic Chemistry, 2021, 114, 105040.	2.0	5
423	Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorganic and Medicinal Chemistry, 2021, 45, 116328.	1.4	17
424	NMR Spectroscopy of the Main Protease of SARS oVâ€2 and Fragmentâ€Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angewandte Chemie - International Edition, 2021, 60, 25428-25435.	7.2	22

	CITATION R	EPORT	
#	Article	IF	Citations
425	A Computational Workflow for the Identification of Novel Fragments Acting as Inhibitors of the Activity of Protein Kinase CK1δ. International Journal of Molecular Sciences, 2021, 22, 9741.	1.8	15
426	Novel series of triazole containing coumarin and isatin based hybrid molecules as acetylcholinesterase inhibitors. Journal of Molecular Structure, 2021, 1245, 131085.	1.8	17
427	A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 3491-3506.	1.9	16
428	Applications of Solution NMR in Drug Discovery. Molecules, 2021, 26, 576.	1.7	12
429	C–H functionalisation tolerant to polar groups could transform fragment-based drug discovery (FBDD). Chemical Science, 2021, 12, 11976-11985.	3.7	30
430	Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chemical Society Reviews, 2021, 50, 1522-1586.	18.7	219
431	Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design. PLoS ONE, 2021, 16, e0245013.	1.1	16
432	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
433	Application of FMO to Ligand Design: SBDD, FBDD, and Protein–Protein Interaction. , 2021, , 205-251.		0
434	Palladium-Catalyzed Stereoselective 1,3-Diarylation of 1,4-Cyclohexadiene. Chinese Journal of Organic Chemistry, 2021, 41, 849.	0.6	10
435	Exploring structure-property relationships in magnesium dissolution modulators. Npj Materials Degradation, 2021, 5, .	2.6	17
436	Exploring Multiâ€Subsite Binding Pockets in Proteins: DEEPâ€STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxinâ€B. Chemistry - A European Journal, 2020, 26, 10024-10034.	1.7	7
437	Alchemical free energy calculations via metadynamics: Application to the <scp>theophyllineâ€RNA</scp> aptamer complex. Journal of Computational Chemistry, 2020, 41, 1804-1819.	1.5	10
438	Allosteric Small-Molecule Serine/Threonine Kinase Inhibitors. Advances in Experimental Medicine and Biology, 2019, 1163, 253-278.	0.8	18
439	F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening. Structure, 2020, 28, 694-706.e5.	1.6	27
440	Principle and design of pseudo-natural products. Nature Chemistry, 2020, 12, 227-235.	6.6	134
441	Ligand-detected NMR Methods in Drug Discovery. RSC Drug Discovery Series, 2017, , 23-43.	0.2	2
442	C(sp ³)–H arylation to construct all- <i>syn</i> cyclobutane-based heterobicyclic systems: a novel fragment collection. Chemical Communications, 2020, 56, 7423-7426.	2.2	7

#	Article	IF	CITATIONS
443	Fragments: where are we now?. Biochemical Society Transactions, 2020, 48, 271-280.	1.6	30
444	A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33197-33203.	3.3	48
450	Mix-and-diffuse serial synchrotron crystallography. IUCrJ, 2017, 4, 769-777.	1.0	98
451	FragMAX: the fragment-screening platform at the MAX IV Laboratory. Acta Crystallographica Section D: Structural Biology, 2020, 76, 771-777.	1.1	26
452	Using Fragment-Based Approaches to Discover New Antibiotics. SLAS Discovery, 2018, 23, 495-510.	1.4	20
453	Current status and future prospects for enabling chemistry technology in the drug discovery process. F1000Research, 2016, 5, 2426.	0.8	6
454	Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS ONE, 2017, 12, e0183327.	1.1	5
455	Using Fragment Based Drug Discovery to Target Epigenetic Regulators in Cancer. MOJ Bioequivalence & Bioavailability, 2017, 4, .	0.1	1
456	¹⁹ F-NMR in Target-based Drug Discovery. Current Medicinal Chemistry, 2019, 26, 4964-4983.	1.2	22
457	The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1357-1374.	1.1	10
458	Chemical Intuition in Drug Design and Discovery. Current Topics in Medicinal Chemistry, 2019, 19, 1679-1693.	1.0	10
459	Kinetic Profiling of Ligands and Fragments Binding to GPCRs by TR-FRET. Topics in Medicinal Chemistry, 2021, , 1-32.	0.4	0
461	Fragment-based design of selective GPCR ligands guided by free energy simulations. Chemical Communications, 2021, 57, 12305-12308.	2.2	11
462	Evaluating Metal–Ligand Interactions of Metal-Binding Isosteres Using Model Complexes. Inorganic Chemistry, 2021, 60, 17161-17172.	1.9	1
463	Pseudonatural Products Occur Frequently in Biologically Relevant Compounds. Journal of Chemical Information and Modeling, 2021, 61, 5458-5468.	2.5	15
464	Applications of NMR Spectroscopy in FBDD. , 2017, , 1-22.		0
465	Overview of NMR in Drug Design. , 2017, , 1-11.		0
468	Protein Docking and Drug Design. Advances in Bioinformatics and Biomedical Engineering Book Series, 2018, , 207-241.	0.2	0

ARTICLE IF CITATIONS # Protein Docking and Drug Design., 2019, , 889-922. 470 0 New Technologies in Drug Development Provide New Hope in Targeting of Dysregulated Redox 471 Signalling in Cardiovascular Disease. , 2019, , 505-532. Best Practices for Design and Characterization of Covalent Chemical Probes. Chemical Biology, 2020, , 475 0.1 1 69-99. Fragment-Guided Discovery of Pyrazole Carboxylic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2 Related Factor 2 (KEAP1:NRF2) Proteinâ[°] Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 15949-15972. Utility of chemical probes for mass spectrometry based chemical proteomics., 2022, , 129-156. 478 0 Analyzing Interactions with the Fragment Molecular Orbital Method. Methods in Molecular Biology, 480 0.4 2020, 2114, 49-73. PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries. Methods in Molecular 481 0.4 0 Biology, 2020, 2105, 119-139. DNA-encoded Chemistry and Its Use in Discovering Chemical Probes. Chemical Biology, 2020, , 14-38. 0.1 Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules, 486 5 1.8 2021, 11, 1805. SAR-by-NMR., 2021, , 1387-1390. Atualizações dos estudos atuais sobre medicamentos para combater a COVID-19.. Brazilian Journal of 488 0.0 1 Implantology and Health Sciences, 2020, 2, 01-09. Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular 7.1 Docking Do for You?. Pharmacological Reviews, 2021, 73, 1698-1736. Fragment based drug design. ChemistrySelect, 2022, . 490 0.7 0 Fragment Hotspot Mapping to Identify Selectivity-Determining Regions between Related Proteins. 2.5 Journal of Chemical Information and Modeling, 2022, 62, 284-294. 492 Comprehensive analysis of commercial fragment libraries. RSC Medicinal Chemistry, 2022, 13, 300-310. 1.7 11 Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition. Chemical Science, 2022, 13, 2128-2136. Screening and identification of Lassa virus endonuclease-targeting inhibitors from a fragment-based 494 1.9 4 drug discovery library. Antiviral Research, 2022, 197, 105230. Multi-Omics Data Mining: A Novel Tool for BioBrick Design., 0,,.

#	Article	IF	CITATIONS
496	Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. Informatics in Medicine Unlocked, 2022, 29, 100870.	1.9	22
497	Identification of a small compound that specifically inhibits Zika virus in vitro and in vivo by targeting the NS2B-NS3 protease. Antiviral Research, 2022, 199, 105255.	1.9	3
498	Small-Molecule Lead-Finding Trends across the Roche and Genentech Research Organizations. Journal of Medicinal Chemistry, 2022, 65, 3606-3615.	2.9	11
499	Mapping oncogenic protein interactions for precision medicine. International Journal of Cancer, 2022,	2.3	6
500	Towards identification of protein–protein interaction stabilizers <i>via</i> inhibitory peptide-fragment hybrids using templated fragment ligation. RSC Chemical Biology, 2022, 3, 546-550.	2.0	1
501	Recent advances in DNA-encoded dynamic libraries. RSC Chemical Biology, 2022, 3, 407-419.	2.0	12
502	Protein degradation induced by PROTAC molecules as an emerging drug discovery strategy. Journal of the Serbian Chemical Society, 2022, 87, 785-811.	0.4	0
503	Recent Development in Small Molecules for SARS-CoV-2 and the Opportunity for Fragment-Based Drug Discovery. Medicinal Chemistry, 2022, 18, 847-858.	0.7	3
504	Fast fragment- and compound-screening pipeline at the Swiss Light Source. Acta Crystallographica Section D: Structural Biology, 2022, 78, 328-336.	1.1	11
505	Fragment-Based Drug Discovery by NMR. Where Are the Successes and Where can It Be Improved?. Frontiers in Molecular Biosciences, 2022, 9, 834453.	1.6	14
506	Recent advances in metabolomics analysis for early drug development. Drug Discovery Today, 2022, 27, 1763-1773.	3.2	64
507	Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts, 2022, 12, 233.	1.6	9
508	In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chemical Reviews, 2022, 122, 9497-9570.	23.0	55
509	The current toolbox for APOBEC drug discovery. Trends in Pharmacological Sciences, 2022, 43, 362-377.	4.0	12
510	Hydrogen/Deuterium Exchange Mass Spectrometry for Weak Binders. Journal of the American Society for Mass Spectrometry, 2022, 33, 735-739.	1.2	6
511	Puckering the Planar Landscape of Fragments: Design and Synthesis of a 3D Cyclobutane Fragment Library. ChemMedChem, 2022, 17, .	1.6	6
512	Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Frontiers in Molecular Biosciences, 2022, 9, 857000.	1.6	1
514	Discovery of Cofactor Competitive Inhibitors against the Human Methyltransferase Fibrillarin. Pharmaceuticals, 2022, 15, 26.	1.7	0

#	Article	IF	CITATIONS
515	Selection of Promising Novel Fragment Sized S. aureus SrtA Noncovalent Inhibitors Based on QSAR and Docking Modeling Studies. Molecules, 2021, 26, 7677.	1.7	6
516	Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space. Journal of Medicinal Chemistry, 2021, 64, 17887-17900.	2.9	6
517	Lupeol acetate isolated from <i>Chrysophyllum cainito</i> L. fruit as a template for the synthesis of <i>N</i> -alkyl-arylsulfonamide derivatives and their synergistic effects with metronidazole against <i>Trichomonas vaginalis</i> . Natural Product Research, 2022, 36, 5508-5516.	1.0	1
518	1H Nuclear Magnetic Resonance: A Future Approach to the Metabolic Profiling of Psychedelics in Human Biofluids?. Frontiers in Psychiatry, 2021, 12, 742856.	1.3	0
519	The importance of drug target selection capability for new drug innovation: definition, fostering process, and interaction with organizational management. Prometheus, 2020, 36, .	0.2	0
520	Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase. Nucleic Acids Research, 2022, 50, 4755-4768.	6.5	9
521	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie, 2022, 134, .	1.6	1
522	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
523	Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Research, 2022, 50, 4216-4245.	6.5	9
524	Impact and Evolution of Biophysics in Medicinal Chemistry. RSC Drug Discovery Series, 2017, , 1-22.	0.2	0
525	Chapter 7. Fragment and Low Molecular Weight Compound Analysis. , 0, , 255-294.		0
528	Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Briefings in Bioinformatics, 2022, 23, .	3.2	5
529	Various Synthetic Strategies and Therapeutic Potential of Thiadiazole, Oxadiazole, Isoxazole and Isothiazole Derivatives. , 2022, , 221-274.		1
531	Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth. Journal of Chemical Theory and Computation, 2022, 18, 3829-3844.	2.3	4
532	Efficient Screening of Targetâ€Specific Selected Compounds in Mixtures by ¹⁹ F NMR Binding Assay with Predicted ¹⁹ F NMR Chemical Shifts. ChemMedChem, 2022, , .	1.6	4
533	New Chemotypes for the Inhibition of (p)ppGpp Synthesis in the Quest for New Antimicrobial Compounds. Molecules, 2022, 27, 3097.	1.7	3
534	In-cell NMR: Why and how?. Progress in Nuclear Magnetic Resonance Spectroscopy, 2022, 132-133, 1-112.	3.9	29
535	Phenoxy―and Phenylaminoâ€Heterocyclic Quinones: Synthesis and Preliminary Antiâ€Pancreatic Cancer Activity. Chemistry and Biodiversity, 2022, , e202101036.	1.0	2

#	Article	IF	CITATIONS
536	Akt inhibitors in cancer therapy. , 2022, , 239-260.		1
537	Pharmacophore-Oriented Discovery of Novel 1,2,3-Benzotriazine-4-one Derivatives as Potent 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Journal of Agricultural and Food Chemistry, 2022, 70, 6644-6657.	2.4	21
538	Minimal Increments of Hydrophobic Collapse within the N-Terminus of the Neuropeptide Galanin. Biochemistry, 2022, 61, 1151-1166.	1.2	1
539	Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	9
540	<i>In situ</i> crystal data-collection and ligand-screening system at SPring-8. Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 241-251.	0.4	7
541	Applications of "linkers―in fragment-based drug design. Bioorganic Chemistry, 2022, 127, 105921.	2.0	5
543	Fragmentâ€based drug discovery—the importance of highâ€quality molecule libraries. Molecular Oncology, 2022, 16, 3761-3777.	2.1	31
544	Fragment hopping protocol for the design of small-molecule protein–protein interaction inhibitors. Bioorganic and Medicinal Chemistry, 2022, 69, 116879.	1.4	1
545	FGDB: a comprehensive graph database of ligand fragments from the Protein Data Bank. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	2
546	Fragment Screening Yields a Smallâ€Molecule Stabilizer of 14â€3â€3 Dimers That Modulates Client Protein Interactions. ChemBioChem, 2022, 23, .	1.3	5
547	RNA–Ligand Interactions Quantified by Surface Plasmon Resonance with Reference Subtraction. Biochemistry, 2022, 61, 1625-1632.	1.2	8
548	Implementing a Scoring Function Based on Interaction Fingerprint for Autogrow4: Protein Kinase CK1δ as a Case Study. Frontiers in Molecular Biosciences, 0, 9, .	1.6	11
549	Peptide-to-Small Molecule: A Pharmacophore-Guided Small Molecule Lead Generation Strategy from High-Affinity Macrocyclic Peptides. Journal of Medicinal Chemistry, 2022, 65, 10655-10673.	2.9	11
550	Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries. Journal of Medicinal Chemistry, 2022, 65, 11404-11413.	2.9	17
551	FastGrow: on-the-fly growing and its application to DYRK1A. Journal of Computer-Aided Molecular Design, 2022, 36, 639-651.	1.3	6
552	Phenotypic screening of low molecular weight compounds is rich ground for repurposed, on-target drugs. Frontiers in Pharmacology, 0, 13, .	1.6	0
553	Structure-based design of a novel inhibitor of the ZIKA virus NS2B/NS3 protease. Bioorganic Chemistry, 2022, 128, 106109.	2.0	4
554	Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Life, 2022, 12, 1438.	1.1	1

#	Article	IF	CITATIONS
555	Current medicinal chemistry strategies in the discovery of novel HIV-1 ribonuclease H inhibitors. European Journal of Medicinal Chemistry, 2022, 243, 114760.	2.6	9
556	General Strategies for Rational Design and Discovery of Multitarget Drugs. , 2022, , 677-736.		Ο
557	¹⁹ F chemical library and ¹⁹ F-NMR for a weakly bound complex structure. RSC Medicinal Chemistry, 2022, 13, 1100-1111.	1.7	2
558	PAC-FragmentDEL – photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Medicinal Chemistry, 2022, 13, 1341-1349.	1.7	10
559	Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. , 2022, , 397-533.		1
560	Fragment optimization and elaboration strategies – the discovery of two lead series of PRMT5/MTA inhibitors from five fragment hits. RSC Medicinal Chemistry, 2022, 13, 1549-1564.	1.7	3
561	Growth vector elaboration of fragments: regioselective functionalization of 5-hydroxy-6-azaindazole and 3-hydroxy-2,6-naphthyridine. Organic and Biomolecular Chemistry, 2022, 20, 7483-7490.	1.5	1
562	Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. International Journal of Molecular Sciences, 2022, 23, 10669.	1.8	8
563	Fragment-Based and Structural Investigation for Discovery of JNK3 Inhibitors. Pharmaceutics, 2022, 14, 1900.	2.0	2
564	Targeting the ubiquitin system by fragment-based drug discovery. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
565	Structure-based discovery of nonopioid analgesics acting through the $\hat{l}\pm$ <code>sub>2A</code> -adrenergic receptor. Science, 2022, 377, .	6.0	52
566	Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chemical Biology, 2022, 17, 2655-2663.	1.6	8
567	X-ray Screening of an Electrophilic Fragment Library and Application toward the Development of a Novel ERK 1/2 Covalent Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 12319-12333.	2.9	8
568	Design, combinatorial synthesis and cytotoxic activity of 2-substituted furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library. Molecular Diversity, 2023, 27, 1767-1783.	2.1	7
569	Akt: a key transducer in cancer. Journal of Biomedical Science, 2022, 29, .	2.6	21
570	Cheminformatics Approaches Aiding the Design and Selection of DNA-Encoded Libraries. Topics in Medicinal Chemistry, 2022, , .	0.4	Ο
571	Exploration of piperidine 3D fragment chemical space: synthesis and 3D shape analysis of fragments derived from 20 regio- and diastereoisomers of methyl substituted pipecolinates. RSC Medicinal Chemistry, 0, , .	1.7	0
572	Large-Scale Crystallographic Fragment Screening Expedites Compound Optimization and Identifies Putative Protein–Protein Interaction Sites. Journal of Medicinal Chemistry, 2022, 65, 14630-14641.	2.9	5

			0
#	ARTICLE	IF	CITATIONS
573	mass spectrometry in natural product screening. Frontiers in Analytical Science, 0, 2, .	1.1	2
574	The Time and Place for Nature in Drug Discovery. Jacs Au, 2022, 2, 2400-2416.	3.6	34
575	Analytical assays to evaluate enzymatic activity and screening of inhibitors for ornithine decarboxylase. Frontiers in Analytical Science, 0, 2, .	1.1	1
576	Target-Focused Library Design by Pocket-Applied Computer Vision and Fragment Deep Generative Linking. Journal of Medicinal Chemistry, 2022, 65, 13771-13783.	2.9	6
578	Development of Noncovalent Small-Molecule Keap1-Nrf2 Inhibitors by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2022, 65, 14481-14526.	2.9	13
579	Multicomponent coupling and macrocyclization enabled by Rh(III)-catalyzed dual C–H activation: Macrocyclic oxime inhibitor of influenza H1N1. CheM, 2023, 9, 607-623.	5.8	8
580	Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals, 2022, 15, 1366.	1.7	14
581	Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Pharmaceuticals, 2022, 15, 1415.	1.7	4
582	Small bioactive molecules designed to be probes as baits "fishing out" cellular targets: Finding the fish in the proteome sea. Chinese Journal of Analytical Chemistry, 2023, 51, 100196.	0.9	0
583	Computational drug discovery under RNA times. QRB Discovery, 2022, 3, .	0.6	6
584	Identification of specific carbonic anhydrase inhibitors <i>via in situ</i> click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study. RSC Medicinal Chemistry, 2023, 14, 144-153.	1.7	2
586	A commentary on the use of pharmacoenhancers in the pharmaceutical industry and the implication for DMPK drug discovery strategies. Xenobiotica, 2022, 52, 786-796.	0.5	1
589	B-cell Lymphoma 6 Inhibitors: Current Advances and Prospects of Drug Development for Diffuse Large B-cell Lymphomas. Journal of Medicinal Chemistry, 2022, 65, 15559-15583.	2.9	9
591	Discovery of a fragment hit compound targeting D-Ala:D-Ala ligase of bacterial peptidoglycan biosynthesis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, 387-397.	2.5	2
593	A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design. Nature Machine Intelligence, 2022, 4, 1130-1142.	8.3	4
594	Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ÂATPase p97. Communications Chemistry, 2022, 5, .	2.0	2
595	An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4. Journal of the American Chemical Society, 2022, 144, 22890-22901.	6.6	13
596	Exploration of Chemical Space Guided by PixelCNN for Fragment-Based De Novo Drug Discovery. Journal of Chemical Information and Modeling, 2022, 62, 5988-6001.	2.5	3

	CITATION	CITATION REPORT	
#	Article	IF	Citations
597	Rational Strategy for Designing Peptidomimetic Small Molecules Based on Cyclic Peptides Targeting Protein–Protein Interaction between CTLA-4 and B7-1. Pharmaceuticals, 2022, 15, 1506.	1.7	1
599	Small Molecules Targeting the RNA-Binding Protein HuR Inhibit Tumor Growth in Xenografts. Journal of Medicinal Chemistry, 2023, 66, 2032-2053.	2.9	6
600	Structure of Helicobacter pylori dihydroneopterin aldolase suggests a fragment-based strategy for isozyme-specific inhibitor design. Current Research in Structural Biology, 2023, 5, 100095.	1.1	0
601	Mining big data in drug discovery—triaging and decision trees. , 2023, , 265-281.		1
602	Photochemical Methods Applied to DNA Encoded Library (DEL) Synthesis. Accounts of Chemical Research, 2023, 56, 385-401.	7.6	15
603	Drug discovery: Standing on the shoulders of giants. , 2023, , 207-338.		0
604	Fragment-based drug discovery supports drugging â€~undruggable' protein–protein interactions. Trenc in Biochemical Sciences, 2023, 48, 539-552.	ls 3.7	7
605	Innovations in targeting RNA by fragment-based ligand discovery. Current Opinion in Structural Biology, 2023, 79, 102550.	2.6	2
606	Advances of bioorthogonal coupling reactions in drug development. European Journal of Medicinal Chemistry, 2023, 253, 115338.	2.6	2
607	The most common linkers in bioactive molecules and their bioisosteric replacement network. Bioorganic and Medicinal Chemistry, 2023, 81, 117194.	1.4	7
608	Proteomeâ€Wide Fragmentâ€Based Ligand and Target Discovery. Israel Journal of Chemistry, 2023, 63, .	1.0	1
609	Accelerated Discovery of Macrocyclic CDK2 Inhibitor QR-6401 by Generative Models and Structure-Based Drug Design. ACS Medicinal Chemistry Letters, 2023, 14, 297-304.	1.3	5
610	Chemical Validation of <i>Mycobacterium tuberculosis</i> Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference**. Angewandte Chemie - International Edition, 2023, 62,	7.2	0
611	Chemical Validation of <i>Mycobacterium tuberculosis</i> Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference**. Angewandte Chemie, 2023, 135, .	1.6	1
612	Green Drug Discovery: Novel Fragment Space from the Biomass-Derived Molecule Dihydrolevoglucosenone (CyreneTM). Molecules, 2023, 28, 1777.	1.7	1
613	Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS Discovery, 2023, 28, 163-169.	1.4	1
614	Pathogen-driven cancers from a structural perspective: Targeting host-pathogen protein-protein interactions. Frontiers in Oncology, 0, 13, .	1.3	0
615	Sodium Oligomannate Electrostatically Binds to AÎ ² and Blocks Its Aggregation. Journal of Physical Chemistry B, 2023, 127, 1983-1994.	1.2	0

	CITATION REPORT	
Article	IF	CITATIONS
Peptide barcodes meet drug discovery. Science, 2023, 379, 883-883.	6.0	0
Synthesis of Aza-Bridged Perhydroazulene Chimeras of Tropanes and Hederacine A. Journal of Orga Chemistry, 2023, 88, 4675-4686.	inic 1.7	1
Going beyond Binary: Rapid Identification of Protein–Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. Journal of Medicinal Chemistry, 2023, 66 5196-5207.	o, 2.9	3
Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules, 2023, 28, 31	03. 1.7	1
Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie, 2023,	135, 1.6	3
Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications. Current Pharmaceutical Design, 2023, 29, 1013-1025.	0.9	2
An asymmetric structure of bacterial TrpRS supports the half-of-the-sites catalytic mechanism and facilitates antimicrobial screening. Nucleic Acids Research, 2023, 51, 4637-4649.	6.5	2
Rapid Elaboration of Fragments into Leads Applied to Bromodomain-3 Extra-Terminal Domain. Journ of Medicinal Chemistry, 0, , .	nal 2.9	1
Lead Generation. , 2023, , 682-719.		Ο
Fragment-based Ligand Discovery (FBLD). , 2023, , 188-230.		0
Application of Fast 2D NMR Methods in the Pharmaceutical Industry. , 2023, , 311-346.		Ο
SBDD and Its Challenges. Challenges and Advances in Computational Chemistry and Physics, 2023	,,1-24. 0.6	0
FBDD & De Novo Drug Design. , 2023, , 159-201.		0

695	Molecular fragmentation as a crucial step in the AI-based drug development pathway. Communications Chemistry, 2024, 7, .	2.0	0

Screening-Technologien zur Leitstruktursuche. , 2023, , 107-127.

#