Plating a Dendrite-Free Lithium Anode with a Polymer/ Electrolyte

Journal of the American Chemical Society 138, 9385-9388 DOI: 10.1021/jacs.6b05341

Citation Report

#	Article	IF	CITATIONS
3	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
4	Large-Scale Production of V ₆ O ₁₃ Cathode Materials Assisted by Thermal Gravimetric Analysis–Infrared Spectroscopy Technology. ACS Applied Materials & Interfaces, 2016, 8, 25674-25679.	4.0	12
5	A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale, 2016, 8, 16541-16588.	2.8	326
6	Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO ₂ and Garnet-Li ₇ La ₃ Zr ₂ O ₁₂ . Chemistry of Materials, 2016, 28. 8051-8059.	3.2	373
7	Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proceedings of the United States of America, 2016, 113, 13313-13317.	3.3	237
8	High performance lithium metal anode: Progress and prospects. Energy Storage Materials, 2017, 7, 115-129.	9.5	160
9	Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains. ACS Applied Materials & Interfaces, 2017, 9, 6130-6137.	4.0	49
10	Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials, 2017, 29, 2314-2320.	3.2	177
11	Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	15.6	4,804
12	Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2, .	23.3	3,057
13	Reducing Interfacial Resistance between Garnetâ€Structured Solidâ€State Electrolyte and Liâ€Metal Anode by a Germanium Layer. Advanced Materials, 2017, 29, 1606042.	11.1	512
14	Li 3 PO 4 -added garnet-type Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 for Li-dendrite suppression. Journal of Power Sources, 2017, 354, 68-73.	4.0	150
15	Garnet Solid Electrolyte Protected Li-Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18809-18815.	4.0	247
16	The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes. Macromolecules, 2017, 50, 3831-3840.	2.2	249
17	Boosting the Cycle Life of Li–O ₂ Batteries at Elevated Temperature by Employing a Hybrid Polymer–Ceramic Solid Electrolyte. ACS Energy Letters, 2017, 2, 1378-1384.	8.8	71
18	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy and Environmental Science, 2017, 10, 1568-1575.	15.6	499
19	Prestoring Lithium into Stable 3D Nickel Foam Host as Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2017, 27, 1700348.	7.8	686
20	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 7764-7768.	7.2	989

	CITATION REI	n Report	
Article		IF	CITATIONS
Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€ Anodes. Angewandte Chemie, 2017, 129, 7872-7876.	Free Lithium Metal	1.6	186
Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospe Letters, 2017, 2, 1385-1394.	ects. ACS Energy	8.8	314
lonic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 129	934-12942.	5.2	126
A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. Electrochi 245, 752-759.	imica Acta, 2017,	2.6	135
A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Metho 1700134.	ods, 2017, 1,	4.6	230
Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Angewandte Chemie, 2017, 129, 771-774.	Batteries.	1.6	72

5.5

27

27	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2017, 56, 753-756.	7.2	449
28	Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries. ACS Energy Letters, 2017, 2, 134-138.	8.8	75
29	Rechargeable Sodium All-Solid-State Battery. ACS Central Science, 2017, 3, 52-57.	5.3	332
30	Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes. Journal of Membrane Science, 2017, 525, 349-358.	4.1	57

Changing Outlook for Rechargeable Batteries. ACS Catalysis, 2017, 7, 1132-1135. 31

- Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium 4.5 556 Metal Anodes. Nano Letters, 2017, 17, 565-571. Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2017, 33 8.8 226 2, 2734-2751. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11069-11074. 3.3 A Si-doped flexible self-supporting comb-like polyethylene glycol copolymer (Si-PEG) film as a polymer electrolyte for an all solid-state lithium-ion battery. Journal of Materials Chemistry A, 2017, 5, 35 5.2 39 24444-24452. Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie -International Edition, 2017, 56, 14942-14947.
- Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal 37 8.2 94 battery. Nano Energy, 2017, 41, 646-653. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. 159 Electrochimica Acta, 2017, 257, 31-39.

21

23

24

#	Article	IF	CITATIONS
39	Dumbbell-Shaped Octasilsesquioxanes Functionalized with Ionic Liquids as Hybrid Electrolytes for Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9275-9283.	3.2	18
40	Recent approaches to improving lithium metal electrodes. Current Opinion in Electrochemistry, 2017, 6, 70-76.	2.5	9
41	Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie, 2017, 129, 15138-15143.	1.6	12
42	Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Science Advances, 2017, 3, eaao0713.	4.7	131
43	Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bulletin, 2017, 62, 1473-1490.	4.3	86
44	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	7.2	199
45	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	1.6	51
46	Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta, 2017, 253, 430-438.	2.6	133
47	A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 - A European Journal, 2017, 23, 15203-15209.	Tf 50 427 1.7	Td (Fluorideâ 117
48	Construction of interconnected micropores in poly(arylene ether) based single ion conducting blend polymer membranes via vapor-induced phase separation. Journal of Membrane Science, 2017, 544, 47-57.	4.1	36
49	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
50	Advanced Porous Carbon Materials for Highâ€Efficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
51	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
52	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864
53	Solid polymer electrolyte based on waterborne polyurethane for allâ€solidâ€state lithium ion batteries. Journal of Applied Polymer Science, 2017, 134, 45554.	1.3	20
54	Combinatorial approaches for high-throughput characterization of mechanical properties. Journal of Materiomics, 2017, 3, 209-220.	2.8	25
55	High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self atalyzed Strategy toward Facile Synthesis. Advanced Science, 2017, 4, 1700174.	5.6	155
56	Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. Journal of Materials Chemistry A, 2017, 5, 18012-18019.	5.2	60

#	Article	IF	CITATIONS
57	Y-Doped NASICON-type LiZr ₂ (PO ₄) ₃ Solid Electrolytes for Lithium-Metal Batteries. Chemistry of Materials, 2017, 29, 7206-7212.	3.2	77
58	The recent advances in constructing designed electrode in lithium metal batteries. Chinese Chemical Letters, 2017, 28, 2171-2179.	4.8	64
59	Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 1700007.	11.1	908
60	Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries. Chinese Physics B, 2017, 26, 078201.	0.7	11
61	An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. Journal of Materials Chemistry A, 2017, 5, 16984-16993.	5.2	168
62	Interfacial reactions in lithium batteries. Journal Physics D: Applied Physics, 2017, 50, 303001.	1.3	13
63	Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries. Journal of the Electrochemical Society, 2017, 164, A1834-A1840.	1.3	17
64	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
65	Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries. Nanomaterials, 2017, 7, 325.	1.9	41
66	Promises, Challenges, and Recent Progress of Inorganic Solidâ€State Electrolytes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2018, 30, e1705702.	11.1	743
67	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
68	Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials, 2018, 14, 22-48.	9.5	213
69	All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources, 2018, 382, 160-175.	4.0	428
70	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
71	Interphase Engineering Enabled All-Ceramic Lithium Battery. Joule, 2018, 2, 497-508.	11.7	378
72	Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries. Solid State Ionics, 2018, 320, 55-63.	1.3	70
73	Rechargeable solid-state Li-air batteries: a status report. Rare Metals, 2018, 37, 459-472.	3.6	35
74	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	10.2	274

#	ARTICLE	IF	CITATIONS
75	Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Journal of the American Chemical Society, 2018, 140, 6448-6455.	6.6	427
76	Mg ₂ B ₂ O ₅ Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018, 18, 3104-3112.	4.5	245
77	Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 15691-15696.	4.0	63
78	Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials, 2018, 15, 148-170.	9.5	247
79	A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries. Solid State Ionics, 2018, 321, 8-14.	1.3	15
80	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	1.7	21
81	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	10.2	336
82	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	4.0	359
83	Solid‣tate Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	10.2	478
84	The interfacial behaviours of all-solid-state lithium ion batteries. Ceramics International, 2018, 44, 7319-7328.	2.3	42
85	Recent Progress of the Solidâ€State Electrolytes for Highâ€Energy Metalâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1702657.	10.2	851
86	3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 7069-7078.	4.0	318
87	PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer―to "polymer-in-ceramic― Nano Energy, 2018, 46, 176-184.	8.2	1,042
88	Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. Journal of the American Chemical Society, 2018, 140, 250-257.	6.6	239
89	Electrode–electrolyte interfaces in lithium-based batteries. Energy and Environmental Science, 2018, 11, 527-543.	15.6	474
90	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	7.2	484
91	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	1.6	34
92	A Biobased Composite Gel Polymer Electrolyte with Functions of Lithium Dendrites Suppressing and Manganese lons Trapping. Advanced Energy Materials, 2018, 8, 1702561.	10.2	77

#	Article	IF	CITATIONS
93	Progress and prospect on failure mechanisms of solid-state lithium batteries. Journal of Power Sources, 2018, 392, 94-115.	4.0	151
94	Conformation of lithium-aluminium alloy interphase-layer on lithium metal anode used for solid state batteries. Electrochimica Acta, 2018, 277, 268-275.	2.6	44
95	Progress and Perspective of Solid‣tate Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	7.8	194
96	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3770-3775.	3.3	250
97	Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15, 46-52.	9.5	203
98	Artificial Solid Electrolyte Interphase Layer for Lithium Metal Anode in High-Energy Lithium Secondary Pouch Cells. ACS Applied Energy Materials, 2018, 1, 1674-1679.	2.5	33
99	A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. Journal of Membrane Science, 2018, 555, 169-176.	4.1	71
100	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
101	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	9.5	215
102	Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries. Electrochimica Acta, 2018, 259, 213-224.	2.6	35
103	Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. Energy Storage Materials, 2018, 11, 47-56.	9.5	49
104	Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. Advanced Energy Materials, 2018, 8, 1701963.	10.2	186
105	High Polarity Poly(vinylidene difluoride) Thin Coating for Dendriteâ€Free and Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701482.	10.2	259
106	Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018, 10, 139-159.	9.5	267
107	Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. Journal of Energy Chemistry, 2018, 27, 513-527.	7.1	115
108	Advances in Interfaces between Li Metal Anode and Electrolyte. Advanced Materials Interfaces, 2018, 5, 1701097.	1.9	200
109	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. Journal of the American Chemical Society, 2018, 140, 82-85.	6.6	404
110	Highly Conductive, Light Weight, Robust, Corrosionâ€Resistant, Scalable, Allâ€Fiber Based Current Collectors for Aqueous Acidic Batteries. Advanced Energy Materials, 2018, 8, 1702615.	10.2	63

#	Article	IF	CITATIONS
111	In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials, 2018, 10, 85-91.	9.5	227
112	A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries <i>via</i> graft polymerization. RSC Advances, 2018, 8, 39967-39975.	1.7	36
113	Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. RSC Advances, 2018, 8, 34232-34240.	1.7	34
114	Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chemical Communications, 2018, 54, 13060-13063.	2.2	25
115	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77
116	Organosilica-based ionogel derived nitrogen-doped microporous carbons for high performance supercapacitor electrodes. Inorganic Chemistry Frontiers, 2018, 5, 3091-3098.	3.0	9
117	Na-Ion Storage Behaviors of Quadrangular Herringbone-Carbon Nanotubes in Ether- and Ester-Based Electrolyte Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 17184-17193.	3.2	14
119	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Frontiers in Chemistry, 2018, 6, 616.	1.8	175
120	Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule, 2018, 2, 2208-2224.	11.7	153
121	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018, 51, 7666-7671.	2.2	9
122	In Situ Li ₃ PS ₄ Solidâ€5tate Electrolyte Protection Layers for Superior Long‣ife and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
123	Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials. ACS Applied Energy Materials, 2018, 1, 5968-5976.	2.5	72
124	Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. ACS Energy Letters, 2018, 3, 2775-2795.	8.8	66
125	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
126	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
127	Interface Engineering for Garnetâ€Based Solidâ€State Lithiumâ€Metal Batteries: Materials, Structures, and Characterization. Advanced Materials, 2018, 30, e1802068.	11.1	204
128	Architectural design and fabrication approaches for solid-state batteries. MRS Bulletin, 2018, 43, 775-781.	1.7	64
129	High-Performance Double-Network Ion Gels with Fast Thermal Healing Capability via Dynamic Covalent Bonds. Chemistry of Materials, 2018, 30, 7752-7759.	3.2	78

#	Article	IF	CITATIONS
130	Recent Progress of Hybrid Solidâ€State Electrolytes for Lithium Batteries. Chemistry - A European Journal, 2018, 24, 18293-18306.	1.7	127
131	An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries. Journal of Membrane Science, 2018, 566, 181-189.	4.1	35
132	Integrative preparation of mesoporous epoxy resin–ceramic composite electrolytes with multilayer structure for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 19094-19106.	5.2	36
133	Interfaceâ€Engineered Li ₇ La ₃ Zr ₂ O ₁₂ â€Based Garnet Solid Electrolytes with Suppressed Liâ€Dendrite Formation and Enhanced Electrochemical Performance. ChemSusChem, 2018, 11, 3774-3782.	3.6	64
134	Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources, 2018, 401, 126-134.	4.0	15
135	Mechanical properties of sulfide glasses in all-solid-state batteries. Journal of the Ceramic Society of Japan, 2018, 126, 719-727.	0.5	75
136	A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Transactions, 2018, 47, 14932-14937.	1.6	67
137	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy, 2018, 53, 926-931.	8.2	103
138	Fundamental study on the wetting property of liquid lithium. Energy Storage Materials, 2018, 14, 345-350.	9.5	161
139	Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2018, 395, 137-147.	4.0	50
140	Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A, 2018, 6, 11631-11663.	5.2	243
141	A hybridized solid-gel nonflammable Li-Battery. Journal of Power Sources, 2018, 394, 26-34.	4.0	15
142	Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 289-296.	9.5	48
143	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1, 113-138.	13.1	290
144	A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. Journal of Power Sources, 2018, 394, 57-66.	4.0	65
145	Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society, 2018, 140, 6767-6770.	6.6	192
146	Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries. Nano Energy, 2018, 50, 393-400.	8.2	52
147	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. Journal of Power Sources, 2018, 391, 73-79.	4.0	168

#	Article	IF	CITATIONS
148	All-Solid-State Li-Ion Battery Using Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ As Electrolyte Without Polymer Interfacial Adhesion. Journal of Physical Chemistry C, 2018, 122, 14383-14389.	1.5	50
149	Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium–Sulfur Battery. Nano Letters, 2018, 18, 4598-4605.	4.5	81
150	Solid–Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20412-20421.	4.0	17
151	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163
152	A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte. Joule, 2018, 2, 1838-1856.	11.7	140
153	Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries. Electrochimica Acta, 2018, 283, 517-527.	2.6	25
154	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
155	Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature. Electrochimica Acta, 2018, 284, 662-668.	2.6	19
156	DNA enters a new phase. Nature Nanotechnology, 2018, 13, 624-625.	15.6	4
157	A Flexible Dualâ€Ion Battery Based on PVDFâ€HFPâ€Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability. Advanced Energy Materials, 2018, 8, 1801219.	10.2	243
158	Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. Energy Storage Materials, 2018, 15, 407-414.	9.5	45
159	Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte and LiCoO ₂ Cathode. Chemistry of Materials, 2018, 30, 6259-6276.	3.2	125
160	Challenges for Developing Rechargeable Roomâ€īemperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	3.0	29
161	Nanoflaho Arrovo of Lithiophilio Motal Ovides for the Ultraĉ 65 tablo Anades of Lithium 6 Motal Pattories		
	Advanced Functional Materials, 2018, 28, 1803023.	7.8	156
162	Advanced Functional Materials, 2018, 28, 1803023. Engineering Materials for Progressive All-Solid-State Na Batteries. ACS Energy Letters, 2018, 3, 2181-2198.	7.8	156
162 163	Advanced Functional Materials, 2018, 28, 1803023. Engineering Materials for Progressive All-Solid-State Na Batteries. ACS Energy Letters, 2018, 3, 2181-2198. A Dualâ€Salt Gel Polymer Electrolyte with 3D Crossâ€Linked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559.	7.8 8.8 5.6	156 116 204
162 163 164	Advanced Functional Materials, 2018, 28, 1803023. Engineering Materials for Progressive All-Solid-State Na Batteries. ACS Energy Letters, 2018, 3, 2181-2198. A Dualâ€Salt Gel Polymer Electrolyte with 3D Crossâ€Linked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559. Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte. Journal of Power Sources, 2018, 397, 95-101.	7.88.85.64.0	156 116 204 44

#	Article	IF	CITATIONS
166	Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries. Chinese Physics B, 2018, 27, 068201.	0.7	0
167	Development and Challenges of Functional Electrolytes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1800919.	7.8	129
168	Excellent room-temperature performance of lithium metal polymer battery with enhanced interfacial compatibility. Electrochimica Acta, 2018, 283, 1261-1268.	2.6	7
169	Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018, 2, 1674-1689.	11.7	212
170	A Perovskite Electrolyte That Is Stable in Moist Air for Lithiumâ€ I on Batteries. Angewandte Chemie - International Edition, 2018, 57, 8587-8591.	7.2	103
171	Hybrid electrolytes for lithium metal batteries. Journal of Power Sources, 2018, 392, 206-225.	4.0	179
172	Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene) Tj ETQqO 0 0 232-238.	rgBT /Ovei 4.0	lock 10 Tf 50 121
173	A Perovskite Electrolyte That Is Stable in Moist Air for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 8723-8727.	1.6	7
174	Perovskite Membranes with Vertically Aligned Microchannels for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2018, 8, 1801433.	10.2	176
175	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2018, 10, 31240-31248.	4.0	207
176	Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?. Sustainable Energy and Fuels, 2018, 2, 2325-2334.	2.5	14
177	Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. Journal of Materials Chemistry A, 2018, 6, 17227-17234.	5.2	145
178	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface. Angewandte Chemie - International Edition, 2018, 57, 13608-13612.	7.2	138
179	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface. Angewandte Chemie, 2018, 130, 13796-13800.	1.6	5
180	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
181	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Advanced Materials, 2018, 30, e1802156.	11.1	115
182	Superior lithium ion conduction of polymer electrolyte with comb-like structure <i>via</i> solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018, 6, 13438-13447.	5.2	80
183	Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Materials, 2019, 17, 309-316.	9.5	279

#	ARTICLE Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019, 1, 317-344.	IF 5.0	CITATIONS
185	Facile Surface Modification Method To Achieve an Ultralow Interfacial Resistance in Garnet-Based Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6332-6340.	2.5	20
186	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochemical Energy Reviews, 2019, 2, 574-605.	13.1	238
187	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
188	Co-spray printing of LiFePO ₄ and PEO-Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ hybrid electrodes for all-solid-state Li-ion battery applications. Journal of Materials Chemistry A, 2019, 7, 19094-19103.	5.2	25
189	Interfacial Incompatibility and Internal Stresses in Allâ€5olidâ€5tate Lithium Ion Batteries. Advanced Energy Materials, 2019, 9, 1901810.	10.2	79
190	A Crosslinked Polyethyleneglycol Solid Electrolyte Dissolving Lithium Bis(trifluoromethylsulfonyl)imide for Rechargeable Lithium Batteries. ChemSusChem, 2019, 12, 4708-4718.	3.6	25
191	Low volume change composite lithium metal anodes. Nano Energy, 2019, 64, 103910.	8.2	68
192	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895.	8.2	109
193	Enabling non-flammable Li-metal batteries <i>via</i> electrolyte functionalization and interface engineering. Journal of Materials Chemistry A, 2019, 7, 17995-18002.	5.2	46
194	Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. Chinese Physics B, 2019, 28, 078202.	0.7	1
195	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	7.9	59
196	Constructing Multifunctional Interphase between Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃ and Li Metal by Magnetron Sputtering for Highly Stable Solid‣tate Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901604.	10.2	189
197	Chemo-Mechanical Challenges in Solid-State Batteries. Trends in Chemistry, 2019, 1, 845-857.	4.4	158
198	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. Chemistry - A European Journal, 2019, 25, 12052-12057.	1.7	24
199	A 2D Layered Natural Ore as a Novel Solid-State Electrolyte. ACS Applied Energy Materials, 2019, 2, 5909-5916.	2.5	24
200	Self-Sacrificed Interface-Based on the Flexible Composite Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42715-42721.	4.0	31
201	Alkali-Metal Anodes: From Lab to Market. Joule, 2019, 3, 2334-2363.	11.7	247

#	Article	IF	CITATIONS
202	Selfâ€Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 18146-18149.	7.2	128
203	A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendriteâ€Free Lithium Metal Anodes. ChemElectroChem, 2019, 6, 5413-5419.	1.7	21
204	Li ⁺ ontaining, Continuous Silica Nanofibers for High Li ⁺ Conductivity in Composite Polymer Electrolyte. Small, 2019, 15, e1902729.	5.2	58
205	Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte–Based Allâ€Solidâ€State Lithium–Sulfur Batteries by Atomic Layer Deposition. Small, 2019, 15, e1903952.	5.2	62
206	Constructing Ionic Gradient and Lithiophilic Interphase for Highâ€Rate Liâ€Metal Anode. Small, 2019, 15, e1905171.	5.2	42
207	Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. Journal of Power Sources, 2019, 441, 227175.	4.0	168
208	A Molecularâ€Cage Strategy Enabling Efficient Chemisorption–Electrocatalytic Interface in Nanostructured Li ₂ S Cathode for Li Metalâ€Free Rechargeable Cells with High Energy. Advanced Functional Materials, 2019, 29, 1905986.	7.8	51
209	Selfâ€Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 18314-18317.	1.6	13
210	Revealing an Interconnected Interfacial Layer in Solid‣tate Polymer Sodium Batteries. Angewandte Chemie, 2019, 131, 17182-17188.	1.6	7
211	Ultrathin, Flexible Polymer Electrolyte for Costâ€Effective Fabrication of Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902767.	10.2	239
212	Nucleation and Growth Mechanism of Lithium Metal Electroplating. Journal of the American Chemical Society, 2019, 141, 18612-18623.	6.6	144
213	Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a Highâ€Voltage Solid‣tate Lithium Metal Battery. Advanced Science, 2019, 6, 1901036.	5.6	202
214	Revealing an Interconnected Interfacial Layer in Solid‣tate Polymer Sodium Batteries. Angewandte Chemie - International Edition, 2019, 58, 17026-17032.	7.2	48
215	An Ultrarobust Composite Gel Electrolyte Stabilizing Ion Deposition for Longâ€Life Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1904547.	7.8	76
216	Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler. ACS Energy Letters, 2019, 4, 2336-2342.	8.8	80
217	Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299.	4.2	86
218	Polymer-in-salt solid electrolytes for lithium-ion batteries. Functional Materials Letters, 2019, 12, 1930006.	0.7	25
219	Comparing Experimental Measurements of Limiting Current in Polymer Electrolytes with Theoretical Predictions. Journal of the Electrochemical Society, 2019, 166, A3228-A3234.	1.3	33

#	Article	IF	CITATIONS
220	PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot―preparation. Journal of Energy Storage, 2019, 26, 100947.	3.9	117
221	Lithium–Graphite Paste: An Interface Compatible Anode for Solidâ€ S tate Batteries. Advanced Materials, 2019, 31, e1807243.	11.1	197
222	Stabilizing Na-metal batteries with a manganese oxide cathode using a solid-state composite electrolyte. Journal of Power Sources, 2019, 416, 21-28.	4.0	19
223	A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Materials, 2019, 22, 256-264.	9.5	89
224	Solid polymer electrolytes with poly(vinyl alcohol) and piperidinium based ionic liquid for Li-ion batteries. Solid State Ionics, 2019, 333, 76-82.	1.3	35
225	Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 3882-3894.	5.2	82
226	Li ₇ La ₃ Zr ₂ O ₁₂ ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 3391-3398.	5.2	178
227	Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO ₃ -Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling. Chemistry of Materials, 2019, 31, 4564-4574.	3.2	65
228	UV-Initiated Soft–Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery. ACS Applied Energy Materials, 2019, 2, 4513-4520.	2.5	20
229	Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20895-20904.	4.0	83
230	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
231	A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy Storage Materials, 2019, 21, 246-252.	9.5	70
232	Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries. Journal of Power Sources, 2019, 434, 226726.	4.0	10
233	Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu ₆ Sn ₅ Layer. ACS Energy Letters, 2019, 4, 1725-1731.	8.8	71
234	Solidâ€ S tate Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry. ChemElectroChem, 2019, 6, 3842-3859.	1.7	80
235	Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Materials, 2019, 21, 308-334.	9.5	221
236	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110
237	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. Journal of the American Chemical Society, 2019, 141, 9165-9169.	6.6	272

#	Article	IF	CITATIONS
238	Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Applied Materials & Interfaces, 2019, 11, 22029-22050.	4.0	200
239	Ironing Controllable Lithium into Lithiotropic Carbon Fiber Fabric: A Novel Li-Metal Anode with Improved Cyclability and Dendrite Suppression. ACS Applied Materials & Interfaces, 2019, 11, 21584-21592.	4.0	14
240	In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery. Journal of Solid State Electrochemistry, 2019, 23, 2107-2117.	1.2	19
241	Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer. Journal of Power Sources, 2019, 433, 226691.	4.0	39
242	Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries. Chemical Communications, 2019, 55, 7703-7706.	2.2	41
243	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. Electrochimica Acta, 2019, 317, 333-340.	2.6	10
244	Nanostructures and Nanomaterials for Solid-State Batteries. , 2019, , 215-263.		2
245	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries. , 2019, , 359-379.		0
246	Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Materials, 2019, 23, 277-283.	9.5	22
247	Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries. Journal of Power Sources, 2019, 429, 75-79.	4.0	15
248	Constructing Self-Protected Li and Non-Li Candidates for Advanced Lithium Ion and Lithium Metal Batteries. Journal of Physical Chemistry C, 2019, 123, 13318-13323.	1.5	5
249	Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium–Organic Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20873-20880.	4.0	23
250	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
251	Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1535-A1542.	1.3	13
252	MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Materials, 2019, 23, 181-189.	9.5	133
253	High Li+-conductive perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 electrolyte prepared by hot-pressing for all-solid-state Li-ion batteries. Solid State Ionics, 2019, 338, 1-4.	1.3	12
254	Thin-Film NASICON-Type Li _{1+<i>x</i>} Al <i>_{<i>x</i>}</i> Ti _{2â€"<i>x</i>} (PO ₄) _{3Solid Electrolyte Directly Fabricated on a Graphite Substrate with a Hydrothermal Method Based on Different Al Sources, ACS Sustainable Chemistry and Engineering, 2019, 7, 10751-10762.}	ub> 3.2	19
255	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12

#	Article	IF	CITATIONS
256	High Rate and Stable Solid-State Lithium Metal Batteries Enabled by Electronic and Ionic Mixed Conducting Network Interlayers. ACS Applied Materials & Interfaces, 2019, 11, 16578-16585.	4.0	17
257	High Li ⁺ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12244-12252.	5.2	35
258	Unitized Configuration Design of Thermally Stable Composite Polymer Electrolyte for Lithium Batteries Capable of Working Over a Wide Range of Temperatures. Advanced Engineering Materials, 2019, 21, 1900055.	1.6	33
259	Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Molecular Systems Design and Engineering, 2019, 4, 850-871.	1.7	38
260	Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule, 2019, 3, 1510-1522.	11.7	235
261	Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 13113-13119.	5.2	66
262	Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy. Journal of Materials Science, 2019, 54, 10571-10594.	1.7	14
263	Electro–Chemo–Mechanical Issues at the Interfaces in Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900950.	7.8	124
264	Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte LATP. Ceramics International, 2019, 45, 14697-14703.	2.3	43
265	Recent Research on Strategies to Improve Ion Conduction in Alkali Metalâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 403-427.	2.4	32
266	A new approach for synthesizing bulk-type all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9748-9760.	5.2	23
267	Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges. Nanotechnology, 2019, 30, 302002.	1.3	25
268	3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance. Advanced Functional Materials, 2019, 29, 1808468.	7.8	130
269	A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. Journal of Membrane Science, 2019, 582, 37-47.	4.1	114
270	Reducing the Interfacial Resistance in Allâ€Solidâ€State Lithium Batteries Based on Oxide Ceramic Electrolytes. ChemElectroChem, 2019, 6, 2970-2983.	1.7	41
271	Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li Batteries. Nano Letters, 2019, 19, 2343-2349.	4.5	105
272	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
273	Synthesis and multi-electrochromic properties of asymmetric structure polymers based on carbazole-EDOT and 2, 5–dithienylpyrrole derivatives. Electrochimica Acta, 2019, 305, 1-10.	2.6	20

#	Article	IF	CITATIONS
274	Ceramic–Salt Composite Electrolytes from Cold Sintering. Advanced Functional Materials, 2019, 29, 1807872.	7.8	72
275	Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 597-608.	1.7	16

276 Selfâ \in Suppression of Lithium Dendrite in Allâ \in Solidâ \in State Lithium Metal Batteries with Poly(vinylidene) Tj ETQq0 0.0 rgBT /Qyerlock 10 293

277	Facile Protection of Lithium Metal for Allâ€Solidâ€State Batteries. ChemistryOpen, 2019, 8, 192-195.	0.9	21
278	Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. Journal of Power Sources, 2019, 419, 91-98.	4.0	108
279	Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries. ACS Omega, 2019, 4, 3220-3227.	1.6	24
280	Polynitroxide-grafted-graphene: a superior cathode for lithium ion batteries with enhanced charge hopping transportation. Journal of Materials Chemistry A, 2019, 7, 4438-4445.	5.2	21
282	Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chemical Engineering Journal, 2019, 367, 230-238.	6.6	127
283	A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries. Journal of Materials Chemistry A, 2019, 7, 6801-6808.	5.2	40
284	High electrochemical stability of a 3D cross-linked network PEO@nano-SiO ₂ composite polymer electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6832-6839.	5.2	164
285	Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode. Advanced Functional Materials, 2019, 29, 1806752.	7.8	78
286	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122
287	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	2.5	6
288	Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for Solid-State Li Metal Batteries. ACS Nano, 2019, 13, 14549-14556.	7.3	123
289	Asymmetric Structure Design of Electrolytes with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46783-46791.	4.0	34
290	Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.	1.3	168
291	Self-Supporting Dendritic Copper Porous Film Inducing the Lateral Growth of Metallic Lithium for Highly Stable Li Metal Battery. Journal of the Electrochemical Society, 2019, 166, A4073-A4079.	1.3	3
292	A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals. Journal of Materials Chemistry A, 2019, 7, 25389-25398.	5.2	25

#	Article	IF	CITATIONS
293	Topological polymer electrolyte containing poly(pinacol vinylboronate) segments composited with ceramic nanowires towards ambient-temperature superior performance all-solid-state lithium batteries. Journal of Power Sources, 2019, 413, 318-326.	4.0	22
294	Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. CheM, 2019, 5, 753-785.	5.8	595
295	Effects of Fluorine Doping on Structural and Electrochemical Properties of Li _{6.25} Ga _{0.25} La ₃ Zr ₂ O ₁₂ as Electrolytes for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2042-2049.	4.0	85
296	Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources, 2019, 409, 31-37.	4.0	76
297	A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte. Energy Storage Materials, 2019, 17, 234-241.	9.5	55
298	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
299	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‣ife Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
300	Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering Reports, 2019, 136, 27-46.	14.8	311
301	Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Materials, 2019, 17, 204-210.	9.5	125
302	Enhanced Interfacial Stability of Hybridâ€Electrolyte Lithiumâ€Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Advanced Functional Materials, 2019, 29, 1805996.	7.8	47
303	Nanostructured Metal–Organic Framework (MOF)â€Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solidâ€State Batteries. Small, 2019, 15, e1804413.	5.2	93
304	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	10.2	147
305	Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 5064-5072.	4.0	77
306	Simultaneously Regulating Lithium Ion Flux and Surface Activity for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 5159-5167.	4.0	33
307	High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019, 4, 187-196.	19.8	1,099
308	Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics, 2019, 331, 89-95.	1.3	84
309	Gallium doped NASICON type LiTi2(PO4)3 thin-film grown on graphite anode as solid electrolyte for all solid state lithium batteries. Journal of Alloys and Compounds, 2019, 775, 1147-1155.	2.8	36
310	Recent advances in Li1+xAlxTi2â^'x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials, 2019, 19, 379-400.	9.5	210

#	Article	IF	Citations
311	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
312	Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. Journal of Industrial and Engineering Chemistry, 2019, 71, 445-451.	2.9	40
313	Double‣ayer Polymer Electrolyte for Highâ€Voltage Allâ€Solidâ€State Rechargeable Batteries. Advanced Materials, 2019, 31, e1805574.	11.1	321
314	Enhancing the ionic conductivity in a composite polymer electrolyte with ceramic nanoparticles anchored to charged polymer brushes. Chinese Chemical Letters, 2020, 31, 831-835.	4.8	25
315	Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Materials, 2020, 26, 313-324.	9.5	114
316	A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials, 2020, 25, 756-763.	9.5	59
317	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020, 25, 644-678.	9.5	207
318	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
319	Design Principles of the Anode–Electrolyte Interface for All Solidâ€ S tate Lithium Metal Batteries. Small Methods, 2020, 4, 1900592.	4.6	88
320	Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047.	7.8	59
321	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 8366-8375.	4.0	29
322	Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn2O3 Nanoporous Architecture Cathode. Nano-Micro Letters, 2020, 12, 14.	14.4	57
323	Superlithiophilic graphene-silver enabling ultra-stable hosts for lithium metal anodes. Inorganic Chemistry Frontiers, 2020, 7, 897-904.	3.0	7
324	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Materials, 2020, 26, 65-72.	9.5	31
325	Dendriteâ€Free Lithium Plating Induced by In Situ Transferring Protection Layer from Separator. Advanced Functional Materials, 2020, 30, 1907020.	7.8	43
326	A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. Journal of Membrane Science, 2020, 596, 117739.	4.1	77
327	Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 2020, 27, 522-554.	9.5	151
328	High Uptake and Fast Transportation of LiPF 6 in a Porous Aromatic Framework for Solidâ€State Liâ€Ion Batteries. Angewandte Chemie, 2020, 132, 779-784.	1.6	10

# 329	ARTICLE Dual interface layers for solid-state Li metal battery with low interfacial resistance and small polarization based on garnet electrolyte. Electrochimica Acta, 2020, 330, 135352.	IF 2.6	CITATIONS 24
330	Tapeâ€Casting Li _{0.34} La _{0.56} TiO ₃ Ceramic Electrolyte Films Permit High Energy Density of Lithiumâ€Metal Batteries. Advanced Materials, 2020, 32, e1906221.	11.1	173
331	High Uptake and Fast Transportation of LiPF ₆ in a Porous Aromatic Framework for Solid‣tate Liâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 769-774.	7.2	36
332	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	23.0	891
333	Advances in Artificial Layers for Stable Lithium Metal Anodes. Chemistry - A European Journal, 2020, 26, 4193-4203.	1.7	36
334	Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy Storage Materials, 2020, 26, 513-533.	9.5	36
335	In Situ Growing Chromium Oxynitride Nanoparticles on Carbon Nanofibers to Stabilize Lithium Deposition for Lithium Metal Anodes. Small, 2020, 16, e2003827.	5.2	21
336	Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond. ACS Energy Letters, 2020, 5, 3468-3489.	8.8	68
337	A Review of Functional Separators for Lithium Metal Battery Applications. Materials, 2020, 13, 4625.	1.3	84
338	Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Materials, 2020, 33, 188-215.	9.5	205
339	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	4.0	109
340	Energy-dense Li metal anodes enabled by thin film electrolytes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	6
341	Polymers for Battery Applications—Active Materials, Membranes, and Binders. Advanced Energy Materials, 2021, 11, 2001984.	10.2	75
342	High Voltage Stable Polyoxalate Catholyte with Cathode Coating for Allâ€Solidâ€State Liâ€Metal/NMC622 Batteries. Advanced Energy Materials, 2020, 10, 2002416.	10.2	41
343	Solid state polymer ionogel electrolyte for use in Liâ€ion batteries. SPE Polymers, 2020, 1, 55-65.	1.4	5
344	Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Applied Materials & Interfaces, 2020, 12, 47181-47196.	4.0	62
345	CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 21961-21967.	5.2	6
346	Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries. Materials Technology, 2022, 37, 240-247.	1.5	19

#	Article	IF	CITATIONS
347	Evaluation on hybridâ^'electrolyte structure using the liquid electrolyte interlayer containing LiBH4 at Li7La3Zr2O12 Li interface at high operating temperature. Journal of Power Sources, 2020, 478, 228751.	4.0	1
348	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	8.2	108
349	High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte. Chemistry of Materials, 2020, 32, 9167-9175.	3.2	81
350	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	18.7	264
351	A New General Paradigm for Understanding and Preventing Li Metal Penetration through Solid Electrolytes. Joule, 2020, 4, 2599-2608.	11.7	71
352	An <i>in situ</i> solidifying strategy enabling high-voltage all-solid-state Li-metal batteries operating at room temperature. Journal of Materials Chemistry A, 2020, 8, 25217-25225.	5.2	18
353	Flexible, Synergistic Ceramic–Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12709-12715.	2.5	7
354	Methods for Lithium Ion NASICON Preparation: From Solid-State Synthesis to Highly Conductive Glass-Ceramics. Journal of Physical Chemistry C, 2020, 124, 26518-26539.	1.5	34
355	Ultrathin Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ -Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 11713-11723.	2.5	35
356	Towards a high-performance garnet-based solid-state Li metal battery: A perspective on recent advances. Journal of Power Sources, 2020, 472, 228571.	4.0	12
357	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials, 2020, 33, 26-54.	9.5	123
358	Stabilizing Liquid Electrolytes in a Porous PVDF Matrix Incorporated with Star Polymers with Linear PEG Arms and CycloPEG Cores. Langmuir, 2020, 36, 9616-9625.	1.6	5
359	Fast Li-ion transport and uniform Li-ion flux enabled by a double–layered polymer electrolyte for high performance Li metal battery. Energy Storage Materials, 2020, 32, 55-64.	9.5	75
360	A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries. Journal of Power Sources, 2020, 477, 228754.	4.0	41
361	Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nature Communications, 2020, 11, 5561.	5.8	103
362	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	18.7	461
363	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Materials, 2020, 33, 329-335.	9.5	28
364	Safe, superionic conductive and flexible "polymer-in-plastic salts―electrolytes for dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 33, 442-451.	9.5	22

#	Article	IF	CITATIONS
365	Structure Design of Cathode Electrodes for Solidâ€State Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	6.9	73
366	Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Research, 2020, 13, 3230-3234.	5.8	32
367	In Situ Curing Technology for Dual Ceramic Composed by Organic–Inorganic Functional Polymer Gel Electrolyte for Dendriticâ€Free and Robust Lithium–Metal Batteries. Advanced Materials Interfaces, 2020, 7, 2000830.	1.9	14
368	Designing Solidâ€State Electrolytes through the Structural Modification of a Highâ€Performing Ionic Liquid. ChemElectroChem, 2020, 7, 4118-4123.	1.7	10
369	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	15.6	96
370	Improving Interfacial Problems between the Cathode and Solid- State Electrolyte by Coating ETPTA-PEG onto the Surface of LiNi0.8Co0.1Mn0.1O2. International Journal of Electrochemical Science, 2020, , 6330-6342.	0.5	0
372	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solid‧tate Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156
373	Enabling Solid-State Li Metal Batteries by In Situ Forming Ionogel Interlayers. ACS Applied Energy Materials, 2020, 3, 5712-5721.	2.5	28
374	Designing Polymeric Interphases for Stable Lithium Metal Deposition. Nano Letters, 2020, 20, 5749-5758.	4.5	23
376	A well-designed CoTiO3 coating for uncovering and manipulating interfacial compatibility between LiCoO2 and Li1.3Al0.3Ti1.7(PO4)3 in high temperature zone. Applied Surface Science, 2020, 526, 146601.	3.1	18
377	Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.	4.0	36
378	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals, 2020, 39, 616-635.	3.6	89
379	Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. Small, 2020, 16, e2000699.	5.2	63
380	Fast lithium ion transport in solid polymer electrolytes from polysulfide-bridged copolymers. Nano Energy, 2020, 75, 104976.	8.2	32
381	Chemomechanical Failure Mechanism Study in NASICON-Type Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Solid-State Lithium Batteries. Chemistry of Materials, 2020, 32, 4998-5008.	3.2	104
382	Metal–organic frameworks for solid-state electrolytes. Energy and Environmental Science, 2020, 13, 2386-2403.	15.6	182
383	A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353, 136604.	2.6	12
384	PEOâ€LITFSIâ€SiO ₂ â€SN System Promotes the Application of Polymer Electrolytes in Allâ€Solidâ€State Lithiumâ€ion Batteries. ChemistryOpen, 2020, 9, 713-718.	0.9	28

#	Article	IF	CITATIONS
385	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2002013.	7.8	60
386	Block Copolymer Electrolytes with Excellent Properties in a Wide Temperature Range. ACS Applied Energy Materials, 2020, 3, 6536-6543.	2.5	16
387	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Interfaces, 2020, 12, 31411-31418.	4.0	23
388	Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7090-7099.	5.2	11
389	From Liquid- to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. Electrochemical Energy Reviews, 2020, 3, 221-238.	13.1	117
390	Li–LiAl alloy composite with memory effect as high-performance lithium metal anode. Journal of Power Sources, 2020, 455, 227977.	4.0	30
391	Reducing interfacial resistance of a Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ solid electrolyte/electrode interface by polymer interlayer protection. RSC Advances, 2020, 10, 10038-10045.	1.7	27
392	Interface Modification of lithium Metal Anode and Solid-state Electrolyte with Gel Electrolyte. Journal of the Electrochemical Society, 2020, 167, 070542.	1.3	15
393	Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. Journal of Energy Chemistry, 2020, 50, 154-177.	7.1	169
394	Garnet-Based Solid-State Lithium Fluoride Conversion Batteries Benefiting from Eutectic Interlayer of Superior Wettability. ACS Energy Letters, 2020, 5, 1167-1176.	8.8	79
395	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 2020, 120, 6878-6933.	23.0	676
396	Advanced Characterization Techniques for Interface in Allâ€Solidâ€State Batteries. Small Methods, 2020, 4, 2000111.	4.6	35
397	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 33719-33728.	4.0	65
398	Enhancing the Interfacial Ionic Transport via <i>in Situ</i> 3D Composite Polymer Electrolytes for Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 7200-7207.	2.5	15
399	Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective. Applied Materials Today, 2020, 20, 100750.	2.3	17
400	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
401	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
402	Polymer Template Synthesis of Flexible SiO ₂ Nanofibers to Upgrade Composite Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 31439-31447.	4.0	58

#	Article	IF	CITATIONS
403	Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li–FeF ₃ Conversion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33729-33739.	4.0	32
404	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107
405	Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy, 2020, 76, 105068.	8.2	46
406	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	23.3	284
407	Construct an Ultrathin Bismuth Buffer for Stable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12793-12800.	4.0	29
408	Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chemistry of Materials, 2020, 32, 3405-3413.	3.2	145
409	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020, 3, 2916-2924.	2.5	73
410	Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solidâ€State Batteries Using Ionic Liquidâ€Based Interlayers. Small, 2020, 16, e2000279.	5.2	75
411	Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chemical Society Reviews, 2020, 49, 2140-2195.	18.7	337
412	A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy, 2020, 71, 104600.	8.2	54
413	Dendrite Suppression by a Polymer Coating: A Coarseâ€Grained Molecular Study. Advanced Functional Materials, 2020, 30, 1910138.	7.8	49
414	Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Letters, 2020, 5, 922-934.	8.8	322
415	A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. Journal of Materials Science, 2020, 55, 6242-6304.	1.7	68
416	Shaping the Contact between Li Metal Anode and Solid‣tate Electrolytes. Advanced Functional Materials, 2020, 30, 1908701.	7.8	44
417	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13950-13958.	4.0	45
418	Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10443-10451.	4.0	47
419	A 20â€ [−] °C operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure. Applied Materials Today, 2020, 19, 100585.	2.3	11
420	An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy, 2020, 71, 104595.	8.2	80

#		IF	CITATIONS
#		IF	CHAHONS
421	Polymeric Sulfur as a Li Ion Conductor. Nano Letters, 2020, 20, 2191-2196.	4.5	15
422	Interface engineering on cathode side for solid garnet batteries. Chemical Engineering Journal, 2020, 387, 124089.	6.6	80
423	Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Materials Horizons, 2020, 7, 1246-1278.	6.4	46
424	Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Advanced Science, 2020, 7, 1903088.	5.6	403
425	High Voltage, Flexible and Low Cost Allâ€ S olidâ€State Lithium Metal Batteries with a Wide Working Temperature Range. ChemistrySelect, 2020, 5, 1214-1219.	0.7	21
426	On battery materials and methods. Materials Today Advances, 2020, 6, 100046.	2.5	81
427	In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Research, 2020, 13, 430-436.	5.8	49
428	Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. Electrochimica Acta, 2020, 336, 135693.	2.6	16
429	Stable Interface between Lithium and Electrolyte Facilitated by a Nanocomposite Protective Layer. Small Methods, 2020, 4, 1900751.	4.6	33
430	<i>In situ</i> thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 3892-3900.	5.2	59
431	Solventâ€Free Synthesis of Thin, Flexible, Nonflammable Garnetâ€Based Composite Solid Electrolyte for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903376.	10.2	284
432	Microstructural and Electrochemical Properties of Al- and Ga-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Garnet Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 4708-4719.	2.5	50
433	Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy, 2020, 74, 104867.	8.2	25
434	A Durable Gel Polymer Electrolyte with Excellent Cycling and Rate Performance for Enhanced Lithium Storage. ACS Applied Energy Materials, 2020, 3, 4906-4913.	2.5	10
435	Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 22710-22720.	4.0	23
436	Electrolytes and Interphases in Sodiumâ€Based Rechargeable Batteries: Recent Advances and Perspectives. Advanced Energy Materials, 2020, 10, 2000093.	10.2	254
437	A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Storage Materials, 2020, 29, 42-51.	9.5	51
438	Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries. Journal of Power Sources, 2020, 460, 228125.	4.0	57

#	Article	IF	CITATIONS
439	Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. Journal of Membrane Science, 2020, 605, 118108.	4.1	52
440	Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chemical Reviews, 2020, 120, 4257-4300.	23.0	655
441	Highâ€Safety Allâ€Solidâ€State Lithiumâ€Ion Battery Working at Ambient Temperature with Inâ€Situ UV ur Polymer Electrolyte on the Electrode. ChemElectroChem, 2020, 7, 2599-2607.	ing 1.7	14
442	Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries. Journal of Energy Chemistry, 2020, 51, 222-229.	7.1	8
443	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
444	Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000077.	7.8	115
445	High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Materials, 2020, 29, 149-155.	9.5	57
446	Garnet Solid Electrolyte for Advanced Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2000648.	10.2	182
447	Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Advanced Energy Materials, 2021, 11, 2000802.	10.2	162
448	Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. Journal of Energy Chemistry, 2021, 52, 67-74.	7.1	43
449	Tribute to John B. Goodenough: From Magnetism to Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2000773.	10.2	11
450	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	8.3	64
451	A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie - International Edition, 2021, 60, 3781-3790.	7.2	71
452	Cryogenic engineering of solid polymer electrolytes for room temperature and 4ÂV-class all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 420, 127623.	6.6	13
453	Electrochemistry: Retrospect and Prospects. Israel Journal of Chemistry, 2021, 61, 120-151.	1.0	2
454	Structure Code for Advanced Polymer Electrolyte in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2008208.	7.8	77
455	Solid‣tate Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Advanced Energy Materials, 2021, 11, .	10.2	312
456	Interfacial Reactions in Inorganic Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	2.4	39

#	Article	IF	CITATIONS
457	Hybrid Li‧ pouch cell with a reinforced sulfide glass solidâ€state electrolyte film separator. International Journal of Applied Glass Science, 2021, 12, 124-134.	1.0	7
458	Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solid‧tate, Dendriteâ€Free Lithium Metal Battery. Advanced Functional Materials, 2021, 31, 2007198.	7.8	123
459	3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Applied Surface Science, 2021, 536, 147794.	3.1	15
460	Surface modification of Ni foam for stable and dendrite-free lithium deposition. Chemical Engineering Journal, 2021, 405, 127022.	6.6	32
461	Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. Journal of Power Sources, 2021, 482, 228949.	4.0	59
462	Hierarchical Compositeâ€Solidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
463	Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery. Chemical Engineering Journal, 2021, 405, 127031.	6.6	36
464	Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79, 105507.	8.2	115
465	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
466	Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. Journal of Materials Science, 2021, 56, 2425-2434.	1.7	20
467	Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Materials, 2021, 34, 388-416.	9.5	131
468	Research progress on gel polymer electrolytes for lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 56, 420-437.	7.1	59
469	Ion-Exchange Materials for Membrane Capacitive Deionization. ACS ES&T Water, 2021, 1, 217-239.	2.3	56
470	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal, 2021, 421, 127832.	6.6	6
471	A superior stable interlayer for dendrite-free solid-state lithium metal batteries. Chemical Engineering Journal, 2021, 421, 127727.	6.6	20
472	Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy and Environmental Science, 2021, 14, 602-642.	15.6	95
473	Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. Journal of Power Sources, 2021, 484, 229186.	4.0	28
474	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869	10.2	64

#	Article	IF	CITATIONS
475	A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2021, 133, 3825-3834.	1.6	13
476	Phosphonium Bromides Regulating Solid Electrolyte Interphase Components and Optimizing Solvation Sheath Structure for Suppressing Lithium Dendrite Growth. Advanced Functional Materials, 2021, 31, 2009013.	7.8	75
477	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	3.2	22
478	Recent advances in separator engineering for effective dendrite suppression of Liâ€metal anodes. Nano Select, 2021, 2, 993-1010.	1.9	22
479	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	5.2	47
480	Organoboronâ€Containing Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632.	7.8	28
481	Lithium-ion transport in inorganic active fillers used in PEO-based composite solid electrolyte sheets. RSC Advances, 2021, 11, 31855-31864.	1.7	15
482	Interfacial engineering facilitating robust Li _{6.35} Ga _{0.15} La ₃ Zr _{1.8} Nb _{0.2} O ₁₂ for all-solid-state lithium batteries. Sustainable Energy and Fuels, 2021, 5, 2077-2084.	2.5	10
483	Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021, 9, 7396-7406.	5.2	65
484	Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 20530-20543.	5.2	30
485	Research progress on the interfaces of solid-state lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 9481-9505.	5.2	19
486	Organic and Organic–Inorganic Composite Solid Electrolytes. New Developments in NMR, 2021, , 323-363.	0.1	0
487	Status and prospect of <i>in situ</i> and <i>operando</i> characterization of solid-state batteries. Energy and Environmental Science, 2021, 14, 4672-4711.	15.6	44
488	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	5.2	43
489	A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 9665-9674.	5.2	30
490	Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Science China Chemistry, 2021, 64, 673-680.	4.2	16
491	CNTs/LiV3O8/Y2O3 Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Solid-State Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 8219-8228.	4.0	1
492	Favorable Electrochemical Performance of LiMn2O4/LiFePO4 Composite Electrodes Attributed to Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Langmuir, 2021, 37, 2349-2354.	1.6	3

ARTICLE IF CITATIONS Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based 493 172 5.6 Rechargeable Batteries. Advanced Science, 2021, 8, 2003675. Solidâ€State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solidâ€State 494 11.1 Interfaces. Advanced Materials, 2021, 33, e2008084. Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na⁺ Flux Dynamics 495 10.2 31 for Solidâ€State Na Metal Batteries. Advanced Energy Materials, 2021, 11, 2003469. Interface Aspects in Allâ€Solidâ€State Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 496 2003939. Progress and perspective of interface design in garnet electrolyteâ€based allâ€solidâ€state batteries., 2021, 497 28 3, 385-409. Formation of Excellent Cathode/Electrolyte Interface with UV-Cured Polymer Electrolyte through In 498 1.3 Situ Strategy. Journal of the Electrochemical Society, 2021, 168, 020511. Critical Current Density in Solidâ€5tate Lithium Metal Batteries: Mechanism, Influences, and Strategies. 499 7.8 239 Advanced Functional Materials, 2021, 31, 2009925. Dendrites in Solidâ€State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface 500 10.2 Regulation. Advanced Energy Materials, 2021, 11, 2003250. Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number. ACS 501 8.8 50 Energy Letters, 0, , 1315-1323. Enhancing Interfacial Contact in Solidâ€State Batteries with a Gradient Composite Solid Electrolyte. 5.2 Small, 2021, 17, e2006578. Lithium-Sulfur Batteries Employing Hybrid-electrolyte Structure with Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> 503 0.6 3 at Middle Operating Temperature: Effect of Li Salts Concentration on Electrochemical Performance. Electrochemistry, 2021, 89, 197-203. Bifunctional In Situ Polymerized Interface for Stable LAGPâ€Based Lithium Metal Batteries. Advanced 504 Materials Interfaces, 2021, 8, 2100072. Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture. ACS Energy 505 8.8 66 Letters, 2021, 6, 1920-1941. Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life 1.6 Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 12223-12230. Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing 507 Electrode/Electrolyte Interfacial Resistance. Journal of Materials Engineering and Performance, 2021, 2 1.2 30, 4543-4551. Lithiophilic 3D VN@N-rGO as a Multifunctional Interlayer for Dendrite-Free and Ultrastable 508 Lithium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 20125-20136. Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life 509 Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 7.2 97 12116-12123. Helical Polyurethane-Initiated Unique Microphase Separation Architecture for Highly Efficient Lithium Transfer and Battery Performance of a Poly(ethylene oxide)-Based All-Solid-State Electrolyte. ACS Applied Energy Materials, 2021, 4, 4772-4785.

#	Article	IF	CITATIONS
511	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 10871-10879.	7.2	89
512	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	9.5	82
513	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie, 2021, 133, 10966-10974.	1.6	11
514	Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces. Chinese Journal of Chemical Engineering, 2022, 44, 140-147.	1.7	1
515	Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries. Ceramics International, 2021, 47, 13280-13290.	2.3	19
516	In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 411, 128534.	6.6	34
517	Insight into bulk charge transfer of lithium metal anodes by synergism of nickel seeding and LiF-Li3N-Li2S co-doped interphase. Energy Storage Materials, 2021, 37, 491-500.	9.5	13
518	Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 4581-4601.	2.5	59
519	Construction of sticky ionic conductive buffer layer for inorganic electrolyte toward stable all-solid-state lithium metal batteries. Journal of Power Sources, 2021, 495, 229765.	4.0	9
520	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	23.3	409
521	Review on Computational-Assisted to Experimental Synthesis, Interfacial Perspectives of Garnet-Solid Electrolytes for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 060529.	1.3	13
522	Highly Stable Quasiâ€Solidâ€State Lithium Metal Batteries: Reinforced Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface by a Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339.	10.2	62
523	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	10.2	129
524	Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte. Journal of Power Sources, 2021, 496, 229835.	4.0	23
525	Improving the Interfacial Contact between Li ₇ La ₃ Zr ₂ O ₁₂ and Lithium Anode by Depositing a Film of Silver. Journal of the Electrochemical Society, 2021, 168, 060515.	1.3	6
526	Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. Nano Letters, 2021, 21, 7070-7078.	4.5	72
527	New Amorphous Oxy-Sulfide Solid Electrolyte Material: Anion Exchange, Electrochemical Properties, and Lithium Dendrite Suppression via <i>In Situ</i> Interfacial Modification. ACS Applied Materials & Interfaces, 2021, 13, 26841-26852.	4.0	18
528	Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries. Tungsten, 2021, 3, 260-278.	2.0	17

#	Article	IF	CITATIONS
529	A Sandwich Structure Composite Solid Electrolyte with Enhanced Interface Stability and Electrochemical Properties For Solid-state Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 070513.	1.3	10
530	Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels, 2021, 35, 11118-11140.	2.5	16
531	Progress and perspective of Li _{1 +} <scp>_xAl_xTi₂</scp> _{â€x} (<scp>F ceramic electrolyte in lithium batteries. InformaÄnÃ-Materiály, 2021, 3, 1195-1217.</scp>	'O ⊲su ∎b>4∢	:/s :uba >
532	Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. Journal of Energy Storage, 2021, 40, 102659.	3.9	80
533	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. Small Science, 2021, 1, 2100058.	5.8	81
534	Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Materials, 2021, 39, 108-129.	9.5	81
535	Fracture behavior of solid electrolyte LATP material based on micro-pillar splitting method. Journal of the European Ceramic Society, 2021, 41, 5240-5247.	2.8	8
536	Structural Design of Composite Polymer Electrolytes for Solidâ€state Lithium Metal Batteries. ChemNanoMat, 2021, 7, 1177-1187.	1.5	11
537	A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides. Composites Communications, 2021, 26, 100774.	3.3	39
538	Accelerated Electrochemical Investigation of Li Plating Efficiency as Key Parameter for Li Metal Batteries Utilizing a Scanning Droplet Cell. ChemElectroChem, 2021, 8, 3143-3149.	1.7	3
539	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
540	Fabrication of Elastic Cyclodextrin-Based Triblock Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9402-9411.	2.5	16
541	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
542	The Electrolyte Diffusion Limitation Impact on the Performance of Polymer Composite Electrodes for Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 090553.	1.3	0
543	Halide Electrolyte Li3InCl6-Based All-Solid-State Lithium Batteries With Slurry-Coated LiNi0.8Co0.1Mn0.1O2 Composite Cathode: Effect of Binders. Frontiers in Materials, 2021, 8, .	1.2	9
544	Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries. Journal of Energy Chemistry, 2021, 60, 162-168.	7.1	40
545	Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. Journal of Advanced Ceramics, 2021, 10, 933-972.	8.9	64
546	Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte Interface in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3669-3675.	8.8	40

ARTICLE IF CITATIONS Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. 547 10.1 47 EnergyChem, 2021, 3, 100058. Defect-engineered bilayer MOFs separator for high stability lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 874, 159917. 548 2.8 Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature 549 2.2 6 solid-state Li metal batteries. Surface and Coatings Technology, 2021, 421, 127389. In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries. Energy Storage Materials, 2021, 40, 394-401. In situ observation of cracking and self-healing of solid electrolyte interphases during lithium 551 4.3 16 deposition. Science Bulletin, 2021, 66, 1754-1763. Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021, 420, 129739. 6.6 Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte 553 1.6 19 Chemie, 2021, 133, 22973-22978. Progress in Solid Polymer Electrolytes for Lithiumâ€Ion Batteries and Beyond. Small, 2022, 18, e2103617. 5.2 554 Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free 555 4.0 8 Lithium Metal Anodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 45416-45425. Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. Journal of Electroanalytical Chemistry, 2021, 897, 115499. Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte 557 7.2 58 Chemie - International Edition, 2021, 60, 22791-22796. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal 8.2 88 batteries. Nanó Energy, 2021, 88, 106205. Sandwich composite PEO@(Er0.5Nb0.5)0.05Ti0.95O2@cellulose electrolyte with high cycling stability 559 2.8 13 for all-solid-state lithium metal batteries. Journal of Alloys and Compounds, 2021, 877, 160307. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. 66 Energy Storage Materials, 2021, 41, 485-494. Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453. 561 11.8 39 Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochimica Acta, 2021, 395, 139104. Natural "reliefâ€for lithium dendrites: Tailoring protein configurations for long-life lithium metal 563 9.5 22 anodes. Energy Storage Materials, 2021, 42, 22-33. Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal 564 8.2 38 batteries. Nano Energy, 2021, 90, 106490.

#	Article	IF	CITATIONS
565	Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. Journal of Membrane Science, 2021, 640, 119840.	4.1	37
566	A blended gel polymer electrolyte for dendrite-free lithium metal batteries. Applied Surface Science, 2021, 569, 150899.	3.1	18
567	Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy, 2021, 90, 106498.	8.2	74
568	A Janus Li1.5Al0.5Ge1.5(PO4)3 with high critical current density for high-voltage lithium batteries. Chemical Engineering Journal, 2022, 429, 132506.	6.6	10
569	Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 2021, 27, 1101-1111.	1.2	31
570	Interrelated interfacial issues between a Li ₇ La ₃ Zr ₂ O ₁₂ -based garnet electrolyte and Li anode in the solid-state lithium battery: a review. Journal of Materials Chemistry A, 2021, 9, 5952-5979.	5.2	50
571	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
572	Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries. RSC Advances, 2021, 11, 3854-3862.	1.7	10
573	Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification. Ionics, 2020, 26, 3815-3821.	1.2	15
574	Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1565-1583.	2.4	26
575	Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. Energy Storage Materials, 2020, 30, 385-391.	9.5	51
576	Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites. Energy Storage Materials, 2020, 33, 309-328.	9.5	63
577	Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter, 2020, 2, 805-815.	5.0	130
578	Critical interface between inorganic solid-state electrolyte and sodium metal. Materials Today, 2020, 41, 200-218.	8.3	62
579	Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5, 229-252.	23.3	1,167
580	A self-smoothing Li-metal anode enabled <i>via</i> a hybrid interface film. Journal of Materials Chemistry A, 2020, 8, 12045-12054.	5.2	24
581	Synthesis and interface modification of oxide solid-state electrolyte-based all-solid-state lithium-ion batteries: Advances and perspectives. Functional Materials Letters, 2021, 14, 2130002.	0.7	12
582	Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using Symmetric Li-Metal Coin Cells. Journal of the Electrochemical Society, 2020, 167, 120526.	1.3	16

#	Article	IF	CITATIONS
583	Mechanical failures in solid-state lithium batteries and their solution. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226201.	0.2	5
584	Impact of the Solidâ€Electrolyte Interface on Dendrite Formation: A Case Study Based on Zinc Metal Electrodes. ChemElectroChem, 2022, 9, .	1.7	1
585	Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. Materials Today Energy, 2021, 22, 100875.	2.5	9
586	Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1584-1602.	2.4	13
587	Electrolyte Development for Solid-state Lithium Batteries. Inorganic Materials Series, 2019, , 100-135.	0.5	0
588	High-Energy All-Solid-State Lithium-Metal Batteries by Nanomaterial Designs. , 2019, , 205-262.		0
589	Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid Future. Current Nanoscience, 2020, 16, 507-533.	0.7	0
590	An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency. Journal of Materiomics, 2022, 8, 257-265.	2.8	2
591	Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228805.	0.2	5
592	Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Materials, 2022, 44, 93-103.	9.5	77
593	Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. Energy Storage Materials, 2022, 44, 136-144.	9.5	24
594	Optimization for polyethylene glycol/garnet oxide composite electrolyte membrane for solid-state batteries. Chemical Engineering Journal, 2022, 430, 132803.	6.6	7
595	Research progress of interface problems and optimization of garnet-type solid electrolyte. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228806.	0.2	4
596	Three-dimensional porous ceramic framework reinforcing composite electrolyte. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228203.	0.2	4
597	Physical issues in solid garnet batteries. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228804.	0.2	4
598	Quasi-Solid-State Lithium Metal Batteries Using the LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ –Li _{1+<i>x</i>} Al _{ Composite Positive Electrode. ACS Applied Materials & Interfaces, 2021, 13, 53810-53817.}	<i>≯x⊗/i><!--</td--><td>sub>Ti</td></i>	su b >Ti
599	Ionic Liquid and Polymer Coated Garnet Solid Electrolytes for Highâ€Energy Solidâ€State Lithium Metal Batteries. Energy Technology, 2022, 10, .	1.8	5
600	Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode. Electrochimica Acta, 2022, 402, 139561.	2.6	9

#	Article	IF	CITATIONS
601	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	7.1	47
602	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
603	Powerful qua-functional electrolyte additive for lithium metal batteries. Green Energy and Environment, 2022, 7, 361-364.	4.7	5
604	Electrochemical Dealloying-Enabled 3D Hierarchical Porous Cu Current Collector of Lithium Metal Anodes for Dendrite Growth Inhibition. ACS Applied Energy Materials, 2021, 4, 13903-13911.	2.5	12
605	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, .	1.6	6
606	One-Pot Synthesis of Polyester-Based Linear and Graft Copolymers for Solid Polymer Electrolytes. CCS Chemistry, 2022, 4, 3134-3149.	4.6	12
607	Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 56181-56190.	4.0	13
608	Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Advanced Science, 2022, 9, e2103879.	5.6	98
609	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
610	Cyclodextrin-Integrated PEO-Based Composite Solid Electrolytes for High-Rate and Ultrastable All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57380-57391.	4.0	29
611	LLCZN/PEO/LiPF6 Composite Solid-State Electrolyte for Safe Energy Storage Application. Batteries, 2022, 8, 3.	2.1	8
612	Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 2022, 521, 230921.	4.0	24
613	Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Materials, 2022, 45, 969-1001.	9.5	36
614	Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part 1. experiment investigation and regression analysis. Energy, 2022, 242, 122880.	4.5	25
615	Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134471.	6.6	40
616	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	19
617	Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Metals, 2022, 41, 1870-1879.	3.6	48
618	Enhancing the polymer electrolyte–Li metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of Materials Chemistry A, 2022, 10, 2352-2361.	5.2	10

#	Article	IF	CITATIONS
619	Regulating Interfacial Liâ€lon Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Science, 2022, 9, e2104506.	5.6	18
620	Lithium-Ion-Conducting Ceramics-Coated Separator for Stable Operation of Lithium Metal-Based Rechargeable Batteries. Materials, 2022, 15, 322.	1.3	9
621	Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 8761-8771.	5.2	33
622	Constructing effective interface for room-temperature Beta-Al2O3 based sodium metal batteries. Journal of Power Sources, 2022, 523, 231034.	4.0	8
623	Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Reports Physical Science, 2022, 3, 100706.	2.8	30
624	An in situ-formed high lithiophilic solid lubricant interface layer for garnet-based solid-state lithium metal batteries. Electrochimica Acta, 2022, 407, 139767.	2.6	6
625	A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements. Chemical Engineering Journal, 2022, 437, 135179.	6.6	27
626	Integrated Solid-State Li-Metal Batteries Mediated by 3D Mixed Ionic & Electronic Anodes and Deformable Melt Interphase. SSRN Electronic Journal, 0, , .	0.4	0
627	Recent advances in lithium-ion battery separators with enhanced safety. , 2022, , 269-304.		3
628	Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
629	Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Materials Advances, 2022, 3, 3055-3069.	2.6	14
630	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	132
631	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
632	Preparation of waterborne polyurethane based on different polyols: the effect of structure and crystallinity. Journal of Polymer Research, 2022, 29, 1.	1.2	4
633	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. ACS Energy Letters, 2022, 7, 1374-1382.	8.8	27
635	Influence of lithium metal anode coated with a composite quasi-solid electrolyte on stabilizing the interface of all-solid-state battery. Ionics, 2022, 28, 2649-2660.	1.2	2
636	Stabilizing the Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Li Interface for High Efficiency and Long Lifespan Quasiâ€Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	11
637	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6, 543-587.	11.7	90

#	Article	IF	CITATIONS
638	Editors' Choice—A Fruitful Transition of John B. Goodenough from Oxford to the University of Texas at Austin. Journal of the Electrochemical Society, 2022, 169, 034520.	1.3	1
639	Thin Yet Strong Composite Polymer Electrolyte Reinforced by Nanofibrous Membrane for Flexible Dendriteâ€Free Solidâ€State Lithium Metal Batteries. Advanced Energy and Sustainability Research, 0, , 2100193.	2.8	1
640	CuO Nanofilm-Covered Cu Microcone Coating for a Long Cycle Li Metal Anode by In Situ Formed Li ₂ O. ACS Applied Energy Materials, 2022, 5, 3773-3782.	2.5	13
641	Approaching Practically Accessible and Environmentally Adaptive Sodium Metal Batteries with High Loading Cathodes through In Situ Interlock Interface. Advanced Functional Materials, 2022, 32, .	7.8	21
642	Asymmetric polymer solid electrolyte constructed by dopamine-modified Li1.4Al0.4Ti1.6(PO4)3 for dendrite-free lithium battery. lonics, 2022, 28, 2693-2700.	1.2	2
643	An insulating material in a structured host enables sustainable formation of a granular Li metal for highly durable Li metal battery. Journal of Power Sources, 2022, 527, 231170.	4.0	5
644	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	14.4	79
646	Electrochemical stability of a NASICON solid electrolyte from the lithium aluminum germanium phosphate (LAGP) series. Solid State Ionics, 2022, 378, 115888.	1.3	13
647	Self-exfoliated covalent organic framework nano-mesh enabled regular charge distribution for highly stable lithium metal battery. Energy Storage Materials, 2022, 47, 376-385.	9.5	32
648	Multiphase ceramic nanofibers with super-elasticity from â^'Â196–1600Â℃. Nano Today, 2022, 44, 101455.	6.2	11
649	Recent advances of newly designed in-situ polymerized electrolyte for high energy density/safe solid Li metal batteries. Current Opinion in Electrochemistry, 2022, 33, 100962.	2.5	6
650	Integrated solid-state Li-metal batteries mediated by 3D mixed ion-electron conductive anodes and deformable molten interphase. Chemical Engineering Journal, 2022, 442, 136227.	6.6	7
651	Hollow spherical organic polymer artificial layer enabled stable Li metal anode. Chemical Engineering Journal, 2022, 442, 136155.	6.6	9
652	Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries. Chemical Engineering Journal, 2022, 441, 136077.	6.6	22
653	Tough Polymer Electrolyte with an Intrinsically Stabilized Interface with Li Metal for All-Solid-State Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 26339-26347.	1.5	10
654	Separators Based on the Dynamic Tipâ€Occupying Electrostatic Shield Effect for Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Sustainable Systems, 2022, 6, 2100386.	2.7	1
655	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4

#	Article	IF	CITATIONS
657	Bistrifluoroacetamideâ€Activated Double‣ayer Composite Solid Electrolyte for Dendriteâ€Free Lithium Metal Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	10
658	Novel fast lithium-ion conductor LiTa2PO8 enhances the performance of poly(ethylene oxide)-based polymer electrolytes in all-solid-state lithium metal batteries. Chinese Chemical Letters, 2022, 33, 4037-4042.	4.8	12
659	Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. ACS Applied Materials & amp; Interfaces, 2022, 14, 484-491.	4.0	4
660	Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Materials, 2022, 49, 299-338.	9.5	30
661	A multifunctional nano filler for solid polymer electrolyte toward stable cycling for lithium-metal anodes in lithium–sulfur batteries. Chemical Engineering Journal, 2022, 444, 136328.	6.6	25
662	Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
663	Boron Nitrideâ€Based Release Agent Coating Stabilizes Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface with Superior Leanâ€Lithium Electrochemical Performance and Thermal Stability. Advanced Functional Materials, 2022, 32, .	7.8	27
664	Design and developments in ceramic materials for electrochemical applications. , 2022, , 353-377.		Ο
665	Defect-Abundant Commercializable 3d Carbon Papers for Fabricating Composite Li Anode with High Loading and Long Life. SSRN Electronic Journal, 0, , .	0.4	0
666	Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries. SSRN Electronic Journal, O, , .	0.4	Ο
667	Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via <i>In Situ</i> Electropolymerization. ACS Applied Materials & Interfaces, 2022, 14, 21018-21027.	4.0	15
668	Understanding and modifications on lithium deposition in lithium metal batteries. Rare Metals, 2022, 41, 2800-2818.	3.6	18
669	Recent progress in the use of polyanions as solid electrolytes. New Carbon Materials, 2022, 37, 358-370.	2.9	3
670	A liquid cathode/anode based solid-state lithium-sulfur battery. Electrochimica Acta, 2022, 421, 140456.	2.6	3
671	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	7.8	21
672	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. Journal of Advanced Ceramics, 2022, 11, 835-861.	8.9	45
673	Recent Developments in Electrolyte Materials for Rechargeable Batteries. Materials Horizons, 2022, , 369-415.	0.3	1
674	Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50, 407-416.	9.5	4

#	Article	IF	CITATIONS
675	Distinct Functional Janus Interfaces for Dendrite-Free Li1.3al0.3ti1.7(Po4)3-Based Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
676	Electrochemical Modified Solid Electrolyte with a Li–Al–O Interface Layer for Improved Room-Temperature Rate Performance of Solid-State Lithium Batteries. ACS Applied Energy Materials, 2022, 5, 7115-7123.	2.5	4
677	Advances, challenges, and environmental impacts in metal–air battery electrolytes. Materials Today Energy, 2022, 28, 101064.	2.5	18
678	Water-Based Fabrication of a Li Li ₇ La ₃ Zr ₂ O ₁₂ LiFePO ₄ Solid-State Battery─Toward Green Battery Production. ACS Sustainable Chemistry and Engineering, 2022, 10, 7613-7624.	3.2	13
679	Enhancing the Electrochemical Stability of Lithium Anode by Introducing Lithiophilic Three-Dimensional Framework Li2cu3zn. SSRN Electronic Journal, 0, , .	0.4	0
680	Reactivity at the Electrode–Electrolyte Interfaces in Li-Ion and Gel Electrolyte Lithium Batteries for LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ with Different Particle Sizes. ACS Applied Materials & Interfaces, 0, , .	4.0	6
681	Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective. Chemical Record, 2022, 22, .	2.9	10
682	Solid Composite Electrolytes for Solid-State Alkali Metal Batteries. ACS Symposium Series, 0, , 395-423.	0.5	1
683	Designing Solid-State Composite Electrolytes. ACS Symposium Series, 0, , 425-440.	0.5	0
684	Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. Chemical Engineering Journal, 2022, 449, 137682.	6.6	10
685	In Situ Construction of a Liquid Film Interface with Fast Ion Transport for Solid Sodium-Ion Batteries. Nano Letters, 2022, 22, 5214-5220.	4.5	12
686	Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chemical Engineering Journal, 2022, 448, 137740.	6.6	27
687	In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chemical Engineering Journal, 2022, 448, 137661.	6.6	11
688	A solid-state approach to a lithium-sulfur battery. , 2022, , 441-488.		2
689	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
690	Solid-State Nanocomposite lonogel Electrolyte with In-Situ Formed Ionic Channels for Uniform Ion-Flux and Suppressing Dendrite Formation in Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
691	Coldâ€Starting Allâ€Solidâ€State Batteries from Room Temperature by Thermally Modulated Current Collector in Subâ€Minute. Advanced Materials, 2022, 34, .	11.1	5
692	An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries. Journal of Energy Chemistry, 2022, 74, 18-25.	7.1	21

#	Article	IF	CITATIONS
693	Are Polymerâ€Based Electrolytes Ready for Highâ€Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance. Advanced Energy Materials, 2022, 12, .	10.2	70
694	Insights on polymeric materials for the optimization of high-capacity anodes. Composites Part B: Engineering, 2022, 243, 110131.	5.9	4
695	Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode. Journal of Power Sources, 2022, 543, 231822.	4.0	10
696	High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129665.	2.3	13
697	Stabilize garnet/electrode interface via low-melting polymer layer in solid-state lithium metal battery. Electrochimica Acta, 2022, 429, 140907.	2.6	2
698	Enhancing the Electrochemical Stability of Lithium Anode by Introducing Lithiophilic Three-dimensional Framework Li2Cu3Zn. Journal of Alloys and Compounds, 2022, , 166437.	2.8	2
699	Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery. Energy Storage Materials, 2022, 52, 1-9.	9.5	12
700	A functional additive to in-situ construct stable cathode and anode interfaces for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 450, 138208.	6.6	14
701	Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Materials Today Energy, 2022, 29, 101118.	2.5	8
702	Engineered interfaces between perovskite La2/3xLi3xTiO3 electrolyte and Li metal for solid-state batteries. Frontiers in Chemistry, 0, 10, .	1.8	1
703	Active Control of Interface Dynamics in NASICON-Based Rechargeable Solid-State Sodium Batteries. Nano Letters, 2022, 22, 7187-7194.	4.5	26
705	Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Materials, 2022, 52, 130-160.	9.5	26
706	Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 130040.	2.3	14
707	Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage Materials, 2022, 52, 430-464.	9.5	44
708	A room-temperature ionic liquid-based superionic conductive polymer electrolyte with high thermal stability for long-cycle-life lithium batteries. Colloid and Polymer Science, 2022, 300, 1281-1289.	1.0	1
709	Ion coordination to improve ionic conductivity in polymer electrolytes for high performance solid-state batteries. Nano Energy, 2022, 103, 107763.	8.2	9
710	Effect of a layer-by-layer assembled ultra-thin film on the solid electrolyte and Li interface. Nanoscale Advances, 0, , .	2.2	2
711	A Review on Design Considerations in Polymer and Polymer Composite Solid-State Electrolytes for Solid Li Batteries. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
712	Improvement Strategies toward Stable Lithiumâ€Metal Anodes for Highâ€Energy Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
713	Engineering Ferroelectric Interlayer between Li _{1.} <scp>₃Al₀_..<scp>₃Ti_{1and Lithium Metal for Stable <scp>Solidâ€State</scp> Batteries Operating at Room Temperature. Energy and Environmental Materials. 2023. 6}</scp></scp>	<td>>>.75(<</td>	>>.75(<
714	Te doping effect on the structure and ionic conductivity of LiTa2PO8 solid electrolyte. Ceramics International, 2023, 49, 1980-1986.	2.3	3
715	Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
716	Construction of Polyvinylidene Fluoride Buffer Layers for Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 14891-14897.	1.8	10
717	Interfaces in Solid-State Batteries: Challenges and Design Strategies. Advances in Material Research and Technology, 2022, , 193-218.	0.3	Ο
718	Molten Salt Driven Conversion Reaction Enabling Lithiophilic and Airâ€6table Garnet Surface for Solidâ€6tate Lithium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	44
719	NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries. Tungsten, 2022, 4, 316-322.	2.0	15
720	Tradeâ€offs between ion onducting and mechanical properties: The case of polyacrylate electrolytes. , 2023, 5, .		10
721	Rational Design of LLZO/Polymer Solid Electrolytes for Solid‣tate Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
722	Distinct functional Janus interfaces for dendrite-free Li1.3Al0.3Ti1.7(PO4)3-based lithium metal batteries. Electrochimica Acta, 2022, 436, 141395.	2.6	7
723	Solid-state nanocomposite ionogel electrolyte with in-situ formed ionic channels for uniform ion-flux and suppressing dendrite formation in lithium metal batteries. Energy Storage Materials, 2023, 54, 40-50.	9.5	17
724	A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries. Journal of Power Sources, 2023, 553, 232267.	4.0	18
725	Electrochemical Performance of Highly Ion-Conductive Polymer Electrolyte Membranes Based on Polyoxide-tetrathiol Conetwork for Lithium Metal Batteries. ACS Applied Polymer Materials, 2022, 4, 9417-9429.	2.0	4
726	Deformable lithium-ion batteries for wearable and implantable electronics. Applied Physics Reviews, 2022, 9, .	5.5	22
727	Related Applications of Solid-State Electrolytes in Lithium-Sulfur Batteries. Advances in Analytical Chemistry, 2022, 12, 341-352.	0.1	0
728	A solid-state lithium metal battery with extended cycling and rate performance using a low-melting alloy interface. Inorganic Chemistry Frontiers, 2023, 10, 1011-1017.	3.0	5
729	Enabling a compatible Li/garnet interface <i>via</i> a multifunctional additive of sulfur. Journal of Materials Chemistry A, 2022, 11, 251-258.	5.2	3

		Citation Report	
# 730	ARTICLE Restraining lithium dendrite formation in all-solid-state Li-metal batteries via the surface modification of the ceramic filler. Sustainable Materials and Technologies, 2023, 35, e00548.	IF 1.7	CITATIONS
731	A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries. Nano Research, 2023, 16, 8411-8416.	5.8	5
732	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	4.3	61
734	Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 1253-1277.	3.2	15
735	Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes. Polymers, 2023, 15, 212.	2.0	7
736	In Situ Solidified Gel Polymer Electrolytes for Stable Solidâ^'State Lithium Batteries at High Temperatures. Batteries, 2023, 9, 28.	2.1	8
737	Challenges of lithium dendrite formation in solid-state batteries. , 2023, , 95-127.		0
738	MOFs Containing Solidâ \in State Electrolytes for Batteries. Advanced Science, 2023, 10, .	5.6	22
739	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	1.6	3
740	Stabilizing the NASICON Solid Electrolyte in an Inert Atmosphere as a Function of Physical Properties and Sintering Conditions for Solid-State Battery Fabrication. ACS Applied Energy Materials, 2023, 6, 1197-1207.	2.5	2
741	Ionic Conduction in Polymerâ€Based Solid Electrolytes. Advanced Science, 2023, 10, .	5.6	66
742	Fundamentals of the Cathodeâ€Electrolyte Interface in Allâ€solidâ€state Lithium Batteries. ChemSusChem, 2023, 16, .	3.6	1
743	Structurally integrated asymmetric polymer electrolyte with stable Janus interface properties for high-voltage lithium metal batteries. Journal of Colloid and Interface Science, 2023, 638, 595-605.	5.0	3
744	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
745	Single and multilayer composite electrolytes for enhanced Li-ion conductivity with restricted polysulfide diffusion for lithium–sulfur battery. Materials Today Energy, 2023, 33, 101274.	2.5	5
746	Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries. Journal of Colloid and Interface Science, 2023, 644, 53-63.	5.0	6
747	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
748	Comprehensive review on gum-based electrolytes for energy applications: current status and future projection. Materials Today Chemistry, 2023, 28, 101373.	1.7	0

#	Article	IF	CITATIONS
749	Zeroâ€ŧemperature oefficient of capacitance in <scp>BaTiO₃</scp> / <scp>PI</scp> composite films using paraffin as barrier layer. Polymer Composites, 2023, 44, 2757-2765.	2.3	3
750	A Review of Polymerâ€based Solid‣tate Electrolytes for Lithiumâ€Metal Batteries: Structure, Kinetic, Interface Stability, and Application. Batteries and Supercaps, 2023, 6, .	2.4	14
751	Armoring lithium metal anode with soft–rigid gradient interphase toward high-capacity and long-life all-solid-state battery. Green Energy and Environment, 2023, , .	4.7	2
752	Boosting the Li <scp>LAGP</scp> interfacial compatibility with trace nonflammable allâ€fluorinated electrolyte: The role of solid electrolyte interphase. EcoMat, 2023, 5, .	6.8	3
753	Solvent-Free and Long-Cycling Garnet-Based Lithium-Metal Batteries. ACS Energy Letters, 2023, 8, 1468-1476.	8.8	9
754	Self-shutdown function and uniform Li-ion flux enabled by a double-layered polymer electrolyte for high-performance Li metal batteries. Journal of Solid State Electrochemistry, 0, , .	1.2	0
755	Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Materials, 2023, 57, 471-496.	9.5	10
756	Recycling of garnet solid electrolytes with lithium-dendrite penetration by thermal healing. Science China Materials, 2023, 66, 2192-2198.	3.5	1
757	Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes. Cell Reports Physical Science, 2023, 4, 101321.	2.8	6
758	Wideâ€Temperature Flexible Supercapacitor from an Organohydrogel Electrolyte and Its Combined Electrode. Chemistry - A European Journal, 2023, 29, .	1.7	3
759	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Materials, 2023, 58, 48-73.	9.5	8
760	Anode Interfacial Issues in <scp>Solid‣tate</scp> Li Batteries: Mechanistic Understanding and Mitigating Strategies. Energy and Environmental Materials, 2023, 6, .	7.3	20
761	A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nature Nanotechnology, 2023, 18, 602-610.	15.6	76
762	Pressure and polymer selections for solid-state batteries investigated with high-throughput simulations. Cell Reports Physical Science, 2023, 4, 101328.	2.8	4
763	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	26
764	Carbon skeleton materials derived from rare earth phthalocyanines (MPcs) (M = Yb, La) used as high performance anode materials for lithium-ion batteries. Dalton Transactions, 2023, 52, 6641-6655.	1.6	1
784	Thin film oxide solid electrolytes towards high energy density batteries: progress of preparation methods and interface optimization. Journal of Materials Chemistry A, 2023, 11, 15122-15139.	5.2	0
795	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	5.2	0

#	Article	IF	Citations
826	Strategies to regulate the interface between Li metal anodes and all-solid-state electrolytes. Materials Chemistry Frontiers, 2024, 8, 1421-1450.	3.2	0
840	Lithium batteries - Secondary systems – All-solid state systems Lithium-ion polymer battery. , 2024, , .		Ο