Frequency-domain gravitational waves from nonpreces numerical waveforms and anatomy of the signal

Physical Review D 93, DOI: 10.1103/physrevd.93.044006

Citation Report

#	Article	IF	CITATIONS
1	Searching for gravitational waves from compact binaries with precessing spins. Physical Review D, 2016, 94, .	1.6	94
2	THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS. Astrophysical Journal Letters, 2016, 825, L19.	3.0	147
3	Importance of transient resonances in extreme-mass-ratio inspirals. Physical Review D, 2016, 94, .	1.6	46
4	On the direct detection of gravitational waves. Physics-Uspekhi, 2016, 59, 1034-1051.	0.8	22
5	Constraining alternative theories of gravity using GW150914 and GW151226. Physical Review D, 2016, 94, .	1.6	21
6	Three observational differences for binary black holes detections with second- and third-generation gravitational-wave detectors. Physical Review D, 2016, 94, .	1.6	21
7	The effective field theorist's approach to gravitational dynamics. Physics Reports, 2016, 633, 1-104.	10.3	238
8	Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Physical Review D, 2016, 94, .	1.6	495
9	Fast and accurate inference on gravitational waves from precessing compact binaries. Physical Review D, 2016, 94, .	1.6	116
10	The effect of pair-instability mass loss on black-hole mergers. Astronomy and Astrophysics, 2016, 594, A97.	2.1	289
11	Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass ratios and spins. Physical Review D, 2016, 93, .	1.6	125
12	Can we measure individual black-hole spins from gravitational-wave observations?. Physical Review D, 2016, 93, .	1.6	71
13	Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update. Physical Review D, 2016, 93, .	1.6	95
14	Accuracy of binary black hole waveform models for aligned-spin binaries. Physical Review D, 2016, 93, .	1.6	37
15	precession: Dynamics of spinning black-hole binaries with python. Physical Review D, 2016, 93, .	1.6	64
16	Black Hole Kicks as New Gravitational Wave Observables. Physical Review Letters, 2016, 117, 011101.	2.9	42
17	Energetics and phasing of nonprecessing spinning coalescing black hole binaries. Physical Review D, 2016, 93, .	1.6	61
18	Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order. Physical Review D, 2016, 93, .	1.6	63

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
20	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
21	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
22	Modeling the source of GW150914 with targeted numerical-relativity simulations. Classical and Quantum Gravity, 2016, 33, 244002.	1.5	67
23	Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. Physical Review D, 2016, 94, .	1.6	31
24	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
25	DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE. Astrophysical Journal Letters, 2016, 824, L8.	3.0	176
26	The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature, 2016, 534, 512-515.	13.7	712
27	Optimizing spinning time-domain gravitational waveforms for advanced LIGO data analysis. Classical and Quantum Gravity, 2016, 33, 125025.	1.5	24
28	Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4499-4506.	1.6	42
29	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
30	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
31	Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals. Classical and Quantum Gravity, 2017, 34, 124001.	1.5	22
32	Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Physical Review D, 2017, 95, .	1.6	401
33	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
34	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
35	Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism. Physical Review D, 2017, 96, .	1.6	101
36	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73

#	Article	IF	CITATIONS
37	Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors. Physical Review D, 2017, 95, .	1.6	66
38	Testing the Binary Black Hole Nature of a Compact Binary Coalescence. Physical Review Letters, 2017, 119, 091101.	2.9	102
39	Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors. Physical Review D, 2017, 95, .	1.6	70
40	Nonspinning binary black hole merger scenario revisited. Physical Review D, 2017, 96, .	1.6	21
41	Collision of two rotating Hayward black holes. European Physical Journal C, 2017, 77, 1.	1.4	9
42	Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Physical Review D, 2017, 96, .	1.6	134
43	Complete waveform model for compact binaries on eccentric orbits. Physical Review D, 2017, 95, .	1.6	88
44	Detectability of gravitational waves from binary black holes: Impact of precession and higher modes. Physical Review D, 2017, 95, .	1.6	68
45	Information-theoretic approach to the gravitational-wave burst detection problem. Physical Review D, 2017, 95, .	1.6	77
46	A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers. Physical Review D, 2017, 95, .	1.6	96
47	Gravitational wave sources: reflections and echoes. Classical and Quantum Gravity, 2017, 34, 225005.	1.5	45
48	The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D, 2017, 96, .	1.6	30
49	Black Hole Spectroscopy with Coherent Mode Stacking. Physical Review Letters, 2017, 118, 161101.	2.9	81
50	Are merging black holes born from stellar collapse or previous mergers?. Physical Review D, 2017, 95, .	1.6	200
51	Analytic family of post-merger template waveforms. Physical Review D, 2017, 95, .	1.6	20
52	Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences. Physical Review D, 2017, 95, .	1.6	29
53	Statistical gravitational waveform models: What to simulate next?. Physical Review D, 2017, 96, .	1.6	40
54	Discovering the interior of black holes. Physical Review D, 2017, 96, .	1.6	17

#	ARTICLE	IF	CITATIONS
55	Theoretical physics implications of gravitational wave observation with future detectors. Physical Review D, 2017, 96, .	1.6	67
56	Impact of numerical relativity information on effective-one-body waveform models. Physical Review D, 2017, 96, .	1.6	30
57	Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes. Physical Review D, 2017, 96, .	1.6	30
58	Introduction to gravitational wave detection and Advanced Virgo Status and perspectives. Nuclear and Particle Physics Proceedings, 2017, 291-293, 127-133.	0.2	1
59	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
60	Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D, 2017, 95, .	1.6	123
61	Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins. Physical Review D, 2017, 96, .	1.6	57
62	Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Physical Review D, 2018, 97, .	1.6	40
63	Probing Planckian Corrections at the Horizon Scale with LISA Binaries. Physical Review Letters, 2018, 120, 081101.	2.9	95
64	First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. Physical Review Letters, 2018, 120, 161102.	2.9	161
65	Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger. General Relativity and Gravitation, 2018, 50, 1.	0.7	187
66	Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. Physical Review Letters, 2018, 120, 141103.	2.9	140
67	Precise LIGO lensing rate predictions for binary black holes. Physical Review D, 2018, 97, .	1.6	92
68	Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Physical Review D, 2018, 97, .	1.6	29
69	Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Classical and Quantum Gravity, 2018, 35, 014002.	1.5	72
70	Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins. Classical and Quantum Gravity, 2018, 35, 024001.	1.5	28
71	Waveform systematics for binary neutron star gravitational wave signals: Effects of the point-particle baseline and tidal descriptions. Physical Review D, 2018, 98, .	1.6	37
72	Improving performance of SEOBNRv3 by â^¼300×. Classical and Quantum Gravity, 2018, 35, 155003.	1.5	10

#	Article	IF	CITATIONS
73	Constraining Black Hole Spins with Gravitational-wave Observations. Astrophysical Journal, 2018, 868, 140.	1.6	45
74	<tt>CoRe</tt> database of binary neutron star merger waveforms. Classical and Quantum Gravity, 2018, 35, 24LT01.	1.5	81
75	Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches. Classical and Quantum Gravity, 2018, 35, 155017.	1.5	32
76	Impact of high-order tidal terms on binary neutron-star waveforms. Physical Review D, 2018, 98, .	1.6	38
77	Detecting lensing-induced diffraction in astrophysical gravitational waves. Physical Review D, 2018, 98, .	1.6	72
78	Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers. Astronomy and Astrophysics, 2018, 619, A77.	2.1	59
79	Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D, 2018, 98, .	1.6	168
80	Detecting intermediate-mass ratio inspirals from the ground and space. Physical Review D, 2018, 98, .	1.6	50
81	Observational tests of the black hole area increase law. Physical Review D, 2018, 97, .	1.6	42
82	Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Physical Review D, 2018, 98, .	1.6	75
83	Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D, 2018, 98, .	1.6	46
84	Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	104
85	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
86	Detection and characterization of spin-orbit resonances in the advanced gravitational wave detectors era. Physical Review D, 2018, 98, .	1.6	13
87	Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics. Physical Review D, 2018, 98, .	1.6	175
88	Enhancing confidence in the detection of gravitational waves from compact binaries using signal coherence. Physical Review D, 2018, 98, .	1.6	19
89	Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves. Physical Review D, 2018, 97, .	1.6	99
90	Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation. Physical Review D, 2018, 97, .	1.6	121

#	Article	IF	CITATIONS
91	Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4685-4695.	1.6	100
92	Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Physical Review D, 2018, 98, .	1.6	81
93	Potential observations of false deviations from general relativity in gravitational wave signals from binary black holes. Physical Review D, 2018, 98, .	1.6	18
94	Numerical relativity of compact binaries in the 21st century. Reports on Progress in Physics, 2019, 82, 016902.	8.1	56
95	Multi-detector null-stream-based \$chi^2\$ statistic for compact binary coalescence searches. Classical and Quantum Gravity, 2019, 36, 195012.	1.5	2
96	Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 2019, 100, .	1.6	136
97	Reconstructing phenomenological distributions of compact binaries via gravitational wave observations. Physical Review D, 2019, 100, .	1.6	107
98	Improving the NRTidal model for binary neutron star systems. Physical Review D, 2019, 100, .	1.6	119
99	Future prospects for constraining nuclear matter parameters with gravitational waves. Physical Review D, 2019, 100, .	1.6	23
100	Observing the Dark Sector. Universe, 2019, 5, 137.	0.9	6
101	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
102	Parameterized and Consistency Tests of Gravity with GravitationalWaves: Current and Future. Proceedings (mdpi), 2019, 17, 5.	0.2	7
103	Testing massive-field modifications of gravity via gravitational waves. Progress of Theoretical and Experimental Physics, 2019, 2019, .	1.8	17
104	Constraints on the binary black hole nature of GW151226 and GW170608 from the measurement of spin-induced quadrupole moments. Physical Review D, 2019, 100, .	1.6	23
105	On combining information from multiple gravitational wave sources. Physical Review D, 2019, 99, .	1.6	25
106	Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1. Physical Review Letters, 2019, 123, 191101.	2.9	101
107	More than the sum of its parts: Combining parametrized tests of extreme gravity. Physical Review D, 2019, 100, .	1.6	1
108	Label switching problem in Bayesian analysis for gravitational wave astronomy. Physical Review D, 2019, 100, .	1.6	16

#	Article	IF	CITATIONS
109	Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers. Physical Review D, 2019, 100, .	1.6	54
110	Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations. Physical Review D, 2019, 100, .	1.6	44
111	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	1.6	7
112	The effect of the metallicity-specific star formation history on double compact object mergers. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3740-3759.	1.6	192
113	Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins. Physical Review D, 2019, 99, .	1.6	5
114	Characterization of numerical relativity waveforms of eccentric binary black hole mergers. Physical Review D, 2019, 100, .	1.6	17
115	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
116	On modeling for Kerr black holes: basis learning, QNM frequencies, and spherical-spheroidal mixing coefficients. Classical and Quantum Gravity, 2019, 36, 235015.	1.5	23
117	The SXS collaboration catalog of binary black hole simulations. Classical and Quantum Gravity, 2019, 36, 195006.	1.5	217
118	Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals. Physical Review D, 2019, 100, .	1.6	51
119	Systematic calibration error requirements for gravitational-wave detectors via the Cramér–Rao bound. Classical and Quantum Gravity, 2019, 36, 205006.	1.5	6
120	Exploring the sensitivity of gravitational wave detectors to neutron star physics. Physical Review D, 2019, 99, .	1.6	78
121	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
122	Enhancing gravitational waveform models through dynamic calibration. Physical Review D, 2019, 99, .	1.6	6
123	High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants. Physical Review Letters, 2019, 122, 011101.	2.9	86
124	Constraining the Neutron Star Radius with Joint Gravitational-wave and Short Gamma-Ray Burst Observations of Neutron Star–Black Hole Coalescing Binaries. Astrophysical Journal, 2019, 877, 94.	1.6	17
125	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
126	Evaluating black hole detectability with LISA. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3108-3118.	1.6	15

		CITATION REPORT	
#	Article	IF	CITATIONS
127	Energetics of two-body Hamiltonians in post-Minkowskian gravity. Physical Review D, 2019, 99, .	1.6	107
128	Full 3D numerical relativity simulations of neutron star–boson star collisions with BAM. Classical and Quantum Gravity, 2019, 36, 025002.	1.5	19
129	Equation-of-state insensitive relations after GW170817. Physical Review D, 2019, 99, .	1.6	47
130	Template-based gravitational-wave echoes search using Bayesian model selection. Physical Review I 2019, 99, .), <u>1.</u> 6	47
131	Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black Hole Events. Astrophysical Journal Letters, 2019, 874, L2.	3.0	107
132	GW150914 peak frequency: a novel consistency test of strong-field general relativity. Classical and Quantum Gravity, 2019, 36, 105009.	1.5	13
133	Spin-induced deformations and tests of binary black hole nature using third-generation detectors. Physical Review D, 2019, 99, .	1.6	27
134	Gravitational waveforms for high spin and high mass-ratio binary black holes: A synergistic use of numerical-relativity codes. Physical Review D, 2019, 99, .	1.6	7
135	Probing screening and the graviton mass with gravitational waves. Classical and Quantum Gravity, 2019, 36, 055013.	1.5	13
136	Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data. Physical Review D, 2019, 99, .	1.6	36
137	Supporting High-Performance and High-Throughput Computing for Experimental Science. Computi and Software for Big Science, 2019, 3, 1.	וק 1.3	9
138	Simple procedures to reduce eccentricity of binary black hole simulations. Physical Review D, 2019, \cdot	99, 1.6	18
139	Gravitational waveforms from spectral Einstein code simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries. Physical Review D, 2019, 99, .	1.6	41
140	Scalar quasinormal modes of nonlinear charged black holes in Rastall gravity. Europhysics Letters, 2019, 128, 50006.	0.7	11
141	Including mode mixing in a higher-multipole model for gravitational waveforms from nonspinning black-hole binaries. Physical Review D, 2019, 100, .	1.6	17
142	Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method. Physical Review D, 2019, 100, .	1.6	23
143	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 10	10,. 1.6	82
144	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470

#	Article	IF	Citations
145	Merger Rate of Stellar Black Hole Binaries above the Pair-instability Mass Gap. Astrophysical Journal Letters, 2019, 883, L27.	3.0	29
146	Accelerated detection of the binary neutron star gravitational-wave background. Physical Review D, 2019, 100, .	1.6	7
147	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
148	Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Physical Review D, 2019, 99, .	1.6	144
149	Frequency-domain waveform approximants capturing Doppler shifts. Physical Review D, 2019, 99, .	1.6	14
150	Extraction of gravitational wave signals with optimized convolutional neural network. Frontiers of Physics, 2020, 15, 1.	2.4	4
151	Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Frontiers of Physics, 2020, 15, 1.	2.4	16
152	Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3395-3402.	1.6	52
153	Parametrized test of parity-violating gravity using GWTC-1 events. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	12
154	Modeling ringdown. II. Aligned-spin binary black holes, implications for data analysis and fundamental theory. Physical Review D, 2020, 102, .	1.6	23
155	Two-harmonic approximation for gravitational waveforms from precessing binaries. Physical Review D, 2020, 102, .	1.6	34
156	Compact binary coalescences: constraints on waveforms. General Relativity and Gravitation, 2020, 52, 1.	0.7	18
157	Apparent superluminality of lensed gravitational waves. Physical Review D, 2020, 102, .	1.6	19
158	Search for strongly lensed counterpart images of binary black hole mergers in the first two LIGO observing runs. Physical Review D, 2020, 102, .	1.6	35
159	Spectral Cauchy-characteristic extraction of the gravitational wave news function. Physical Review D, 2020, 102, .	1.6	13
160	The mass, spin, and rotational energy of the remnant black holes from compact binary mergers. Monthly Notices of the Royal Astronomical Society, 2020, 497, 643-647.	1.6	4
161	Multipolar effective one body waveform model for spin-aligned black hole binaries. Physical Review D, 2020, 102, .	1.6	67
162	The astrophysical odds of GW151216. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1905-1910.	1.6	10

ARTICLE IF CITATIONS # Chirp mass based glitch identification in long-duration gravitational-wave detection. Physical Review 163 1.6 2 D, 2020, 102, . GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 164 1.6 394 2020, 102, . Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the spin orientation. 165 1.6 12 Physical Review D, 2020, 102, . News from Horizons in Binary Black Hole Mergers. Physical Review Letters, 2020, 125, 121101. 2.9 Parameter estimation for tests of general relativity with the astrophysical stochastic gravitational 167 1.6 8 wave background. Physical Review D, 2020, 102, . Gravitational waveforms of binary neutron star inspirals using post-Newtonian tidal splicing. 1.6 Physical Review D, 2020, 102, . Setting the cornerstone for a family of models for gravitational waves from compact binaries: The 169 1.6 121 dominant harmonic for nonprecessing quasicircular black holes. Physical Review D, 2020, 102, . Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1. 170 198 GPU-accelerated massive black hole binary parameter estimation with LISA. Physical Review D, 2020, 102, 171 20 1.6 Massively parallel Bayesian inference for transient gravitational-wave astronomy. Monthly Notices of 1.6 the Royal Astronomical Society, 2020, 498, 4492-4502. Source properties of the lowest signal-to-noise-ratio binary black hole detections. Physical Review D, 173 1.6 18 2020, 102, . Multiparameter Tests of General Relativity Using Multiband Gravitational-Wave Observations. 174 Physical Review Letters, 2020, 125, 201101. Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical 175 2.9 38 Foregrounds. Physical Review Letters, 2020, 125, 241101. Multimode frequency-domain model for the gravitational wave signal from nonprecessing black-hole 1.6 binaries. Physical Review D, 2020, 102, . Tests of weak equivalence principle with the gravitational wave signals in the LIGO–Virgo catalogue 177 1.2 5 GWTC-1. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L53-L57. Multipolar effective one body model for nonspinning black hole binaries. Physical Review D, 2020, 101, . 53 Probing Einstein-dilaton Gauss-Bonnet gravity with the inspiral and ringdown of gravitational waves. 179 1.6 17 Physical Review D, 2020, 101, . Combining post-circular and Padé approximations to compute Fourier domain templates for eccentric inspirals. Physical Review D, 2020, 102, .

#	Article	IF	CITATIONS
181	Validity of common modeling approximations for precessing binary black holes with higher-order modes. Physical Review D, 2020, 101, .	1.6	27
182	Intermediate Mass-Ratio Black Hole Binaries: Applicability of Small Mass-Ratio Perturbation Theory. Physical Review Letters, 2020, 125, 181101.	2.9	33
183	Parameter estimation with a spinning multimode waveform model. Physical Review D, 2020, 101, .	1.6	33
184	Multiband observation of LIGO/Virgo binary black hole mergers in the gravitational-wave transient catalog GWTC-1. Monthly Notices of the Royal Astronomical Society, 2020, 496, 182-196.	1.6	27
185	Gravitational-wave versus x-ray tests of strong-field gravity. Classical and Quantum Gravity, 2020, 37, 135008.	1.5	38
186	Measuring the eccentricity of binary black holes in GWTC-1 by using the inspiral-only waveform. Monthly Notices of the Royal Astronomical Society, 2020, 495, 466-478.	1.6	25
187	Multiwaveform inference of gravitational waves. Physical Review D, 2020, 101, .	1.6	22
188	Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart. Astrophysical Journal, 2020, 892, 90.	1.6	33
189	Gravitational Waves From Binary Black Hole Mergers: Modeling and Observations. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
190	Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes. Physical Review D, 2020, 101, .	1.6	66
191	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
192	Tests of general relativity with stellar-mass black hole binaries observed by LISA. Physical Review D, 2020, 101, .	1.6	26
193	Black hole hunting with LISA. Physical Review D, 2020, 101, .	1.6	22
194	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
195	Picky Partners: The Pairing of Component Masses in Binary Black Hole Mergers. Astrophysical Journal Letters, 2020, 891, L27.	3.0	50
196	Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nature Astronomy, 2020, 4, 625-632.	4.2	269
197	Is GW190425 Consistent with Being a Neutron Star–Black Hole Merger?. Astrophysical Journal Letters, 2020, 891, L5.	3.0	43
198	Gravitomagnetic tidal effects in gravitational waves from neutron star binaries. Physical Review D, 2020, 101, .	1.6	20

#	Article	IF	CITATIONS
199	Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations. Physical Review D, 2020, 101, .	1.6	39
200	Memory effect or cosmic string? Classifying gravitational-wave bursts with Bayesian inference. Physical Review D, 2020, 102, .	1.6	8
201	Modeling the gravitational wave signature of neutron star black hole coalescences. Physical Review D, 2020, 101, .	1.6	61
202	Gravitational Spin-Orbit Coupling through Third-Subleading Post-Newtonian Order: From First-Order Self-Force to Arbitrary Mass Ratios. Physical Review Letters, 2020, 125, 011103.	2.9	37
203	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
204	Multi-band gravitational wave tests of general relativity. Classical and Quantum Gravity, 2020, 37, 02LT01.	1.5	38
205	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
206	Regression methods in waveform modeling: a comparative study. Classical and Quantum Gravity, 2020, 37, 075012.	1.5	26
207	Future prospects for probing scalar–tensor theories with gravitational waves from mixed binaries. Classical and Quantum Gravity, 2020, 37, 065008.	1.5	24
208	Including higher order multipoles in gravitational-wave models for precessing binary black holes. Physical Review D, 2020, 101, .	1.6	122
209	First survey of spinning eccentric black hole mergers: Numerical relativity simulations, hybrid waveforms, and parameter estimation. Physical Review D, 2020, 101, .	1.6	35
210	Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves. Physical Review D, 2020, 101, .	1.6	18
211	Corrections to the gravitational wave phasing. Physical Review D, 2020, 101, .	1.6	4
212	Towards the routine use of subdominant harmonics in gravitational-wave inference: Reanalysis of GW190412 with generation X waveform models. Physical Review D, 2021, 103, .	1.6	25
213	Investigating the effect of in-plane spin directions for precessing binary black hole systems. Physical Review D, 2021, 103, .	1.6	7
214	Testing General Relativity with Gravitational Waves. , 2021, , 1-33.		5
215	Sensitivity of present and future detectors across the black-hole binary gravitational wave spectrum. Classical and Quantum Gravity, 2021, 38, 055009.	1.5	11
216	Hybrid post-Newtonian effective-one-body scheme for spin-precessing compact-binary waveforms up to merger. Physical Review D, 2021, 103, .	1.6	26

#	Article	IF	CITATIONS
217	Modeling compact binary signals and instrumental glitches in gravitational wave data. Physical Review D, 2021, 103, .	1.6	36
218	Gravitational waves from binary black hole mergers surrounded by scalar field clouds: Numerical simulations and observational implications. Physical Review D, 2021, 103, .	1.6	15
219	Initial data and eccentricity reduction toolkit for binary black hole numerical relativity waveforms. Classical and Quantum Gravity, 0, , .	1.5	2
220	Inferring the gravitational wave memory for binary coalescence events. Physical Review D, 2021, 103, .	1.6	18
221	Identifying Strong Gravitational-wave Lensing during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2021, 908, 97.	1.6	40
222	Probing fundamental physics with gravitational waves: The next generation. Physical Review D, 2021, 103, .	1.6	53
223	A Program for Multimessenger Standard Siren Cosmology in the Era of LIGO A+, Rubin Observatory, and Beyond. Astrophysical Journal Letters, 2021, 908, L4.	3.0	35
224	Role of dense matter in tidal deformations of inspiralling neutron stars and in gravitational waveforms with unified equations of state. Physical Review C, 2021, 103, .	1.1	6
225	Modeling gravitational waves from exotic compact objects. Physical Review D, 2021, 103, .	1.6	15
226	High-accuracy waveforms for black hole-neutron star systems with spinning black holes. Physical Review D, 2021, 103, .	1.6	10
227	Recent LIGO-Virgo discoveries. Modern Physics Letters A, 2021, 36, 2130010.	0.5	4
228	Enhancing the gravitational-wave burst detection confidence in expanded detector networks with the BayesWave pipeline. Physical Review D, 2021, 103, .	1.6	5
229	Probing hybrid stars with gravitational waves via interfacial modes. Physical Review D, 2021, 103, .	1.6	15
230	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	1.6	41
231	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
232	Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA. Physical Review Letters, 2021, 126, 101105.	2.9	34
233	Jumping the Gap: Searching for LIGO's Biggest Black Holes. Astrophysical Journal Letters, 2021, 909, L23.	3.0	47
234	Phase effects from strong gravitational lensing of gravitational waves. Physical Review D, 2021, 103, .	1.6	53

#	Article	IF	CITATIONS
235	Physical approach to the marginalization of LIGO calibration uncertainties. Physical Review D, 2021, 103, .	1.6	27
236	Gravitational-wave surrogate models powered by artificial neural networks. Physical Review D, 2021, 103, .	1.6	26
237	Statistical and systematic uncertainties in extracting the source properties of neutron star-black hole binaries with gravitational waves. Physical Review D, 2021, 103, .	1.6	12
238	New Spin on LIGO-Virgo Binary Black Holes. Physical Review Letters, 2021, 126, 171103.	2.9	23
239	Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers. Physical Review Letters, 2021, 126, 201101.	2.9	46
240	LION: laser interferometer on the moon. Classical and Quantum Gravity, 2021, 38, 125008.	1.5	2
241	Rapid and robust parameter inference for binary mergers. Physical Review D, 2021, 103, .	1.6	21
242	Improved analysis of GW190412 with a precessing numerical relativity surrogate waveform model. Physical Review D, 2021, 103, .	1.6	15
243	Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. Physical Review D, 2021, 103, .	1.6	198
244	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
245	Waveform systematics in the gravitational-wave inference of tidal parameters and equation of state from binary neutron-star signals. Physical Review D, 2021, 103, .	1.6	37
246	Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Communications in Theoretical Physics, 2021, 73, 085401.	1.1	7
247	Probing modified gravitational-wave propagation through tidal measurements of binary neutron star mergers. Physical Review D, 2021, 103, .	1.6	9
248	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
249	Extremely high-order convergence in simulations of relativistic stars. Classical and Quantum Gravity, 2021, 38, 145003.	1.5	0
250	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
251	Identifying when precession can be measured in gravitational waveforms. Physical Review D, 2021, 103, .	1.6	18
252	Numerical inside view of hypermassive remnant models for GW170817. Physical Review D, 2021, 104, .	1.6	9

#	Article	IF	CITATIONS
253	Geometrized effective-one-body formalism for extreme-mass-ratio limits: Generic orbits. Physical Review D, 2021, 104, .	1.6	4
254	Improved gravitational-wave constraints on higher-order curvature theories of gravity. Physical Review D, 2021, 104, .	1.6	56
255	Merger-ringdown consistency: A new test of strong gravity using deep learning. Physical Review D, 2021, 104, .	1.6	11
256	Gravitational-wave searches in the era of Advanced LIGO and Virgo. Modern Physics Letters A, 2021, 36, 2130022.	0.5	4
257	Exploring gravitational-wave detection and parameter inference using deep learning methods. Classical and Quantum Gravity, 2021, 38, 155010.	1.5	11
258	Prospects for estimating parameters from gravitational waves of superspinar binaries. Physical Review D, 2021, 104, .	1.6	1
259	PESummary: The code agnostic Parameter Estimation Summary page builder. SoftwareX, 2021, 15, 100765.	1.2	42
260	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
261	Assessing the readiness of numerical relativity for LISA and 3G detectors. Physical Review D, 2021, 104, .	1.6	11
262	Biases in parameter estimation from overlapping gravitational-wave signals in the third-generation detector era. Physical Review D, 2021, 104, .	1.6	25
263	Gravitational waves from a black hole orbiting in a wormhole geometry. Physical Review D, 2021, 104, .	1.6	4
264	Bayesian inference of multimessenger astrophysical data: Methods and applications to gravitational waves. Physical Review D, 2021, 104, .	1.6	25
265	Spin effects on neutron star fundamental-mode dynamical tides: Phenomenology and comparison to numerical simulations. Physical Review Research, 2021, 3, .	1.3	35
266	GWBENCH: a novel Fisher information package for gravitational-wave benchmarking. Classical and Quantum Gravity, 2021, 38, 175014.	1.5	38
267	Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA. Physical Review D, 2021, 104, .	1.6	17
268	A Flexible Gaussian Process Reconstruction Method and the Mass Function of the Coalescing Binary Black Hole Systems. Astrophysical Journal, 2021, 917, 33.	1.6	14
269	Impact of massive binary star and cosmic evolution on gravitational wave observations I: black hole–neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5028-5063.	1.6	83
270	On the importance of source population models for gravitational-wave cosmology. Physical Review D, 2021, 104, .	1.6	48

#	Article	IF	CITATIONS
271	Python-based reduced order quadrature building code for fast gravitational wave inference. Physical Review D, 2021, 104, .	1.6	7
272	Bounding dark charges on binary black holes using gravitational waves. Physical Review D, 2021, 104, .	1.6	9
273	Early warning of precessing compact binary merger with third-generation gravitational-wave detectors. Physical Review D, 2021, 104, .	1.6	5
274	Probing dipole radiation from binary neutron stars with ground-based laser-interferometer and atom-interferometer gravitational-wave observatories. Physical Review D, 2021, 104, .	1.6	11
275	Recognizing black holes in gravitational-wave observations: Challenges in telling apart impostors in mass-gap binaries. Physical Review D, 2021, 104, .	1.6	13
276	Black hole-neutron star simulations with the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="sans-serif">BAM code: First tests and simulations. Physical Review D. 2021, 104</mml:mi </mml:math 	1.6	5
277	Testing the nature of gravitational-wave polarizations using strongly lensed signals. Physical Review D, 2021, 103, .	1.6	30
278	Post-Newtonian Templates for Gravitational Waves from Compact Binary Inspirals. , 2021, , 1-49.		3
279	Tests of general relativity using multiband observations of intermediate mass binary black hole mergers. Physical Review D, 2021, 103, .	1.6	20
280	Predicting the properties of black-hole merger remnants with deep neural networks. Classical and Quantum Gravity, 2020, 37, 135005.	1.5	15
281	Probing string-inspired gravity with the inspiral–merger–ringdown consistency tests of gravitational waves. Classical and Quantum Gravity, 2020, 37, 215007.	1.5	16
282	Testing the Kerr nature of supermassive and intermediate-mass black hole binaries using spin-induced multipole moment measurements. Classical and Quantum Gravity, 2020, 37, 205019.	1.5	11
283	Dynamic normalization for compact binary coalescence searches in non-stationary noise. Classical and Quantum Gravity, 2020, 37, 215014.	1.5	24
284	Accelerating the evaluation of inspiral–merger–ringdown waveforms with adapted grids. Classical and Quantum Gravity, 2021, 38, 015006.	1.5	26
285	Enhancing gravitational-wave science with machine learning. Machine Learning: Science and Technology, 2021, 2, 011002.	2.4	91
286	A scalable random forest regressor for combining neutron-star equation of state measurements: a case study with GW170817 and GW190425. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5972-5977.	1.6	27
287	Quantifying the effect of power spectral density uncertainty on gravitational-wave parameter estimation for compact binary sources. Physical Review D, 2020, 102, .	1.6	28
288	Probing resonant excitations in exotic compact objects via gravitational waves. Physical Review D, 2020, 102, .	1.6	7

	Сіта	tion Report	
#	Article	IF	CITATIONS
289	Gravitational-wave astronomy with a physical calibration model. Physical Review D, 2020, 102, .	1.6	28
290	Parameter estimation of stellar-mass black hole binaries with LISA. Physical Review D, 2020, 102, .	1.6	28
291	Excitation of Kerr quasinormal modes in extreme-mass-ratio inspirals. Physical Review Research, 2020, 2, .	1.3	9
292	Gravitational waveform accuracy requirements for future ground-based detectors. Physical Review Research, 2020, 2, .	1.3	81
293	Noise reduction in gravitational-wave data via deep learning. Physical Review Research, 2020, 2, .	1.3	46
294	Measuring precession in asymmetric compact binaries. Physical Review Research, 2020, 2, .	1.3	27
295	A model-independent constraint on the Hubble constant with gravitational waves from the Einstein Telescope. International Journal of Modern Physics D, 2020, 29, 2050105.	0.9	5
296	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
297	Fast Parameter Estimation of Binary Mergers for Multimessenger Follow-up. Astrophysical Journal Letters, 2020, 905, L9.	3.0	15
298	Dark Sirens to Resolve the Hubble–Lemaître Tension. Astrophysical Journal Letters, 2020, 905, L28.	3.0	38
300	Fast, faithful, frequency-domain effective-one-body waveforms for compact binary coalescences. Physical Review D, 2021, 104, .	1.6	19
301	First post-Newtonian generation of gravitational waves in Einstein-Cartan theory. Physical Review D, 2021, 104, .	1.6	20
302	Parameter estimation bias from overlapping binary black hole events in second generation interferometers. Physical Review D, 2021, 104, .	1.6	14
304	Gravitational Physics: From Quantum to Waves. , 2018, , 357-488.		0
305	Building Better Spin Models for Merging Binary Black Holes: Evidence for Nonspinning and Rapidly Spinning Nearly Aligned Subpopulations. Astrophysical Journal Letters, 2021, 921, L15.	3.0	52
306	Next generation: Impact of high-order analytical information on effective one body waveform models for noncircularized, spin-aligned black hole binaries. Physical Review D, 2021, 104, .	1.6	22
307	Assessing and marginalizing over compact binary coalescence waveform systematics with RIFT. Physical Review D, 2020, 102, .	1.6	7
308	Practical test mass and suspension configuration for a cryogenic kilohertz gravitational wave detector. Physical Review D, 2020, 102, .	1.6	6

#	Article	IF	CITATIONS
309	Gravitational-Wave Observations by Advanced LIGO and Virgo. Journal of Physics: Conference Series, 2020, 1468, 012218.	0.3	0
310	Constraining Scalar-tensor Theories Using Neutron Star–Black Hole Gravitational Wave Events. Astrophysical Journal, 2021, 921, 149.	1.6	19
311	The minimum testable abundance of primordial black holes at future gravitational-wave detectors. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	1.9	35
312	Who Ordered That? Unequal-mass Binary Black Hole Mergers Have Larger Effective Spins. Astrophysical Journal Letters, 2021, 922, L5.	3.0	62
313	Beyond the Detector Horizon: Forecasting Gravitational-Wave Strong Lensing. Astrophysical Journal, 2021, 921, 154.	1.6	25
314	3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers. Astrophysical Journal, 2021, 922, 76.	1.6	99
315	Measuring the spins of heavy binary black holes. Physical Review D, 2021, 104, .	1.6	18
316	The science case for LIGO-India. Classical and Quantum Gravity, 2022, 39, 025004.	1.5	48
317	Gravitational wave propagation beyond general relativity: waveform distortions and echoes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 048.	1.9	24
318	Gravitational spin-orbit dynamics at the fifth-and-a-half post-Newtonian order. Physical Review D, 2021, 104, .	1.6	4
319	Measuring the Hubble constant with black sirens. Physical Review D, 2022, 105, .	1.6	20
320	A Detailed Analysis of GW190521 with Phenomenological Waveform Models. Astrophysical Journal, 2022, 924, 79.	1.6	35
321	Investigation of the effects of non-Gaussian noise transients and their mitigation in parameterized gravitational-wave tests of general relativity. Physical Review D, 2022, 105, .	1.6	8
322	Constraining the orbital eccentricity of inspiralling compact binary systems with Advanced LIGO. Physical Review D, 2022, 105, .	1.6	20
323	Rapid Stellar and Binary Population Synthesis with COMPAS. Astrophysical Journal, Supplement Series, 2022, 258, 34.	3.0	57
324	Predictions for LISA and PTA based on SHARK galaxy simulations. Astronomy and Astrophysics, 2022, 660, A68.	2.1	5
325	The Bondi problem revisited: A spectral domain decomposition code. International Journal of Modern Physics D, 2022, 31, .	0.9	3
326	From one to many: A deep learning coincident gravitational-wave search. Physical Review D, 2022, 105, .	1.6	11

#	Article	IF	CITATIONS
327	The effect of spin mismodelling on gravitational-wave measurements of the binary neutron star mass distribution. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4350-4359.	1.6	5
328	Model of gravitational waves from precessing black-hole binaries through merger and ringdown. Physical Review D, 2021, 104, .	1.6	30
329	Fully automated end-to-end pipeline for massive black hole binary signal extraction from LISA data. Physical Review D, 2022, 105, .	1.6	8
330	An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers. Astrophysical Journal, 2022, 926, 152.	1.6	10
331	Neutron Star–Neutron Star and Neutron Star–Black Hole Mergers: Multiband Observations and Early Warnings. Astrophysical Journal, 2022, 926, 158.	1.6	13
332	How to assess the primordial origin of single gravitational-wave events with mass, spin, eccentricity, and deformability measurements. Physical Review D, 2022, 105, .	1.6	22
333	Interplay of spin-precession and higher harmonics in the parameter estimation of binary black holes. Physical Review D, 2022, 105, .	1.6	15
334	Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources. Physical Review D, 2022, 105, .	1.6	12
335	Model systematics in time domain tests of binary black hole evolution. Physical Review D, 2022, 105, .	1.6	5
336	Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3878-3884.	1.6	4
337	Discriminating same-mass neutron stars and black holes gravitational waveforms. Physical Review D, 2022, 105, .	1.6	3
338	High-accuracy simulations of highly spinning binary neutron star systems. Physical Review D, 2022, 105, ·	1.6	2
339	Quantum algorithm for gravitational-wave matched filtering. Physical Review Research, 2022, 4, .	1.3	7
340	Parameter estimation with gravitational waves. Reviews of Modern Physics, 2022, 94, .	16.4	30
341	Rapid identification of strongly lensed gravitational-wave events with machine learning. Physical Review D, 2021, 104, .	1.6	10
342	Fast post-adiabatic waveforms in the time domain: Applications to compact binary coalescences in LIGO and Virgo. Physical Review D, 2021, 104, .	1.6	10
343	Testing General Relativity with Gravitational Waves: An Overview. Universe, 2021, 7, 497.	0.9	14
344	Testing gravitational waveform models using angular momentum. Physical Review D, 2021, 104, .	1.6	3

#	Article	IF	Citations
345	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
346	Assessing gravitational-wave binary black hole candidates with Bayesian odds. Physical Review D, 2021, 104, .	1.6	8
347	Constraints on Compact Dark Matter from Gravitational Wave Microlensing. Astrophysical Journal Letters, 2022, 926, L28.	3.0	18
348	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
349	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
350	Signatures of the Many Supermassive Black Hole Mergers in a Cosmologically Forming Massive Early-type Galaxy. Astrophysical Journal, 2022, 929, 167.	1.6	13
351	Time-domain phenomenological model of gravitational-wave subdominant harmonics for quasicircular nonprecessing binary black hole coalescences. Physical Review D, 2022, 105, .	1.6	19
352	New twists in compact binary waveform modeling: A fast time-domain model for precession. Physical Review D, 2022, 105, .	1.6	31
353	Probing neutron stars with the full premerger and postmerger gravitational wave signal from binary coalescences. Physical Review D, 2022, 105, .	1.6	21
354	Massive black hole mergers with orbital information: predictions from the ASTRID simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2220-2238.	1.6	9
355	Population inference of spin-induced quadrupole moments as a probe for nonblack hole compact binaries. Physical Review D, 2022, 105, .	1.6	11
356	Detectability of a spatial correlation between stellar mass black hole mergers and active galactic nuclei in the local Universe. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2092-2097.	1.6	5
357	Impact of noise transients on low latency gravitational-wave event localization. Physical Review D, 2022, 105, .	1.6	12
358	Inferring the Intermediate-mass Black Hole Number Density from Gravitational-wave Lensing Statistics. Astrophysical Journal Letters, 2022, 932, L4.	3.0	8
359	The Binary Black Hole Spin Distribution Likely Broadens with Redshift. Astrophysical Journal Letters, 2022, 932, L19.	3.0	24
360	Extending the Fisher Information Matrix in Gravitational-wave Data Analysis. Astrophysical Journal, 2022, 932, 102.	1.6	8
361	Improved statistic to identify strongly lensed gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1044-1051.	1.6	10
362	Investigating the detection rates and inference of gravitational-wave and radio emission from black hole neutron star mergers. Astronomy and Astrophysics, 2022, 664, A160.	2.1	3

#	Article	IF	CITATIONS
363	Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals. Physical Review D, 2022, 105, .	1.6	5
364	Are parametrized tests of general relativity with gravitational waves robust to unknown higher post-Newtonian order effects?. Physical Review D, 2022, 105, .	1.6	16
365	Emission of Gravitational Radiation in Scalar-Tensor and f(R)-Theories. , 2022, , 1553-1590.		0
366	Post-Newtonian Templates for Gravitational Waves from Compact Binary Inspirals. , 2022, , 1229-1277.		0
367	Testing General Relativity with Gravitational Waves. , 2022, , 1591-1623.		0
368	Numerical-relativity validation of effective-one-body waveforms in the intermediate-mass-ratio regime. Physical Review D, 2022, 105, .	1.6	11
369	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
370	Utilizing the null stream of the Einstein Telescope. Physical Review D, 2022, 105, .	1.6	12
371	The use of hypermodels to understand binary neutron star collisions. Nature Astronomy, 2022, 6, 961-967.	4.2	5
372	Source localizations with the network of space-based gravitational wave detectors. Physical Review D, 2022, 106, .	1.6	6
373	Constraining High-redshift Stellar-mass Primordial Black Holes with Next-generation Ground-based Gravitational-wave Detectors. Astrophysical Journal Letters, 2022, 933, L41.	3.0	26
374	Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist. Physical Review D, 2022, 106, .	1.6	24
375	Theory-agnostic framework for inspiral tests of general relativity with higher-harmonic gravitational waves. Physical Review D, 2022, 106, .	1.6	6
376	Broad search for gravitational waves from subsolar-mass binaries through LIGO and Virgo's third observing run. Physical Review D, 2022, 106, .	1.6	21
377	Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries. Physical Review Letters, 2022, 129, .	2.9	27
378	Accurate modeling and mitigation of overlapping signals and glitches in gravitational-wave data. Physical Review D, 2022, 106, .	1.6	10
379	Gravitational waveform of moving source with high speed. Classical and Quantum Gravity, 2022, 39, 195020.	1.5	1
380	On the Mass Ratio Distribution of Black Hole Mergers in Triple Systems. Astrophysical Journal, 2022, 937, 78.	1.6	6

#	Article	IF	Citations
381	Parity violation in spin-precessing binaries: Gravitational waves from the inspiral of black holes in dynamical Chern-Simons gravity. Physical Review D, 2022, 106, .	1.6	9
382	Current and future constraints on cosmology and modified gravitational wave friction from binary black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	17
383	Analysis of Ringdown Overtones in GW150914. Physical Review Letters, 2022, 129, .	2.9	51
384	Observing GW190521-like binary black holes and their environment with LISA. Physical Review D, 2022, 106, .	1.6	14
385	Accelerating multimodel Bayesian inference, model selection, and systematic studies for gravitational wave astronomy. Physical Review D, 2022, 106, .	1.6	3
386	Tests of gravitational-wave birefringence with the open gravitational-wave catalog. Physical Review D, 2022, 106, .	1.6	22
387	Systematic bias on parametrized tests of general relativity due to neglect of orbital eccentricity. Physical Review D, 2022, 106, .	1.6	10
388	Observational constraint on axion dark matter with gravitational waves. Physical Review D, 2022, 106,	1.6	4
389	Parameter estimation with the current generation of phenomenological waveform models applied to the black hole mergers of GWTC-1. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2403-2425.	1.6	7
390	Measurability of neutron star tidal deformability from merging neutron star-black hole binaries. Physical Review D, 2022, 106, .	1.6	0
391	GWFAST: A Fisher Information Matrix Python Code for Third-generation Gravitational-wave Detectors. Astrophysical Journal, Supplement Series, 2022, 263, 2.	3.0	16
392	Detectability and parameter estimation of GWTC-3 events with LISA. Physical Review D, 2022, 106, .	1.6	3
393	Curious case of GW200129: Interplay between spin-precession inference and data-quality issues. Physical Review D, 2022, 106, .	1.6	28
394	Dark-siren cosmology with Decihertz gravitational-wave detectors. Physics of the Dark Universe, 2022, 38, 101136.	1.8	5
395	Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run. Classical and Quantum Gravity, 2022, 39, 245013.	1.5	22
396	Toward establishing the presence or absence of horizons in coalescing binaries of compact objects by using their gravitational wave signals. Physical Review D, 2022, 106, .	1.6	2
397	Surrogate model for gravitational wave signals from nonspinning, comparable-to large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity. Physical Review D, 2022, 106, .	1.6	14
398	Follow-up analyses of the binary-neutron-star signals GW170817 and GW190425 by using post-Newtonian waveform models. Physical Review D, 2022, 106, .	1.6	2

#	Article	IF	CITATIONS
399	Concurrent estimation of noise and compact-binary signal parameters in gravitational-wave data. Physical Review D, 2022, 106, .	1.6	1
400	Deep learning and Bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers. Physical Review D, 2022, 106, .	1.6	12
401	Gravitational waveform model based on photon motion for spinning black holes. Physical Review D, 2022, 106, .	1.6	1
402	gwfish: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks. Astronomy and Computing, 2023, 42, 100671.	0.8	12
403	Sensitivity of spin-aligned searches for neutron star-black hole systems using future detectors. Physical Review D, 2022, 106, .	1.6	3
404	Accelerating gravitational-wave parametrized tests of general relativity using a multiband decomposition of likelihood. Physical Review D, 2022, 106, .	1.6	0
405	Echoes from braneworld wormholes. Physical Review D, 2022, 106, .	1.6	5
406	Using Gravitational Waves to Distinguish between Neutron Stars and Black Holes in Compact Binary Mergers. Astrophysical Journal, 2022, 941, 98.	1.6	3
407	First gravitational-wave search for intermediate-mass black hole mergers with higher-order harmonics. Physical Review D, 2022, 106, .	1.6	9
408	Testing Lorentz invariance of gravity in the Standard-Model Extension with GWTC-3. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 011.	1.9	11
409	Detection of Einstein telescope gravitational wave signals from binary black holes using deep learning. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3843-3850.	1.6	2
410	Modeling compact binary merger waveforms beyond general relativity. Physical Review D, 2023, 107, .	1.6	4
411	Systematic bias on the inspiral-merger-ringdown consistency test due to neglect of orbital eccentricity. Physical Review D, 2023, 107, .	1.6	12
412	Nonlinear studies of binary black hole mergers in Einstein-scalar-Gauss-Bonnet gravity. Physical Review D, 2023, 107, .	1.6	23
413	The Gravitational Wave Universe Toolbox. Astronomy and Astrophysics, 2023, 672, A74.	2.1	2
414	Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST. Astrophysical Journal, 2022, 941, 208.	1.6	33
415	Beyond general relativity: Designing a template-based search for exotic gravitational wave signals. Physical Review D, 2023, 107, .	1.6	2
416	Optimizing the placement of numerical relativity simulations using a mismatch predicting neural network. Physical Review D, 2023, 107, .	1.6	0

		CITATION REP	ORT	
#	Article		IF	CITATIONS
417	First machine learning gravitational-wave search mock data challenge. Physical Review I), 2023, 107, .	1.6	10
418	Improving performance for gravitational-wave parameter inference with an efficient and highly-parallelized algorithm. Physical Review D, 2023, 107, .		1.6	6
419	Constraining the Cosmic Merger History of Intermediate-mass Black Holes with Gravita Detectors. Astrophysical Journal, 2023, 944, 81.	tional Wave	1.6	7
420	Rapid search for massive black hole binary coalescences using deep learning. Physics Le B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 841, 137904.	tters, Section	1.5	5
421	Measuring properties of primordial black hole mergers at cosmological distances: Effect order modes in gravitational waves. Physical Review D, 2023, 107, .	: of higher	1.6	8
422	Observability of lensing of gravitational waves from massive black hole binaries with LIS Review D, 2023, 107, .	A. Physical	1.6	15
423	Biorthogonal harmonics for the decomposition of gravitational radiation. I. Angular mode completeness, and the introduction of adjoint-spheroidal harmonics. Physical Review D	les, 2023, 107, .	1.6	2
424	A GPU-Accelerated AMR Solver for Gravitational Wave Propagation. , 2022, , .			1
425	Modeling frequency-dependent tidal deformability for environmental black hole merger Review D, 2023, 107, .	s. Physical	1.6	12
426	Rapid hierarchical inference of neutron star equation of state from multiple gravitationa observations of binary neutron star coalescences. Physical Review D, 2023, 107, .	il wave	1.6	0
427	Merging black holes: assessing the performance of two analytic gravitational waves mo of Cosmology and Astroparticle Physics, 2023, 2023, 005.	dels. Journal	1.9	0
428	Accumulating Errors in Tests of General Relativity with Gravitational Waves: Overlappin Inaccurate Waveforms. Astrophysical Journal, 2023, 945, 103.	g Signals and	1.6	5
429	Massively parallel simulations of binary black holes with adaptive wavelet multiresolutic Review D, 2023, 107, .	n. Physical	1.6	1
430	Testing gravitational wave propagation with multiband detections. Journal of Cosmolog Astroparticle Physics, 2023, 2023, 044.	y and	1.9	3
431	Inconsistent black hole kick estimates from gravitational-wave models. Classical and Qu Gravity, 2023, 40, 095008.	Jantum	1.5	0
432	Strong-field scattering of two black holes: Numerical relativity meets post-Minkowskiar Physical Review D, 2023, 107, .	gravity.	1.6	17
433	Study of the intermediate mass ratio black hole binary merger up to 1000:1 with numer Classical and Quantum Gravity, 2023, 40, 09LT01.	rical relativity.	1.5	7
434	Constraining the evolution of Newton's constant with slow inspirals observed from gravitational-wave detectors. Physical Review D, 2023, 107, .	spaceborne	1.6	3

		IATION REP	ORI	
#	Article		IF	CITATIONS
435	Testing the post-Newtonian expansion with GW170817. General Relativity and Gravitation, 2023, 55,		0.7	4
436	Searches for mass-asymmetric compact binary coalescence events using neural networks in the LIGO/Virgo third observation period. Physical Review D, 2023, 107, .		1.6	4