A comprehensive compilation of SUMO proteomics

Nature Reviews Molecular Cell Biology 17, 581-595 DOI: 10.1038/nrm.2016.81

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nature Communications, 2017, 8, 14109.	5.8	107
2	Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nature Structural and Molecular Biology, 2017, 24, 325-336.	3.6	283
3	SUMO and the robustness of cancer. Nature Reviews Cancer, 2017, 17, 184-197.	12.8	301
5	PLMD: An updated data resource of protein lysine modifications. Journal of Genetics and Genomics, 2017, 44, 243-250.	1.7	198
6	Chromatin SUMOylation in heat stress: To protect, pause and organise?. BioEssays, 2017, 39, 1600263.	1.2	33
7	Inhibition of SENP3 by URB597 ameliorates neurovascular unit dysfunction in rats with chronic cerebral hypoperfusion. Biomedicine and Pharmacotherapy, 2017, 91, 872-879.	2.5	15
8	DeSUMOylation of Gli1 by SENP1 Attenuates Sonic Hedgehog Signaling. Molecular and Cellular Biology, 2017, 37, .	1.1	10
9	SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. Journal of Molecular Biology, 2017, 429, 3376-3387.	2.0	27
10	SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Scientific Reports, 2017, 7, 877.	1.6	46
11	A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle. Molecular and Cellular Proteomics, 2017, 16, 1081-1097.	2.5	12
12	The Role of PIAS SUMO E3-Ligases in Cancer. Cancer Research, 2017, 77, 1542-1547.	0.4	83
13	Regulation of transcription factors by sumoylation. Transcription, 2017, 8, 220-231.	1.7	94
14	SUMO conjugation $\hat{a} \in \hat{a}$ mechanistic view. Biomolecular Concepts, 2017, 8, 13-36.	1.0	197
15	Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis, 2017, 55, e23009.	0.8	8
16	Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results. Molecular and Cellular Proteomics, 2017, 16, 2296-2309.	2.5	349
17	Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nature Communications, 2017, 8, 1171.	5.8	92
18	The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends in Biochemical Sciences, 2017, 42, 873-886.	3.7	525
19	Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins. Molecular and Cellular Proteomics, 2017, 16, 2281-2295.	2.5	22

#	Article	IF	CITATIONS
20	Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Reports, 2017, 21, 546-558.	2.9	24
21	Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach. Nature Protocols, 2017, 12, 2354-2355.	5.5	26
22	SUMOylation of human septins is critical for septin filament bundling and cytokinesis. Journal of Cell Biology, 2017, 216, 4041-4052.	2.3	48
23	SUMO, a small, but powerful, regulator of double-strand break repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160281.	1.8	66
24	The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochemical Journal, 2017, 474, 3455-3469.	1.7	3
25	Sumoylation regulates the transcriptional activity of different human NFAT isoforms in neurons. Neuroscience Letters, 2017, 653, 302-307.	1.0	9
26	Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Review of Proteomics, 2017, 14, 917-929.	1.3	13
27	Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. Journal of Biological Chemistry, 2017, 292, 15340-15351.	1.6	28
28	SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13176-13181.	3.3	131
29	Foxp1 regulation of neonatal vocalizations via cortical development. Genes and Development, 2017, 31, 2039-2055.	2.7	52
30	Proteomic Analysis of SUMOylation in the Post-ischemic Brain. Neuromethods, 2017, , 207-224.	0.2	0
31	Current Proteomic Approaches Applied to Brain Function. Neuromethods, 2017, , .	0.2	4
32	Isolation of Intermediate Filament Proteins from Multiple Mouse Tissues to Study Aging-associated Post-translational Modifications. Journal of Visualized Experiments, 2017, , .	0.2	3
33	A genetic screen to discover SUMOylated proteins in living mammalian cells. Scientific Reports, 2017, 7, 17443.	1.6	6
34	The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97. Frontiers in Molecular Biosciences, 2017, 4, 21.	1.6	114
35	SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS ONE, 2017, 12, e0178925.	1.1	7
36	SUMOylation and calcium signalling: potential roles in the brain and beyond. Neuronal Signaling, 2017, 1, NS20160010.	1.7	6
37	The SUMO system in Caenorhabditis elegans development. International Journal of Developmental Biology, 2017, 61, 159-164.	0.3	16

#	Article	IF	CITATIONS
38	SUMOâ€wrestling the preâ€eclamptic placenta. Journal of Physiology, 2018, 596, 1537-1537.	1.3	1
39	Targeting the SUMO Pathway Primes All- <i>trans</i> Retinoic Acid–Induced Differentiation of Nonpromyelocytic Acute Myeloid Leukemias. Cancer Research, 2018, 78, 2601-2613.	0.4	45
40	The post-translational modification, SUMOylation, and cancer (Review). International Journal of Oncology, 2018, 52, 1081-1094.	1.4	138
41	Guiding Mitotic Progression by Crosstalk between Post-translational Modifications. Trends in Biochemical Sciences, 2018, 43, 251-268.	3.7	43
42	Epigenetic drug discovery: a success story for cofactor interference. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170069.	1.8	39
43	Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses. Journal of the American Society for Mass Spectrometry, 2018, 29, 1111-1124.	1.2	17
44	<scp>SUMO</scp> 1â€conjugation is altered during normal aging but not by increased amyloid burden. Aging Cell, 2018, 17, e12760.	3.0	15
45	Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis. Scientific Reports, 2018, 8, 2269.	1.6	9
46	Secondary Metabolites of Basidiomycetes. , 2018, , 231-275.		7
47	Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling. Scientific Reports, 2018, 8, 1139.	1.6	18
48	PML nuclear bodies: from architecture to function. Current Opinion in Cell Biology, 2018, 52, 154-161.	2.6	171
49	Probing ubiquitin and SUMO conjugation and deconjugation. Biochemical Society Transactions, 2018, 46, 423-436.	1.6	20
50	SUMO suppresses and MYC amplifies transcription globally by regulating CDK9 sumoylation. Cell Research, 2018, 28, 670-685.	5.7	26
51	SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nature Communications, 2018, 9, 1119.	5.8	41
52	SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. Plant Cell, 2018, 30, 1077-1099.	3.1	120
53	PIASÎ ³ controls stability and facilitates SUMO-2 conjugation to CoREST family of transcriptional co-repressors. Biochemical Journal, 2018, 475, 1441-1454.	1.7	2
54	Extranuclear SUMOylation in Neurons. Trends in Neurosciences, 2018, 41, 198-210.	4.2	60
55	Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Chemical Reviews, 2018, 118, 889-918.	23.0	376

D

#	Article	IF	CITATIONS
56	Structure and function of the human parvulins Pin1 and Par14/17. Biological Chemistry, 2018, 399, 101-125.	1.2	29
57	Novel signal transducer and activator of transcription 1 mutation disrupts small ubiquitin-related modifier conjugation causing gain of function. Journal of Allergy and Clinical Immunology, 2018, 141, 1844-1853.e2.	1.5	18
58	Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. Journal of Biological Chemistry, 2018, 293, 599-609.	1.6	20
59	A FRET Sensor to Monitor Bivalent SUMO–SIM Interactions in SUMO Chain Binding. ChemBioChem, 2018, 19, 177-184.	1.3	11
60	PML nuclear bodies, membrane-less domains acting as ROS sensors?. Seminars in Cell and Developmental Biology, 2018, 80, 29-34.	2.3	16
61	Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 310-319.	0.9	8
62	Next Steps on in Silico 2DE Analyses of Chromosome 18 Proteoforms. Journal of Proteome Research, 2018, 17, 4085-4096.	1.8	3
63	SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10983-10988.	3.3	59
64	NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress. Nature Communications, 2018, 9, 4376.	5.8	73
65	SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell, 2018, 23, 742-757.e8.	5.2	105
66	ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Research, 2018, 46, D901-D910.	6.5	82
67	Sumoylation and phosphorylation: hidden and overt links. Journal of Experimental Botany, 2018, 69, 4583-4590.	2.4	24
68	Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9. Scientific Reports, 2018, 8, 7754.	1.6	26
69	How DNA vicinity controls SUMO E3 ligase activity. EMBO Journal, 2018, 37, .	3.5	1
70	Site-specific characterization of endogenous SUMOylation across species and organs. Nature Communications, 2018, 9, 2456.	5.8	139
71	Sumoylation in plants: mechanistic insights and its role in drought stress. Journal of Experimental Botany, 2018, 69, 4539-4554.	2.4	55
72	Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. Journal of Virology, 2018, 92, .	1.5	21
73	The SUMO-specific isopeptidase SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix. Molecular Biology of the Cell, 2018, 29, 1878-189 <u>0.</u>	0.9	11

#	Article	IF	Citations
74	SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Molecular Cell, 2018, 71, 409-418.	4.5	184
75	The SUMO protease SENP1 and the chromatin remodeler CHD3 interact and jointly affect chromatin accessibility and gene expression. Journal of Biological Chemistry, 2018, 293, 15439-15454.	1.6	14
76	Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.	2.4	25
77	Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Molecular Aspects of Medicine, 2018, 63, 3-17.	2.7	44
78	SUMOylation: re-wiring the plant nucleus during stress and development. Current Opinion in Plant Biology, 2018, 45, 143-154.	3.5	116
79	Talin is a substrate for SUMOylation in migrating cancer cells. Experimental Cell Research, 2018, 370, 417-425.	1.2	11
80	Toxoplasma ubiquitin-like protease 1, a key enzyme in sumoylation and desumoylation pathways, is under the control of non-coding RNAs. International Journal for Parasitology, 2018, 48, 867-880.	1.3	5
81	When SUMO met splicing. RNA Biology, 2018, 15, 1.	1.5	20
82	Exploring potential roles for the interaction of MOM1 with SUMO and the SUMO E3 ligase-like protein PIAL2 in transcriptional silencing. PLoS ONE, 2018, 13, e0202137.	1.1	5
83	The SUMO System and TGFÎ ² Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers, 2018, 10, 264.	1.7	21
84	Nuclear Folate Metabolism. Annual Review of Nutrition, 2018, 38, 219-243.	4.3	52
85	SUMO2 and SUMO3 redundantly prevent a noncanonical type I interferon response. Proceedings of the United States of America, 2018, 115, 6798-6803.	3.3	45
86	The SUMO Pathway in Hematomalignancies and Their Response to Therapies. International Journal of Molecular Sciences, 2019, 20, 3895.	1.8	29
87	Writing and erasing MYC ubiquitination and SUMOylation. Genes and Diseases, 2019, 6, 359-371.	1.5	55
88	Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Current Drug Targets, 2019, 20, 960-969.	1.0	8
89	Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. Journal of Biological Chemistry, 2019, 294, 15218-15234.	1.6	37
90	SAE1 promotes human glioma progression through activating AKT SUMOylation-mediated signaling pathways. Cell Communication and Signaling, 2019, 17, 82.	2.7	37
91	A Simple Way to Simultaneously Release the Interface Stress and Realize the Inner Encapsulation for Highly Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905336.	7.8	96

#	ARTICLE	IF	CITATIONS
92	The Ulp2 <scp>SUMO</scp> protease promotes transcription elongation through regulation of histone sumoylation. EMBO Journal, 2019, 38, e102003.	3.5	28
93	SUMOylation down-regulates rDNA transcription by repressing expression of upstream-binding factor and proto-oncogene c-Myc. Journal of Biological Chemistry, 2019, 294, 19155-19166.	1.6	11
94	Transcription-coupled nucleotide excision repair is coordinated by ubiquitin and SUMO in response to ultraviolet irradiation. Nucleic Acids Research, 2020, 48, 231-248.	6.5	10
95	Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule, 2019, 3, 2622-2646.	11.7	569
96	RNF4—A Paradigm for SUMOylationâ€Mediated Ubiquitination. Proteomics, 2019, 19, e1900185.	1.3	27
97	The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation. Nature Communications, 2019, 10, 3987.	5.8	54
98	SUMOylation Landscape of Renal Cortical Collecting Duct Cells. Journal of Proteome Research, 2019, 18, 3640-3648.	1.8	3
99	The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjugate Chemistry, 2019, 30, 2684-2696.	1.8	13
100	Standard Binding Free Energy of a SIM–SUMO Complex. Journal of Chemical Theory and Computation, 2019, 15, 6403-6410.	2.3	8
101	Saikosaponin-d Inhibits the Hepatoma Cells and Enhances Chemosensitivity Through SENP5-Dependent Inhibition of Gli1 SUMOylation Under Hypoxia. Frontiers in Pharmacology, 2019, 10, 1039.	1.6	35
102	Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Science, 2019, 281, 113-121.	1.7	25
103	MSâ€based strategies for identification of protein SUMOylation modification. Electrophoresis, 2019, 40, 2877-2887.	1.3	15
104	Investigation of the impact of PTMs on the protein backbone conformation. Amino Acids, 2019, 51, 1065-1079.	1.2	17
105	A conserved role for transcription factor sumoylation in binding-site selection. Current Genetics, 2019, 65, 1307-1312.	0.8	24
106	Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules, 2019, 9, 151.	1.8	6
107	SUMOylation in Glioblastoma: A Novel Therapeutic Target. International Journal of Molecular Sciences, 2019, 20, 1853.	1.8	11
108	RF-GlutarySite: a random forest based predictor for glutarylation sites. Molecular Omics, 2019, 15, 189-204.	1.4	30
109	Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. Journal of Cell Biology, 2019, 218, 2006-2020.	2.3	25

#	Article	IF	CITATIONS
110	Slx5/Slx8â€dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO Journal, 2019, 38, .	3.5	8
111	Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods in Enzymology, 2019, 618, 357-387.	0.4	10
112	Proteomics and Precision Medicine. Small Methods, 2019, 3, 1900075.	4.6	5
113	Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Molecular and Cellular Proteomics, 2019, 18, 1197-1209.	2.5	20
114	Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays. Methods in Enzymology, 2019, 618, 167-185.	0.4	5
115	The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms. Genes and Development, 2019, 33, 333-347.	2.7	32
116	Elk1 affects katanin and spastin proteins via differential transcriptional and post-transcriptional regulations. PLoS ONE, 2019, 14, e0212518.	1.1	10
117	Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. PLoS Genetics, 2019, 15, e1007991.	1.5	13
118	Sumoylation Plays Fundamental Roles During Eye Development and Pathogenesis. Current Molecular Medicine, 2019, 18, 507-508.	0.6	0
119	Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS ONE, 2019, 14, e0212857.	1.1	5
120	Annexin A2 extracellular translocation and virus interaction: A potential target for antivirusâ€drug discovery. Reviews in Medical Virology, 2019, 29, e2038.	3.9	18
121	Phosphoproteomic analyses of kidneys of Atlantic salmon infected with Aeromonas salmonicida. Scientific Reports, 2019, 9, 2101.	1.6	6
122	Palmitoylation of BMPR1a regulates neural stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25688-25696.	3.3	22
123	Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression. MBio, 2019, 10, .	1.8	4
124	SUMO1 modification of PKD2 channels regulates arterial contractility. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27095-27104.	3.3	23
125	DUF3669, a "domain of unknown function―within ZNF746 and ZNF777, oligomerizes and contributes to transcriptional repression. BMC Molecular and Cell Biology, 2019, 20, 60.	1.0	10
126	The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genetics, 2019, 15, e1008427.	1.5	11
127	Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells, 2019, 8, 1575.	1.8	11

#	Article	IF	CITATIONS
128	The SUMO-specific protease family regulates cancer cell radiosensitivity. Biomedicine and Pharmacotherapy, 2019, 109, 66-70.	2.5	14
129	Different SUMO paralogues determine the fate of wild-type and mutant CFTRs: biogenesis versus degradation. Molecular Biology of the Cell, 2019, 30, 4-16.	0.9	13
130	SUMOylation coordinates BERosome assembly inÂactive DNA demethylation during cellÂdifferentiation. EMBO Journal, 2019, 38, .	3.5	28
131	<scp>SUMO</scp> ning the base excision repair machinery for differentiation. EMBO Journal, 2019, 38, .	3.5	Ο
132	Post-translational regulation of planarian regeneration. Seminars in Cell and Developmental Biology, 2019, 87, 58-68.	2.3	6
133	SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Failure Reviews, 2020, 25, 523-535.	1.7	70
134	SUMOylation homeostasis in tumorigenesis. Cancer Letters, 2020, 469, 301-309.	3.2	29
135	Phosphineâ€Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. ChemBioChem, 2020, 21, 141-148.	1.3	22
136	Analysis of ubiquitin signaling and chain topology cross-talk. Journal of Proteomics, 2020, 215, 103634.	1.2	15
137	The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Communications Biology, 2020, 3, 23.	2.0	36
138	Role of Postâ€ŧranslational Modifications in Alzheimer's Disease. ChemBioChem, 2020, 21, 1052-1079.	1.3	42
139	The Maize Class-I SUMO Conjugating Enzyme ZmSCE1d Is Involved in Drought Stress Response. International Journal of Molecular Sciences, 2020, 21, 29.	1.8	8
140	Insights into the Microscopic Structure of RNF4-SIM-SUMO Complexes from MD Simulations. Biophysical Journal, 2020, 119, 1558-1567.	0.2	3
141	Extensive SUMO Modification of Repressive Chromatin Factors Distinguishes Pluripotent from Somatic Cells. Cell Reports, 2020, 32, 108146.	2.9	33
142	Revised annotation and extended characterizations of components of the Chlamydomonas reinhardtii SUMOylation system. Plant Direct, 2020, 4, e00266.	0.8	3
143	SENP7 knockdown inhibited pyroptosis and NF-κB/NLRP3 inflammasome pathway activation in Raw 264.7 cells. Scientific Reports, 2020, 10, 16265.	1.6	8
144	Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner. Journal of Cell Science, 2020, 133, .	1.2	7
145	Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Research, 2020, 48, 12151-12168.	6.5	28

#	ARTICLE UBC9 coordinates inflammation affecting development of bladder cancer. Scientific Reports, 2020, 10,	IF 1.6	CITATIONS
147	20670. Identification of SUMO Binding Proteins Enriched after Covalent Photo-Cross-Linking. ACS Chemical Biology, 2020, 15, 2406-2414.	1.6	19
148	SUMO conjugation regulates immune signalling. Fly, 2020, 14, 62-79.	0.9	7
149	SUMOylation-Mediated Response to Mitochondrial Stress. International Journal of Molecular Sciences, 2020, 21, 5657.	1.8	25
150	Small ubiquitinâ€like modifier 2 (SUMO2) is critical for memory processes in mice. FASEB Journal, 2020, 34, 14750-14767.	0.2	20
151	An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency. Oncogene, 2020, 39, 6692-6703.	2.6	10
152	Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. Aging Cell, 2020, 19, e13222.	3.0	8
153	Pathogenic Biohacking: Induction, Modulation and Subversion of Host Transcriptional Responses by Listeria monocytogenes. Toxins, 2020, 12, 294.	1.5	5
154	C-Terminal HA Tags Compromise Function and Exacerbate Phenotypes of <i>Saccharomyces cerevisiae</i> Bloom's Helicase Homolog Sgs1 SUMOylation-Associated Mutants. G3: Genes, Genomes, Genetics. 2020, 10, 2811-2818.	0.8	2
155	How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. International Journal of Molecular Sciences, 2020, 21, 4282.	1.8	26
156	The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 54-70.	2.3	9
157	SUMOylation in development and neurodegeneration. Development (Cambridge), 2020, 147, .	1.2	34
158	Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. International Journal of Molecular Sciences, 2020, 21, 2026.	1.8	8
159	The nuclear receptor NR4A1 is regulated by SUMO modification to induce autophagic cell death. PLoS ONE, 2020, 15, e0222072.	1.1	17
160	SUMO and cellular adaptive mechanisms. Experimental and Molecular Medicine, 2020, 52, 931-939.	3.2	22
161	Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code. Frontiers in Chemistry, 2019, 7, 931.	1.8	37
162	Discovery of a Class of Potent and Selective Nonâ€competitive Sentrinâ€6pecific Protease 1 Inhibitors. ChemMedChem, 2020, 15, 675-679.	1.6	14
163	Role of Rad51 and DNA repair in cancer: A molecular perspective. , 2020, 208, 107492.		64

#	Article	IF	CITATIONS
164	Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment. Journal of Proteome Research, 2020, 19, 1999-2010.	1.8	4
165	Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS Journal, 2020, 287, 3110-3140.	2.2	127
166	Mitochondrial Quality Control in Cardiomyocytes: A Critical Role in the Progression of Cardiovascular Diseases. Frontiers in Physiology, 2020, 11, 252.	1.3	32
167	SUMOylation modulates the LIN28Aâ€letâ€7 signaling pathway in response to cellular stresses in cancer cells. Molecular Oncology, 2020, 14, 2288-2312.	2.1	9
168	SUMO Protease SMT7 Modulates Ribosomal Protein L30 and Regulates Cell-Size Checkpoint Function. Plant Cell, 2020, 32, 1285-1307.	3.1	10
169	SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation. Journal of Biological Chemistry, 2020, 295, 6741-6753.	1.6	19
170	Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers. MBio, 2020, 11, .	1.8	20
171	SUMOylation of synaptic and synapseâ€associated proteins: An update. Journal of Neurochemistry, 2021, 156, 145-161.	2.1	23
172	SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. Journal of Biological Chemistry, 2021, 296, 100032.	1.6	8
173	Apple SUMO E3 ligase MdSIZ1 facilitates SUMOylation of MdARF8 to regulate lateral root formation. New Phytologist, 2021, 229, 2206-2222.	3.5	16
174	SUMOylation of PHYTOCHROME INTERACTING FACTOR 3 promotes photomorphogenesis in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 229, 2050-2061.	3.5	15
175	The SUMO pathway in pancreatic cancer: insights and inhibition. British Journal of Cancer, 2021, 124, 531-538.	2.9	18
176	Targeting SUMO Signaling to Wrestle Cancer. Trends in Cancer, 2021, 7, 496-510.	3.8	62
177	Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Reports, 2021, 34, 108635.	2.9	35
178	SUMO-Activating Enzyme Subunit 1 (SAE1) Is a Promising Diagnostic Cancer Metabolism Biomarker of Hepatocellular Carcinoma. Cells, 2021, 10, 178.	1.8	21
179	Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Reports, 2021, 34, 108691.	2.9	41
180	Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling. EMBO Reports, 2021, 22, e49651.	2.0	13
181	MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin. Journal of Proteome Research, 2021, 20, 2042-2055.	1.8	9

#	Article	IF	CITATIONS
183	Ubiquitin-related processes and innate immunity in C. elegans. Cellular and Molecular Life Sciences, 2021, 78, 4305-4333.	2.4	8
184	SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules, 2021, 26, 828.	1.7	46
185	SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Frontiers in Immunology, 2021, 12, 646633.	2.2	13
186	SUMO: a novel target for anti-coronavirus therapy. Pathogens and Global Health, 2021, 115, 292-299.	1.0	4
187	SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Molecular Cell, 2021, 81, 940-952.e5.	4.5	48
188	Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. BioMed Research International, 2021, 2021, 1-13.	0.9	21
189	A role for keratin 17 during DNA damage response and tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
190	Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Reports, 2021, 34, 108929.	2.9	12
191	An immunohistochemical panel of three small ubiquitin-like modifier genes predicts outcomes of patients with triple-negative breast cancer. Gland Surgery, 2021, 10, 1067-1084.	0.5	3
192	Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses. Viruses, 2021, 13, 528.	1.5	2
194	SENP1-mediated deSUMOylation of JAK2 regulates its kinase activity and platinum drug resistance. Cell Death and Disease, 2021, 12, 341.	2.7	13
195	Histone sumoylation and chromatin dynamics. Nucleic Acids Research, 2021, 49, 6043-6052.	6.5	70
196	Antibody-free enrichment method for proteome-wide analysis of endogenous SUMOylation sites. Analytica Chimica Acta, 2021, 1154, 338324.	2.6	4
197	The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Reports, 2021, 22, e50684.	2.0	17
198	HDAC1 SUMOylation promotes Argonaute-directed transcriptional silencing in C. elegans. ELife, 2021, 10, .	2.8	18
199	PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. ELife, 2021, 10, .	2.8	13
200	SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates?. Frontiers in Molecular Biosciences, 2021, 8, 673038.	1.6	37
201	WNT-responsive SUMOylation of ZIC5 promotes murine neural crest cell development, having multiple effects on transcription. Journal of Cell Science, 2021, 134, .	1.2	8

#	Article	IF	CITATIONS
202	Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Frontiers in Oncology, 2021, 11, 679445.	1.3	20
203	The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Frontiers in Cell and Developmental Biology, 2021, 9, 660494.	1.8	9
204	Post-Translational Modifications in Oocyte Maturation and Embryo Development. Frontiers in Cell and Developmental Biology, 2021, 9, 645318.	1.8	20
205	Targeting SUMOylation in cancer. Current Opinion in Oncology, 2021, 33, 520-525.	1.1	16
206	SUMOylation Is Associated with Aggressive Behavior in Chondrosarcoma of Bone. Cancers, 2021, 13, 3823.	1.7	7
207	SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells. Nature Communications, 2021, 12, 4582.	5.8	17
208	Proteomic strategies for characterizing ubiquitin-like modifications. Nature Reviews Methods Primers, 2021, 1, .	11.8	6
209	The scaffold protein IQGAP1 links heat-induced stress signals to alternative splicing regulation in gastric cancer cells. Oncogene, 2021, 40, 5518-5532.	2.6	7
210	SUMOylated non-canonical polycomb PRC1.6 complex as a prerequisite for recruitment of transcription factor RBPJ. Epigenetics and Chromatin, 2021, 14, 38.	1.8	1
211	SUMO Modification of OsFKBP20-1b Is Integral to Proper Pre-mRNA Splicing upon Heat Stress in Rice. International Journal of Molecular Sciences, 2021, 22, 9049.	1.8	7
212	Sumoylation regulates the assembly and activity of the SMN complex. Nature Communications, 2021, 12, 5040.	5.8	8
213	Blocking MCT4 SUMOylation inhibits the growth of breast cancer cells. Molecular Carcinogenesis, 2021, 60, 702-714.	1.3	4
214	Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). International Journal of Oncology, 2021, 59, .	1.4	5
215	Proteomics Mapping of the ISGylation Landscape in Innate Immunity. Frontiers in Immunology, 2021, 12, 720765.	2.2	17
216	Regulation of topoisomerase II stability and activity by ubiquitination and SUMOylation: clinical implications for cancer chemotherapy. Molecular Biology Reports, 2021, 48, 6589-6601.	1.0	11
217	Dynamic sumoylation of promoter-bound general transcription factors facilitates transcription by RNA polymerase II. PLoS Genetics, 2021, 17, e1009828.	1.5	12
218	SUMO paralogue–specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Molecular Biology of the Cell, 2021, 32, 1849-1866.	0.9	21
219	SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification. International Journal of Molecular Sciences, 2021, 22, 10437.	1.8	5

#	Article	IF	CITATIONS
220	SALL1 Modulates CBX4 Stability, Nuclear Bodies, and Regulation of Target Genes. Frontiers in Cell and Developmental Biology, 2021, 9, 715868.	1.8	1
222	Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. Rna, 2021, 27, 1441-1458.	1.6	38
223	SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Frontiers in Cell and Developmental Biology, 2021, 9, 695630.	1.8	1
224	Altered Protein Abundance and Localization Inferred from Sites of Alternative Modification by Ubiquitin and SUMO. Journal of Molecular Biology, 2021, 433, 167219.	2.0	4
225	Linking nuclear matrix–localized PIAS1 to chromatin SUMOylation via direct binding of histones H3 and H2A.Z. Journal of Biological Chemistry, 2021, 297, 101200.	1.6	2
226	Advances in SUMO-based regulation of homologous recombination. Current Opinion in Genetics and Development, 2021, 71, 114-119.	1.5	4
228	Assessment of SENP3-interacting proteins in hepatocytes treated with diethylnitrosamine by BioID assay. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1237-1246.	0.9	5
229	Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. Advances in Experimental Medicine and Biology, 2020, 1233, 29-54.	0.8	11
230	Molecular mechanisms in SUMO conjugation. Biochemical Society Transactions, 2020, 48, 123-135.	1.6	54
234	Klebsiella pneumoniae Reduces SUMOylation To Limit Host Defense Responses. MBio, 2020, 11, .	1.8	24
235	SUMO targeting of a stress-tolerant Ulp1 SUMO protease. PLoS ONE, 2018, 13, e0191391.	1.1	6
236	SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS ONE, 2018, 13, e0193528.	1.1	12
237	Altered Expression Patterns of the Sumoylation Enzymes E1, E2 and E3 Are Associated with Glucose Oxidase- and UVA-Induced Cataractogenesis. Current Molecular Medicine, 2019, 18, 542-549.	0.6	2
238	Localization Analysis of Seven De-sumoylation Enzymes (SENPs) in Ocular Cell Lines. Current Molecular Medicine, 2019, 18, 523-532.	0.6	5
239	Analysis of the Differential Expression Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines. Current Molecular Medicine, 2019, 18, 509-515.	0.6	2
240	Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance. Current Molecular Medicine, 2019, 18, 516-522.	0.6	3
241	Ubiquitin and SUMO conjugation as biomarkers of acute myeloid leukemias response to chemotherapies. Life Science Alliance, 2020, 3, e201900577.	1.3	13
242	Analysis of SUMO1-conjugation at synapses. ELife, 2017, 6, .	2.8	45

# 243	ARTICLE Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation. ELife, 2017, 6,	lF 2.8	CITATIONS
244	Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules, 2021, 11, 1475.	1.8	10
245	Hyper-SUMOylation of SMN induced by SENP2 deficiency decreases its stability and leads to spinal muscular atrophy-like pathology. Journal of Molecular Medicine, 2021, 99, 1797-1813.	1.7	5
246	Identification of SUMO Targets Associated With the Pluripotent State in Human Stem Cells. Molecular and Cellular Proteomics, 2021, 20, 100164.	2.5	8
251	Analysis of Non-Sumoylated and Sumoylated Isoforms of Pax-6, the Master Regulator for Eye and Brain Development in Ocular Cell Lines. Current Molecular Medicine, 2019, 18, 566-573.	0.6	3
258	Branching and Mixing: New Signals of the Ubiquitin Signaling System. , 0, , .		1
261	Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. ELife, 2021, 10, .	2.8	12
263	Regulation of Viral Restriction by Post-Translational Modifications. Viruses, 2021, 13, 2197.	1.5	8
266	Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. Stem Cells, 2021, 39, 1601-1614.	1.4	4
267	The Hydrogen-Coupled Oligopeptide Membrane Cotransporter Pept2 is SUMOylated in Kidney Distal Convoluted Tubule Cells. Frontiers in Molecular Biosciences, 2021, 8, 790606.	1.6	1
268	Identification of proximal SUMO-dependent interactors using SUMO-ID. Nature Communications, 2021, 12, 6671.	5.8	27
269	Trans-tail regulation-mediated suppression of cryptic transcription. Experimental and Molecular Medicine, 2021, 53, 1683-1688.	3.2	6
270	SUMO-SIM interactions: From structure to biological functions. Seminars in Cell and Developmental Biology, 2022, 132, 193-202.	2.3	32
271	Waves of sumoylation support transcription dynamics during adipocyte differentiation. Nucleic Acids Research, 2022, 50, 1351-1369.	6.5	8
272	Ubiquitin-like posttranslational modifications in NAFLD progression and treatment. Biocell, 2022, 46, 389-400.	0.4	0
274	Stress - Regulation of SUMO conjugation and of other Ubiquitin‣ike Modifiers. Seminars in Cell and Developmental Biology, 2022, 132, 38-50.	2.3	12
275	SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells. Archives of Toxicology, 2022, 96, 545-558.	1.9	5
276	Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut, 2022, 71, 2266-2283.	6.1	35

	CITATION	Report	
#	Article	IF	CITATIONS
277	SUMOylation modulates the function of DDX19 in mRNA export. Journal of Cell Science, 2022, 135, .	1.2	1
278	Sumoylation in Physiology, Pathology and Therapy. Cells, 2022, 11, 814.	1.8	24
279	Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell and Bioscience, 2022, 12, 22.	2.1	15
280	Insights in Post-Translational Modifications: Ubiquitin and SUMO. International Journal of Molecular Sciences, 2022, 23, 3281.	1.8	35
284	The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 3639.	1.8	4
285	The mTOR chromatin-bound interactome in prostate cancer. Cell Reports, 2022, 38, 110534.	2.9	5
286	Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. Plant Science, 2022, 319, 111275.	1.7	5
287	Tools for Decoding Ubiquitin Signaling in DNA Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 760226.	1.8	4
289	CLONING AND EXPRESSION OF RECOMBINANT PROTEIN OF SUMO, FUSED WITH BIOTIN ACCEPTOR PEPTIDI Eurasian Journal of Applied Biotechnology, 2018, , .	E. 0.0	1
290	Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. Science Advances, 2022, 8, eabm2960.	4.7	6
293	Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. Journal of Clinical Investigation, 2022, 132, .	3.9	22
294	A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics. Journal of Neurology, 2022, 269, 4863-4871.	1.8	3
295	SUMOylation of Dorsal attenuates Toll/NF-l $^{ m PB}$ signaling. Genetics, 2022, , .	1.2	1
296	RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Research, 2022, 50, 5672-5687.	6.5	9
297	A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders. Frontiers in Chemistry, 2022, 10, .	1.8	3
299	Tissue-specific inhibition of protein sumoylation uncovers diverse SUMO functions during C. elegans vulval development. PLoS Genetics, 2022, 18, e1009978.	1.5	0
300	Pepper <scp>SUMO E3</scp> ligase <scp>CaDSIZ1</scp> enhances drought tolerance by stabilizing the transcription factor <scp>CaDRHB1</scp> . New Phytologist, 2022, 235, 2313-2330.	3.5	8
301	A field guide to the proteomics of postâ€ŧranslational modifications in DNA repair. Proteomics, 2022, 22, ·	1.3	2

#	Article	IF	CITATIONS
302	Signalling mechanisms and cellular functions of SUMO. Nature Reviews Molecular Cell Biology, 2022, 23, 715-731.	16.1	99
304	Epigenetics: Science of Changes without Change in DNA Sequences. Biochemistry, 0, , .	0.8	0
305	Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. International Journal of Molecular Sciences, 2022, 23, 8012.	1.8	11
306	Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metabolism, 2022, 34, 1561-1577.e9.	7.2	26
309	Identification and Expression Analysis of a New Small Ubiquitin-Like Modifier from Taenia Pisiformis. SSRN Electronic Journal, 0, , .	0.4	0
310	Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nature Communications, 2022, 13, .	5.8	3
311	qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Research, 2023, 51, D479-D487.	6.5	11
314	Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy. Nature Communications, 2022, 13, .	5.8	22
315	Small molecule SUMO inhibition for biomarker-informed B-cell lymphoma therapy. Haematologica, 0, , .	1.7	2
316	Identification and expression analysis of a new small ubiquitin-like modifier from Taenia pisiformis. Experimental Parasitology, 2022, 242, 108403.	0.5	0
317	Low SP1 SUMOylation-dependent SNHG17 upregulation promotes drug resistance of gastric cancer through impairing hsa-miR-23b-3p-induced Notch2 inhibition. Cellular Oncology (Dordrecht), 2022, 45, 1329-1346.	2.1	3
318	Cytoplasmic HDAC4 recovers synaptic function in the 3×Tg mouse model of Alzheimer's disease. Neuropathology and Applied Neurobiology, 2023, 49, .	1.8	6
319	Biological and disease hallmarks of Alzheimer's disease defined by Alzheimer's disease genes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	6
320	Comparative SUMO Proteome Analysis Using Stable Isotopic Labeling by Amino Acids (SILAC). Methods in Molecular Biology, 2023, , 71-86.	0.4	2
321	Inâ€plate Chemical Synthesis of Isopeptideâ€linked SUMOylated Peptide Fluorescence Polarization Reagents for Highâ€Throughput Screening of SENP preferences. ChemBioChem, 0, , .	1.3	1
322	The era of high-quality chemical probes. RSC Medicinal Chemistry, 2022, 13, 1446-1459.	1.7	15
323	SUMO pathway is required for ribosome biogenesis. BMB Reports, 2022, 55, 535-540.	1.1	4
324	The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. International Journal of Molecular Sciences, 2022, 23, 14480.	1.8	1

#	Article	IF	CITATIONS
325	SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Research, 2022, 50, 12444-12461.	6.5	4
326	Mechanism of SUMOylation-Mediated Regulation of Type I IFN Expression. Journal of Molecular Biology, 2023, 435, 167968.	2.0	6
327	Mitochondrial SENP2 regulates the assembly of SDH complex under metabolic stress. Cell Reports, 2023, 42, 112041.	2.9	5
328	Decoding postâ€ŧranslational modifications of mammalian septins. Cytoskeleton, 2023, 80, 169-181.	1.0	3
329	Emerging Mechanisms of Skeletal Muscle Homeostasis and Cachexia: The SUMO Perspective. Cells, 2023, 12, 644.	1.8	3
330	Regulation of Pre-mRNA Splicing: Indispensable Role of Post-Translational Modifications of Splicing Factors. Life, 2023, 13, 604.	1.1	6
331	Regulation of SUMOylation on RNA metabolism in cancers. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
332	Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain. IScience, 2023, 26, 106350.	1.9	1
333	The ubiquitin-specific protease USP36 SUMOylates EXOSC10 and promotes the nucleolar RNA exosome function in rRNA processing. Nucleic Acids Research, 2023, 51, 3934-3949.	6.5	3
334	SUMOylation mediates the disassembly of the Smad4 nuclear export complex via RanGAP1 in KELOIDS. Journal of Cellular and Molecular Medicine, 2023, 27, 1045-1055.	1.6	2
335	UTP18-mediated p21 mRNA instability drives adenoma-carcinoma progression in colorectal cancer. Cell Reports, 2023, 42, 112423.	2.9	3