<scp>BH</scp> 3â€inâ€groove dimerization initiates as assembly in membranes

EMBO Journal 35, 208-236

DOI: 10.15252/embj.201591552

Citation Report

#	Article	IF	CITATIONS
1	Physiological and Pharmacological Control of BAK, BAX, and Beyond. Trends in Cell Biology, 2016, 26, 906-917.	7.9	120
2	Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Scientific Reports, 2016, 6, 27299.	3.3	44
3	Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation. Scientific Reports, 2016, 6, 29502.	3.3	18
4	<scp>BH</scp> 3â€inâ€groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO Journal, 2016, 35, 208-236.	7.8	81
5	Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. Scientific Reports, 2016, 6, 30763.	3.3	36
6	BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in Retinal and Eye Research, 2017, 57, 1-25.	15.5	146
7	The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Seminars in Cell and Developmental Biology, 2017, 72, 152-162.	5.0	178
8	Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochemistry International, 2017, 109, 141-161.	3.8	70
9	Pore formation by dimeric Bak and Bax: an unusual pore?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160218.	4.0	59
10	The substitution of Proline 168 favors Bax oligomerization and stimulates its interaction with LUVs and mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1144-1155.	2.6	20
11	A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chemical Biology, 2017, 24, 493-506.e5.	5.2	76
12	Bax and Bak Pores: Are We Closing the Circle?. Trends in Cell Biology, 2017, 27, 266-275.	7.9	154
13	Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 310-315.	7.1	75
14	Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. Cancer Cell, 2017, 32, 490-505.e10.	16.8	128
15	Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophysical Reviews, 2017, 9, 443-457.	3.2	62
16	BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7629-7634.	7.1	32
17	Membrane insertion of the BAX core, but not latch domain, drives apoptotic pore formation. Scientific Reports, 2017, 7, 16259.	3.3	15
18	Quantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation. Nature Communications, 2017, 8, 73.	12.8	54

#	Article	IF	CITATIONS
19	Apoptosis and Cancer. Annual Review of Cancer Biology, 2017, 1, 275-294.	4.5	88
20	Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis. PLoS ONE, 2017, 12, e0184434.	2.5	26
21	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
22	New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 841-853.	2.6	34
23	Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins. Acta Pharmacologica Sinica, 2018, 39, 1012-1021.	6.1	28
24	Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS Journal, 2018, 285, 416-431.	4.7	539
25	The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death and Differentiation, 2018, 25, 27-36.	11.2	422
26	BCL-2 family proteins: changing partners in the dance towards death. Cell Death and Differentiation, 2018, 25, 65-80.	11.2	1,037
27	Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Scientific Reports, 2018, 8, 12434.	3.3	12
28	Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death and Differentiation, 2018, 25, 1717-1731.	11.2	35
29	The Role of Mitochondrial Outer Membrane Permeabilization (MOMP) in Apoptosis: Studying Bax Pores by Cryo-Electron Microscopy. Advances in Biomembranes and Lipid Self-Assembly, 2018, , 39-62.	0.6	4
30	The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 268-280.	2.6	36
31	Mitochondrial translocation of cyclin C stimulates intrinsic apoptosis through Bax recruitment. EMBO Reports, 2019, 20, e47425.	4.5	27
32	Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Scientific Reports, 2019, 9, 16565.	3.3	32
33	A new perspective on membrane-embedded Bax oligomers using DEER and bioresistant orthogonal spin labels. Scientific Reports, 2019, 9, 13013.	3.3	24
34	Time-lapse FRET analysis reveals the ability of Bax dimer to trigger mitochondrial outer membrane permeabilization. Biochemical and Biophysical Research Communications, 2019, 514, 881-887.	2.1	2
35	Overview of BCL-2 Family Proteins and Therapeutic Potentials. Methods in Molecular Biology, 2019, 1877, 1-21.	0.9	36
36	Cryo-Electron Microscopy to Study Bax Pores and MOMP. Methods in Molecular Biology, 2019, 1877, 247-256.	0.9	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Photocrosslinking Approach to Investigate Protein Interactions in the BCL-2 Family. Methods in Molecular Biology, 2019, 1877, 131-149.	0.9	5
39	Isolation of Synthetic Antibodies Against BCL-2-Associated X Protein (BAX). Methods in Molecular Biology, 2019, 1877, 351-357.	0.9	1
40	BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036319.	5.5	106
41	Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cellular and Molecular Life Sciences, 2020, 77, 2387-2406.	5.4	24
42	Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. Journal of Biological Chemistry, 2020, 295, 1623-1636.	3.4	40
43	Shifting Polar Residues Across Primary Sequence Frames of Transmembrane Domains Calibrates Membrane Permeation Thermodynamics. Biochemistry, 2020, 59, 4353-4366.	2.5	0
44	Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. International Journal of Molecular Sciences, 2020, 21, 3928.	4.1	18
45	PEGylation-based strategy to identify pathways involved in the activation of apoptotic BAX protein. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129541.	2.4	3
46	Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death and Disease, 2020, 11, 268.	6.3	27
47	Cysteine-based crosslinking approach for characterization of oligomeric pore-forming proteins in the mitochondrial membranes. Methods in Enzymology, 2021, 649, 371-396.	1.0	0
48	Mitochondrial outer membrane permeabilization at the single molecule level. Cellular and Molecular Life Sciences, 2021, 78, 3777-3790.	5.4	17
49	Eltrombopag directly inhibits BAX and prevents cell death. Nature Communications, 2021, 12, 1134.	12.8	28
50	Mechanisms of mitochondrial cell death. Biochemical Society Transactions, 2021, 49, 663-674.	3.4	28
51	Structure of detergent-activated BAK dimers derived from the inert monomer. Molecular Cell, 2021, 81, 2123-2134.e5.	9.7	26
52	An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrialâ£membrane. EMBO Journal, 2021, 40, e106438.	7.8	23
53	Highâ€resolution analysis of the conformational transition of proâ€apoptotic Bak at the lipid membrane. EMBO Journal, 2021, 40, e107159.	7.8	18
54	Dynamic reconfiguration of proâ€apoptotic BAK on membranes. EMBO Journal, 2021, 40, e107237.	7.8	20
55	Apoptosis regulation at the mitochondria membrane level. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183716.	2.6	91

	CITATION R	EPORT	
#	Article	IF	CITATIONS
56	A Kinetic Fluorescence Polarization Ligand Assay for Monitoring BAX Early-Activation. SSRN Electronic Journal, 0, , .	0.4	0
58	The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?. F1000Research, 2020, 9, 935.	1.6	50
59	Disordered clusters of Bak dimers rupture mitochondria during apoptosis. ELife, 2017, 6, .	6.0	60
60	The carboxyl-terminal sequence of bim enables bax activation and killing of unprimed cells. ELife, 2020, 9, .	6.0	30
63	Therapeutics targeting BCL2 family proteins. , 2022, , 197-260.		3
65	Physiological and pharmacological modulation of BAX. Trends in Pharmacological Sciences, 2022, 43, 206-220.	8.7	82
66	Bax Contributes to Retinal Ganglion Cell Dendritic Degeneration During Glaucoma. Molecular Neurobiology, 2022, 59, 1366-1380.	4.0	13
67	DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO Journal, 2022, 41, e108587.	7.8	59
68	Advantages of Quantitative Analysis of Depth-Dependent Fluorescence Quenching: Case Study of BAX. Journal of Membrane Biology, 2022, 255, 461-468.	2.1	3
69	BCLâ€2â€family protein tBID can act as a BAXâ€like effector of apoptosis. EMBO Journal, 2022, 41, e108690.	7.8	74
70	A kinetic fluorescence polarization ligand assay for monitoring BAX early activation. Cell Reports Methods, 2022, 2, 100174.	2.9	4
71	Protein–protein and protein–lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochemical Society Transactions, 2022, , .	3.4	12
72	Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119317.	4.1	36
73	Targeting protein conformations with small molecules to control protein complexes. Trends in Biochemical Sciences, 2022, 47, 1023-1037.	7.5	3
74	The BCL-2 Family Proteins: Insights Into Their Mechanism of Action and Therapeutic Potential. , 2022, , .		0
75	Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nature Reviews Molecular Cell Biology, 2023, 24, 312-333.	37.0	48
76	Apoptotic mitochondrial poration by a growing list of poreâ€forming BCLâ€2 family proteins. BioEssays, 2023, 45, .	2.5	7
77	Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells, 2023, 12, 800.	4.1	0

#	Article	IF	CITATIONS
78	Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Molecular Cell, 2023, 83, 843-856.	9.7	6
79	Structure-destabilizing mutations unleash an intrinsic perforation activity of antiapoptotic Bcl-2 in the mitochondrial membrane enabling apoptotic cell death. , 2023, 1, 48-61.		0
80	Cell death classification: A new insight based on molecular mechanisms. Experimental Cell Research, 2023, 433, 113860.	2.6	0
81	Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Nature Communications, 2023, 14, .	12.8	1