Microfluidic production of multiple emulsions and fund

Lab on A Chip 16, 3415-3440

DOI: 10.1039/c6lc00809g

Citation Report

#	Article	IF	CITATIONS
1	Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on A Chip, 2016, 16, 4313-4318.	3.1	37
2	Hydrate formation in water-laden microcapsules for temperature-sensitive release of encapsulants. RSC Advances, 2016, 6, 85012-85018.	1.7	2
3	Functional Microcapsules via Thiol–Ene Photopolymerization in Droplet-Based Microfluidics. ACS Applied Materials & Droplet-Based Microfluidics.	4.0	39
4	Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points. Journal of Materials Chemistry C, 2017, 5, 1303-1307.	2.7	5
5	Bioinspired Helical Microfibers from Microfluidics. Advanced Materials, 2017, 29, 1605765.	11.1	222
6	Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17178-17185.	4.0	12
7	Droplet control technologies for microfluidic high throughput screening (\hat{l} /4HTS). Lab on A Chip, 2017, 17, 2372-2394.	3.1	82
8	Emerging Droplet Microfluidics. Chemical Reviews, 2017, 117, 7964-8040.	23.0	1,109
9	Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. Small, 2017, 13, 1700646.	5.2	57
10	One-Step Bulk Fabrication of Polymer-Based Microcapsules with Hard–Soft Bilayer Thick Shells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37364-37373.	4.0	12
11	Sequential Coalescence Enabled Twoâ€Step Microreactions in Tripleâ€Core Doubleâ€Emulsion Droplets Triggered by an Electric Field. Small, 2017, 13, 1702188.	5.2	44
12	Complex Emulsions by Extracting Water from Homogeneous Solutions Comprised of Aqueous Three-Phase Systems. Langmuir, 2017, 33, 12670-12680.	1.6	38
13	Microfluidic generation of egg-derived protein microcarriers for 3D cell culture and drug delivery. Science Bulletin, 2017, 62, 1283-1290.	4.3	81
14	Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics. Journal of Materials Chemistry A, 2017, 5, 15026-15030.	5. 2	54
15	Microfluidics Fabrication of Self-Oscillating Microgel Clusters with Tailored Temperature-Responsive Properties Using Polymersomes as "Microreactors― Langmuir, 2017, 33, 14058-14065.	1.6	5
16	Passive and active droplet generation with microfluidics: a review. Lab on A Chip, 2017, 17, 34-75.	3.1	825
17	Dispersing hydrophobic natural colourant \hat{l}^2 -carotene in shellac particles for enhanced stability and tunable colour. Royal Society Open Science, 2017, 4, 170919.	1.1	16
18	Microfluidic Production of Multiple Emulsions. Micromachines, 2017, 8, 75.	1.4	115

#	Article	IF	Citations
19	The Effect of Geometrical and Fluid Kinematic Parameters of a Microfluidic Platform on the Droplet Generation. , 2017 , , .		O
20	A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads. Journal of the American Chemical Society, 2018, 140, 3619-3625.	6.6	42
21	Microfluidic Production of Capsulesâ€inâ€Capsules for Programed Release of Multiple Ingredients. Advanced Materials Technologies, 2018, 3, 1800006.	3.0	27
22	Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics. Chemistry of Materials, 2018, 30, 2583-2588.	3.2	13
23	Microfluidic generation of Prussian blue-laden magnetic micro-adsorbents for cesium removal. Chemical Engineering Journal, 2018, 341, 218-226.	6.6	30
24	Doubleâ€Emulsionâ€Templated Anisotropic Microcapsules for pHâ€Triggered Release. Advanced Materials Interfaces, 2018, 5, 1701472.	1.9	25
25	Microfluidic solvent extraction of poly(vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation. Soft Matter, 2018, 14, 4453-4463.	1.2	14
26	Microfluidic Generation of Bioinspired Spindleâ€knotted Graphene Microfibers for Oil Absorption. ChemPhysChem, 2018, 19, 1990-1994.	1.0	22
27	Influencing factors of multiple emulsions formed by one-step emulsification. Colloid and Polymer Science, 2018, 296, 259-269.	1.0	5
28	Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromolecular Research, 2018, 26, 1054-1065.	1.0	23
29	Preparation of Hollow Cu and CuOx Microspheres with a Hierarchical Structure for Heterogeneous Catalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41793-41801.	4.0	13
30	Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Applied Physics Letters, 2018, 113, .	1.5	32
31	Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40366-40371.	4.0	35
32	Osmotic-Stress-Mediated Control of Membrane Permeability of Polymeric Microcapsules. Chemistry of Materials, 2018, 30, 7211-7220.	3.2	8
33	A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production. Biomedical Microdevices, 2018, 20, 94.	1.4	4
34	Composite Multifunctional Micromotors from Droplet Microfluidics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34618-34624.	4.0	42
35	Dynamic Microcapsules with Rapid and Reversible Permeability Switching. Advanced Functional Materials, 2018, 28, 1803385.	7.8	37
36	Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes, 2018, 9, 283.	1.0	45

#	ARTICLE	IF	CITATIONS
37	Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47, 5646-5683.	18.7	410
38	Liquid Crystals under Confinement in Submicrometer Capsules. Langmuir, 2018, 34, 10955-10963.	1.6	15
39	Rapid production of single- and multi-compartment polymeric microcapsules in a facile 3D microfluidic process for magnetic separation and synergistic delivery. Sensors and Actuators B: Chemical, 2018, 275, 190-198.	4.0	30
40	Microfluidics-Assisted Synthesis of Cross-Linked Colloidosomes with Multisensitive Behaviors: A Potential Platform for Photo Memory Device and Blue-Light-Triggered Release Vehicle. ACS Applied Nano Materials, 2018, 1, 3346-3354.	2.4	13
41	Controlled fabrication of solid-shelled capsules with designed geometry sphericity. Chemical Engineering Science, 2019, 208, 115153.	1.9	8
42	Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing. Lab on A Chip, 2019, 19, 3116-3122.	3.1	18
43	Highâ€throughput dropletâ€based microfluidics for directed evolution of enzymes. Electrophoresis, 2019, 40, 2860-2872.	1.3	42
44	Temperature and composition induced morphology transition of Cerberus emulsion droplets. Journal of Colloid and Interface Science, 2019, 554, 210-219.	5.0	10
45	Controllable Enhancement of Capsuleâ∈Membrane Wrinkles by Flow Shear and Preparation of Doubleâ∈Layer Polyamide Microcapsules. ChemistrySelect, 2019, 4, 6917-6923.	0.7	1
46	A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation. Minerals (Basel, Switzerland), 2019, 9, 595.	0.8	6
47	Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules. ACS Applied Materials & Emp; Interfaces, 2019, 11, 41640-41648.	4.0	9
48	On-Demand Generation of Double Emulsions Based on Interface Shearing for Controlled Ultrasound Activation. ACS Applied Materials & Interfaces, 2019, 11, 40932-40943.	4.0	21
49	Microfluidic Fabrication of Capsule Sensor Platform with Doubleâ€Shell Structure. Advanced Functional Materials, 2019, 29, 1902670.	7.8	23
50	Compoundâ€Dropletâ€Pairsâ€Filled Hydrogel Microfiber for Electricâ€Fieldâ€Induced Selective Release. Small, 2019, 15, e1903098.	5.2	30
51	Microfluidic fabrication and thermal properties of microencapsulated n-heptadecane with hexanediol diacrylate shell for thermal energy storage. Applied Thermal Engineering, 2019, 162, 114278.	3.0	19
52	Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Scientific Reports, 2019, 9, 12694.	1.6	16
53	Centrifugal Force-Driven Modular Micronozzle System: Generation of Engineered Alginate Microspheres. Scientific Reports, 2019, 9, 12776.	1.6	17
54	Synthesis of microcapsules for carbon capture via needle-based droplet microfluidics. Energy Procedia, 2019, 160, 443-450.	1.8	8

#	ARTICLE	IF	CITATIONS
55	New hybrid suspension of MEPCM/GO particles with enhanced dispersion stability and thermo-physical properties. Applied Energy, 2019, 255, 113827.	5.1	14
56	Large-Scale Production of Compound Bubbles Using Parallelized Microfluidics for Efficient Extraction of Metal Ions. Lab on A Chip, 2019, 19, 665-673.	3.1	12
57	Microfluidic gradient device for simultaneously preparing four distinct types of microparticles. RSC Advances, 2019, 9, 17623-17630.	1.7	4
58	Precise morphology control and fast merging of a complex multi-emulsion system: the effects of AC electric fields. Soft Matter, 2019, 15, 5614-5625.	1.2	10
59	Smart Microcapsules with Molecular Polarity―and Temperatureâ€Dependent Permeability. Small, 2019, 15, e1900434.	5.2	24
60	Poly(styrene-co-divinylbenzene-co-acrylamide)/n-octadecane microencapsulated phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2019, 198, 5-10.	3.0	27
61	Analysis of rheological behaviors of two-dimensional emulsion globules with asymmetric internal structures in modest extensional flows. Physics of Fluids, 2019, 31, .	1.6	5
62	Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Advanced Materials Technologies, 2019, 4, 1800687.	3.0	73
63	Spinning and Applications of Bioinspired Fiber Systems. ACS Nano, 2019, 13, 2749-2772.	7.3	151
64	The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. Advanced Materials, 2019, 31, e1801159.	11.1	32
65	A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global Challenges, 2019, 3, 1800060.	1.8	66
66	A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chinese Chemical Letters, 2020, 31, 249-252.	4.8	33
67	Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small, 2020, 16, e1903736.	5.2	77
68	Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using Oneâ€Step, Dualâ€Material 3Dâ€Printed Microfluidics. Advanced Science, 2020, 7, 1901719.	5.6	32
69	Anisotropic structural color particles from colloidal phase separation. Science Advances, 2020, 6, eaay1438.	4.7	133
70	Dropletâ€based microreactor for the production of micro/nanoâ€materials. Electrophoresis, 2020, 41, 833-851.	1.3	34
71	Multi-step processing of single cells using semi-permeable capsules. Lab on A Chip, 2020, 20, 4052-4062.	3.1	18
72	Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Advances in Colloid and Interface Science, 2020, 282, 102208.	7.0	73

#	ARTICLE	IF	CITATIONS
73	Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Molecular Pharmaceutics, 2020, 17, 4421-4434.	2.3	62
74	Reconfigurable complex emulsions: Design, properties, and applications. Chemical Physics Reviews, 2020, 1, 011301.	2.6	34
75	Perfluorocarbon-Loaded Hydrogel Microcapsules from Interface Shearing for Magnetic Guided Ultrasound and Laser Activation. Frontiers in Physics, 2020, 8, .	1.0	3
76	Step emulsification in microfluidic droplet generation: mechanisms and structures. Chemical Communications, 2020, 56, 9056-9066.	2.2	35
77	3D Nanoprinted Liquid-Core-Shell Microparticles. Journal of Microelectromechanical Systems, 2020, 29, 924-929.	1.7	8
78	Quantitative measurements of the somatic cell count of fat-free milk based on droplet microfluidics. Journal of Materials Chemistry C, 2020, 8, 13770-13776.	2.7	9
79	Oneâ€Step Generation of Core–Gap–Shell Microcapsules for Stimuliâ€Responsive Biomolecular Sensing. Advanced Functional Materials, 2020, 30, 2006019.	7.8	17
80	Preparation of ruthenium-functionalized microgels through the intermolecular crosslinking of two functionalized polymers within droplets and study of their chemical/ photo-active behaviors. Polymer Degradation and Stability, 2020, 181, 109345.	2.7	2
81	Toward Sustainable Energy and Materials: CO2 Capture Using Microencapsulated Sorbents. Industrial & Samp; Engineering Chemistry Research, 2020, 59, 9746-9759.	1.8	14
82	Active Encapsulation in Biocompatible Nanocapsules. Small, 2020, 16, e2002716.	5.2	42
83	Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. Advanced Materials, 2020, 32, e2002166.	11.1	39
85	Complex emulsions for shape control based on mass transfer and phase separation. Soft Matter, 2020, 16, 5981-5989.	1.2	10
86	Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release. Lab on A Chip, 2020, 20, 1249-1258.	3.1	18
87	Nonionic Block Copolymer Coacervates. Macromolecules, 2020, 53, 6078-6086.	2.2	16
88	Optimized emulsifier combination based microencapsulated phase change materials (MicroPCMs): Preparation, characterization, and applications. Journal of Renewable and Sustainable Energy, 2020, 12, 014102.	0.8	6
89	Microfluidic Synthesis of Carbon Nanotube-Networked Solid-Shelled Bubbles. Langmuir, 2020, 36, 948-955.	1.6	4
90	Novel nonequilibrium steady states in multiple emulsions. Physics of Fluids, 2020, 32, .	1.6	20
91	SERS hydrogel pellets for highly repeatable and reliable detections of significant small biomolecules in complex samples without pretreatment. Sensors and Actuators B: Chemical, 2021, 327, 128943.	4.0	22

#	Article	IF	CITATIONS
92	Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231, 116242.	1.9	10
93	The vortex-driven dynamics of droplets within droplets. Nature Communications, 2021, 12, 82.	5.8	26
94	The fabrication of phospholipid vesicle-based artificial cells and their functions. New Journal of Chemistry, 2021, 45, 3364-3376.	1.4	12
95	MICROFLUIDIC DEVICES AS A TOOL FOR DRUG DELIVERY AND DIAGNOSIS: A REVIEW. International Journal of Applied Pharmaceutics, 0, , 95-102.	0.3	3
96	Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly. ACS Nano, 2021, 15, 3490-3499.	7.3	40
97	Monodisperse Selectively Permeable Hydrogel Capsules Made from Single Emulsion Drops. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15601-15609.	4.0	12
98	Thermoâ€Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release. Advanced Functional Materials, 2021, 31, 2100782.	7.8	37
99	Shear dynamics of polydisperse double emulsions. Physics of Fluids, 2021, 33, .	1.6	10
100	Advances in controlled release of microcapsules and promising applications in self-healing of asphalt materials. Journal of Cleaner Production, 2021, 294, 126270.	4.6	28
101	Fabrication of Multi-Layered Microspheres Based on Phase Separation for Drug Delivery. Micromachines, 2021, 12, 723.	1.4	7
102	Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. Advanced Materials Technologies, 2021, 6, 2100124.	3.0	14
103	Generation of microdroplets in T-junction devices by pulsed fluid flow: Simulation studies. ISSS Journal of Micro and Smart Systems, 2021, 10, 103-117.	1.0	1
104	Dual (thermo-/pH-) responsive P(NIPAM-co-AA-co-HEMA) nanocapsules for controlled release of 5-fluorouracil. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 860-871.	1.2	11
105	Opportunities and challenges of hydrogel microspheres for tendon–bone healing after anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 289-301.	1.6	9
106	Formation of nanosheets-assembled porous polymer microspheres via the combination effect of polymer crystallization and vapor-induced phase separation. Polymer, 2021, 231, 124118.	1.8	3
107	A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chemical Engineering Science, 2022, 248, 117085.	1.9	40
108	Tuning three-dimensional (3D) shapes of polymeric microparticles by geometry-driven control of mold swelling and capillarity in micromolds. Journal of Colloid and Interface Science, 2021, 600, 373-381.	5.0	4
109	Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chemical Engineering Science, 2021, 243, 116648.	1.9	17

#	Article	IF	CITATIONS
110	Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 2021, 50, 11979-12012.	18.7	17
111	Active Femtoliter Droplet Generation in Microfluidics by Confined Interface Vibration. Langmuir, 2021, 37, 1297-1305.	1.6	7
112	Microfluidic generation of ATPS droplets by transient double emulsion technique. Lab on A Chip, 2021, 21, 2684-2690.	3.1	17
113	Design and Development of a Droplet-Based Microfluidics System Using Laser Fabrication Machining Techniques for a Lab on a Chip Device. Smart Innovation, Systems and Technologies, 2020, , 201-210.	0.5	5
114	Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid Mechanics, 2020, 895, .	1.4	52
115	Droplets breakup via a splitting microchannel. Chinese Physics B, 2020, 29, 054702.	0.7	10
116	Concentrated phase emulsion with multicore morphology under shear: A numerical study. Physical Review Fluids, 2020, 5, .	1.0	10
117	Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics. Research, 2019, 2019, 6906275.	2.8	60
118	Microfluidic droplet-based functional materials for cell manipulation. Lab on A Chip, 2021, 21, 4311-4329.	3.1	21
119	Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polymer Chemistry, 2021, 12, 6667-6687.	1.9	11
120	Microfluidic production of monodisperse emulsions for cosmetics. Biomicrofluidics, 2021, 15, 051302.	1.2	13
121	Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines, 2021, 9, 1551.	1.4	4
122	Microfluidicâ€Generated Biopolymer Microparticles as Cargo Delivery Systems. Advanced Materials Technologies, 2022, 7, 2100733.	3.0	3
123	Two-step generation of monodisperse agarose-solidified double emulsions ($w/w/o$) excluding an inner oil barrier. MethodsX, 2021, 8, 101565.	0.7	0
124	Emulsion Drops as Templates for the Fabrication of Microparticles and Capsules. RSC Soft Matter, 2020, , 261-289.	0.2	0
125	Thermochromic Microcapsules Containing Chiral Mesogens Enclosed by Hydrogel Shell for Colorimetric Temperature Reporters. Advanced Functional Materials, 2022, 32, 2107275.	7.8	17
127	Nanomotorâ€Derived Porous Biomedical Particles from Droplet Microfluidics. Advanced Science, 2022, 9, e2104272.	5.6	31
128	Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophysical Reviews, 2021, 13, 1245-1271.	1.5	1

#	Article	IF	Citations
129	Microfluidic bioscaffolds for regenerative engineering. Engineered Regeneration, 2022, 3, 110-120.	3.0	13
130	The collision of immiscible droplets in three-phase liquid systems: A numerical study using phase-field lattice Boltzmann method. Chemical Engineering Research and Design, 2022, 178, 289-314.	2.7	7
131	A novel microfluidic device for double emulsion formation: The effects of design parameters on droplet production performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128059.	2.3	17
132	Cell-Inspired Hydrogel Microcapsules with a Thin Oil Layer for Enhanced Retention of Highly Reactive Antioxidants. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2597-2604.	4.0	7
133	Geometric and hydrodynamic influences on the droplet breakup dynamics in a branched microdevice. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108818.	1.8	7
134	The creation of raspberry-like droplets and their coalescence dynamics: an ideal model for certain biological processes. Journal of Colloid and Interface Science, 2022, 615, 752-758.	5.0	1
135	Oil-Assisted Generation of Water-in-Water Droplets with Microfluidics., 2022,, 69-87.		0
136	A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers, 2022, 14, 1165.	2.0	8
138	Dielectrophoretic Characterization of Dynamic Microcapsules and Their Magnetophoretic Manipulation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15765-15773.	4.0	4
139	Synthesis of sinapic acid modified sodium hyaluronate particles and the one-step processing of multiple Pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128785.	2.3	3
140	Controlled microfluidic encapsulation of phase change material for thermo-regulation. International Journal of Heat and Mass Transfer, 2022, 190, 122738.	2.5	18
141	Numerical Investigations on Alternate Droplet Formation in Microfluidic Devices. Microgravity Science and Technology, 2021, 33, 1.	0.7	2
142	Fabrication of Nanowalled Catalytically Self-Threaded Supramolecular Polyrotaxane Microcapsules Using Droplet Microfluidics. ACS Applied Polymer Materials, 2022, 4, 4681-4688.	2.0	2
143	Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18159-18169.	4.0	7
148	Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. Lab on A Chip, 2022, 22, 2315-2330.	3.1	8
149	Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab on A Chip, 2022, 22, 2259-2291.	3.1	26
150	Mechanical characterization of soft microparticles prepared by droplet microfluidics. Journal of Polymer Science, 2022, 60, 1670-1699.	2.0	5
151	Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel. Applied Sciences (Switzerland), 2022, 12, 4362.	1.3	0

#	ARTICLE	IF	CITATIONS
152	Interfacial deformation of confined photocurable fluid for fabrication of shapeâ€imprinted microspheres. Journal of Polymer Science, 0, , .	2.0	1
153	Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis. ACS Applied Materials & Single Genome Analysis. ACS Applied Materials & Single Genome Analysis.	4.0	4
154	Generation and evolution of double emulsions in a circular microchannel. Chemical Engineering Science, 2022, 255, 117683.	1.9	6
155	Oral delivery of stem-cell-loaded hydrogel microcapsules restores gut inflammation and microbiota. Journal of Controlled Release, 2022, 347, 508-520.	4.8	15
156	Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction. Materials Today: Proceedings, 2022, 65, 3081-3092.	0.9	5
157	Microfluidics in Drug Delivery. , 2022, , 135-162.		1
158	Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. International Journal of Biological Macromolecules, 2022, 216, 1-13.	3.6	2
159	Tailoring micro/nano-fibers for biomedical applications. Bioactive Materials, 2023, 19, 328-347.	8.6	44
160	Designing photonic microparticles with droplet microfluidics. Chemical Communications, 2022, 58, 10303-10328.	2.2	17
161	Simple formulation and characterization of double emulsion variant designed to carry three bioactive agents. Heliyon, 2022, 8, e10397.	1.4	3
162	Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chemical Reviews, 2022, 122, 16839-16909.	23.0	43
163	Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering, 2022, 9, 625.	1.6	8
164	Microfluidic synthesis of graphene oxide/MnO ₂ -incorporated self-propelling micromotors for organic dye removal. Journal of Materials Chemistry C, 2023, 11, 1029-1036.	2.7	3
165	Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. International Journal of Biological Macromolecules, 2023, 235, 123784.	3.6	3