Accretion onto Pre-Main-Sequence Stars

Annual Review of Astronomy and Astrophysics 54, 135-180

DOI: 10.1146/annurev-astro-081915-023347

Citation Report

#	Article	IF	CITATIONS
1	THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI. Astrophysical Journal, 2016, 831, 133.	1.6	20
2	Gravitational Instabilities in Circumstellar Disks. Annual Review of Astronomy and Astrophysics, 2016, 54, 271-311.	8.1	323
3	Time evolution of the water snowline in viscous discs. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2869-2878.	1.6	7
4	Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco. Astrophysical Journal, 2017, 842, 123.	1.6	26
5	X-shooter spectroscopy of young stellar objects in Lupus. Astronomy and Astrophysics, 2017, 602, A33.	2.1	63
6	Cometary dust: the diversity of primitive refractory grains. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160260.	1.6	38
7	Apparent Disk-mass Reduction and Planetisimal Formation in GravitationallyUnstable Disks in Class 0/I Young Stellar Objects. Astrophysical Journal, 2017, 838, 151.	1.6	39
8	The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main. Astrophysical Journal, 2017, 849, 69.	1.6	36
9	A statistical spectropolarimetric study of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 854-868.	1.6	27
10	Rings and gaps produced by variable magnetic disc winds and avalanche accretion streams – I. Axisymmetric resistive MHD simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3850-3868.	1.6	40
11	Disk Evolution and the Fate of Water. Space Science Reviews, 2017, 212, 813-834.	3.7	7
12	Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2017, 605, A77.	2.1	26
13	An Incipient Debris Disk in the Chamaeleon I Cloud. Astrophysical Journal, 2017, 844, 60.	1.6	5
14	Magnetically Induced Disk Winds and Transport in the HL Tau Disk. Astrophysical Journal, 2017, 845, 31.	1.6	61
15	Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics. Astrophysical Journal, 2017, 845, 75.	1.6	136
16	Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks. Astrophysical Journal, 2017, 847, 31.	1.6	64
17	On the jet of a young star RWAurA and related problems. Astrophysical Bulletin, 2017, 72, 277-285.	0.3	14
18	How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. Astrophysical Journal, 2017, 849, 43.	1.6	42

TION RED

#	Article	IF	CITATIONS
19	The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations. Astrophysical Journal, 2017, 849, 107.	1.6	18
20	A Continuum of Accretion Burst Behavior in Young Stars Observed by K2. Astrophysical Journal, 2017, 836, 41.	1.6	53
21	Extreme infrared variables from UKIDSS – II. An end-of-survey catalogue of eruptive YSOs and unusual stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2990-3020.	1.6	28
22	Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot. Astronomy and Astrophysics, 2017, 607, A14.	2.1	21
23	X-shooter study of accretion in Chamaeleon I. Astronomy and Astrophysics, 2017, 604, A127.	2.1	112
24	Magnetic fields of intermediate mass T Tauri stars. Astronomy and Astrophysics, 2017, 608, A77.	2.1	29
25	Chemical enrichment of the planet-forming region as probed by accretion. Monthly Notices of the Royal Astronomical Society, 2018, 473, 757-764.	1.6	7
26	Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1176-1193.	1.6	36
27	How do T Tauri stars accrete?. Monthly Notices of the Royal Astronomical Society, 2018, 474, 88-94.	1.6	34
28	A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star. Astrophysical Journal, 2018, 857, 4.	1.6	32
29	Linking Signatures of Accretion with Magnetic Field Measurements–Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars. Astrophysical Journal, 2018, 852, 5.	1.6	16
30	Planet population synthesis driven by pebble accretion in cluster environments. Monthly Notices of the Royal Astronomical Society, 2018, 474, 886-897.	1.6	64
31	Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 2018, 555, 507-510.	13.7	140
32	A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi. Astrophysical Journal, 2018, 855, 98.	1.6	13
33	Gaia 17bpi: An FU Ori–type Outburst. Astrophysical Journal, 2018, 869, 146.	1.6	51
34	Multiepoch, multiwavelength study of accretion onto T Tauri. Astronomy and Astrophysics, 2018, 618, A55.	2.1	8
35	Anatomy of the massive star-forming region S106. Astronomy and Astrophysics, 2018, 617, A45.	2.1	27
36	A Refined Sample of Lyman Excess H ii Regions. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5579-5590.	1.6	1

#	Article	IF	CITATIONS
37	Connection between jets, winds and accretion in T Tauri stars. Astronomy and Astrophysics, 2018, 609, A87.	2.1	69
38	The 2016–2017 peak luminosity of the pre-main sequence variable V2492 Cygni. Astronomy and Astrophysics, 2018, 611, A54.	2.1	8
39	Probing the protoplanetary disk gas surface density distribution with ¹³ CO emission. Astronomy and Astrophysics, 2018, 619, A113.	2.1	14
40	A Submillimeter Burst of S255IR SMA1: The Rise and Fall of Its Luminosity. Astrophysical Journal Letters, 2018, 863, L12.	3.0	29
41	X-shooter observations of low-mass stars in the <i>η</i> Chamaeleontis association. Astronomy and Astrophysics, 2018, 609, A70.	2.1	26
42	The Dawes Review 8: Measuring the Stellar Initial Mass Function. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	76
43	S Coronae Australis: a T Tauri twin. Astronomy and Astrophysics, 2018, 614, A117.	2.1	11
44	The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1239-1257.	1.6	91
45	Planet Formation: An Optimized Population-synthesis Approach. Astrophysical Journal, 2018, 865, 30.	1.6	24
46	Towards a better classification of unclear eruptive variables: the cases of V2492 Cyg, V350 Cep, and ASASSN-15qi. Astronomy and Astrophysics, 2018, 614, A9.	2.1	8
47	Protoplanetary Disk Sizes and Angular Momentum Transport. Astrophysical Journal, 2018, 864, 168.	1.6	41
48	Magnetic fields in Bok globules: multi-wavelength polarimetry as tracer across large spatial scales. Astronomy and Astrophysics, 2018, 618, A163.	2.1	2
49	YSO jets in the Galactic plane from UWISH2 – V. Jets and outflows in M17. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4577-4595.	1.6	12
50	X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region. Astrophysical Journal, 2018, 856, 51.	1.6	27
51	The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. Astrophysical Journal, 2018, 854, 31.	1.6	38
52	Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau. Astrophysical Journal, 2018, 852, 56.	1.6	23
53	Exploration of Cosmic-ray Acceleration in Protostellar Accretion Shocks and a Model for Ionization Rates in Embedded Protoclusters. Astrophysical Journal, 2018, 861, 87.	1.6	31
54	The Strongest Magnetic Fields on the Coolest Brown Dwarfs. Astrophysical Journal, Supplement Series, 2018, 237, 25.	3.0	62

#	Article	IF	CITATIONS
55	A universal relation for the propeller mechanisms in magnetic rotating stars at different scales. Astronomy and Astrophysics, 2018, 610, A46.	2.1	38
56	Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks. Astronomy and Astrophysics, 2018, 612, A104.	2.1	49
57	The structure and spectrum of the accretion shock in the atmospheres of young stars. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4367-4377.	1.6	15
58	The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System. Astrophysical Journal, 2018, 859, 111.	1.6	16
59	Observational signatures of outbursting protostars - I: From hydrodynamic simulations to observations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5106-5117.	1.6	14
61	Probing the cold magnetised Universe with SPICA-POL (B-BOP). Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	13
62	Solar Models with Convective Overshoot, Solar-wind Mass Loss, and PMS Disk Accretion: Helioseismic Quantities, Li Depletion, and Neutrino Fluxes. Astrophysical Journal, 2019, 881, 103.	1.6	27
63	Impact of Cosmic-Ray Feedback on Accretion and Chemistry in Circumstellar Disks. Astrophysical Journal, 2019, 883, 121.	1.6	20
64	The First Detection of ¹³ C ¹⁷ O in a Protoplanetary Disk: A Robust Tracer of Disk Gas Mass. Astrophysical Journal Letters, 2019, 882, L31.	3.0	54
65	An Analytic Model for an Evolving Protoplanetary Disk with a Disk Wind. Astrophysical Journal, 2019, 879, 98.	1.6	13
66	Using Multiwavelength Variability to Explore the Connection among X-Ray Emission, the Far-ultraviolet H ₂ Bump, and Accretion in T Tauri Stars. Astrophysical Journal, 2019, 876, 121.	1.6	14
67	A Comparison of the X-Ray Properties of FU Ori-type Stars to Generic Young Stellar Objects. Astrophysical Journal, 2019, 883, 117.	1.6	11
68	The Astrochemical Impact of Cosmic Rays in Protoclusters. I. Molecular Cloud Chemistry. Astrophysical Journal, 2019, 878, 105.	1.6	33
69	The Planetary Accretion Shock. II. Grid of Postshock Entropies and Radiative Shock Efficiencies for Nonequilibrium Radiation Transport. Astrophysical Journal, 2019, 881, 144.	1.6	43
70	Submillimeter Continuum Variability in Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2019, 242, 27.	3.0	0
71	Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. VI. The Case of LH 95 in the Large Magellanic Cloud*. Astrophysical Journal, 2019, 875, 51.	1.6	12
72	Revealing the Star–Disk–Jet Connection in GM Aur Using Multiwavelength Variability. Astrophysical Journal Letters, 2019, 877, L34.	3.0	11
73	Multiepoch Ultraviolet HST Observations of Accreting Low-mass Stars. Astrophysical Journal, 2019, 874, 129.	1.6	31

#	Article	IF	CITATIONS
74	The imprint of X-ray photoevaporation of planet-forming discs on the orbital distribution of giant planets. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3448-3458.	1.6	21
75	The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophysical Journal, 2019, 875, 61.	1.6	140
76	Classical T-Tauri stars with VPHAS+: II: NGC 6383 in Sh 2-012â~ Monthly Notices of the Royal Astrono Society, 2019, 484, 5102-5112.	mical 1.6	5
77	Highâ€energy emission and its variability in young stellar objects. Astronomische Nachrichten, 2019, 340, 284-289.	0.6	4
78	A multiwavelength view of a classical T Tauri star CV Cha. Research in Astronomy and Astrophysics, 2019, 19, 007.	0.7	1
79	Disc wind models for FU Ori objects. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1663-1673.	1.6	12
80	Ejection History of the IRAS 04166+2706 Molecular Jet. Astrophysical Journal, 2019, 874, 31.	1.6	7
81	Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks. Astronomy and Astrophysics, 2019, 624, A28.	2.1	34
82	Isochronal age-mass discrepancy of young stars: SCExAO/CHARIS integral field spectroscopy of the HIP 79124 triple system. Astronomy and Astrophysics, 2019, 622, A42.	2.1	20
83	Identifying Variability in Deeply Embedded Protostars with ALMA and CARMA. Astrophysical Journal, 2019, 871, 149.	1.6	9
84	Modelling the radio and X-ray emission from T-Tauri flares. Monthly Notices of the Royal Astronomical Society, 2019, 483, 917-930.	1.6	9
85	How planetary growth outperforms migration. Astronomy and Astrophysics, 2019, 622, A202.	2.1	67
86	The degree of fine-tuning in our universe — and others. Physics Reports, 2019, 807, 1-111.	10.3	27
87	The potential of combining MATISSE and ALMA observations: constraining the structure of the innermost region in protoplanetary discs. Astronomy and Astrophysics, 2019, 622, A147.	2.1	3
88	Chemical evolution of planetary materials in a dynamic solar nebula. Proceedings of the International Astronomical Union, 2019, 15, 152-157.	0.0	0
89	Exploring the conditions for forming cold gas giants through planetesimal accretion. Astronomy and Astrophysics, 2019, 631, A70.	2.1	34
90	Constraining Planetary Gas Accretion Rate from Hα Line Width and Intensity: Case of PDS 70 b and c. Astrophysical Journal Letters, 2019, 885, L29.	3.0	29
91	Dynamics of wind and the dusty environments in the accreting T Tauri stars RY Tauri and SU Aurigae. Monthly Notices of the Royal Astronomical Society, 2019, 483, 132-146.	1.6	12

#	Article	IF	CITATIONS
92	Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER. Astronomy and Astrophysics, 2019, 623, L5.	2.1	8
93	Flares of accretion activity of the 20 Myr old UXOR RZ Psc. Astronomy and Astrophysics, 2019, 630, A64.	2.1	8
94	New insight on accretion shocks onto young stellar objects. Astronomy and Astrophysics, 2019, 630, A84.	2.1	7
95	X-shooter spectroscopy of young stars with disks. Astronomy and Astrophysics, 2019, 632, A46.	2.1	26
96	HST spectra reveal accretion in MY Lupi. Astronomy and Astrophysics, 2019, 629, A108.	2.1	36
97	Close-in giant-planet formation via in-situ gas accretion and their natal disk properties. Astronomy and Astrophysics, 2019, 629, L1.	2.1	6
98	Quasi-static contraction during runaway gas accretion onto giant planets. Astronomy and Astrophysics, 2019, 630, A82.	2.1	33
99	Complex Magnetospheric Accretion Flows in the Low Accretor CVSO 1335. Astrophysical Journal, 2019, 884, 86.	1.6	10
100	The New EXor Outburst of ESO-Hα 99 Observed by Gaia ATLAS and TESS. Astronomical Journal, 2019, 158, 241.	1.9	17
101	X-Ray Emission and Disk Irradiation of HL Tau and HD 100546. Astrophysical Journal, 2020, 888, 15.	1.6	7
102	Modeling the Accretion Disk around the High-mass Protostar GGD 27-MM1. Astrophysical Journal, 2020, 888, 41.	1.6	19
103	The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori. Monthly Notices of the Royal Astronomical Society, 2020, 497, 632-642.	1.6	11
104	A class of three-dimensional gyroviscous magnetohydrodynamic models. Journal of Plasma Physics, 2020, 86, .	0.7	4
105	Laboratory evidence for an asymmetric accretion structure upon slanted matter impact in young stars. Astronomy and Astrophysics, 2020, 642, A38.	2.1	7
106	1+1D implicit disk computations. Computer Physics Communications, 2020, 256, 107437.	3.0	4
107	Resolved star formation in the metal-poor star-forming region Magellanic Bridge C. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2534-2553.	1.6	5
108	Dust settling instability in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2715-2729.	1.6	16
109	Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY. Astronomy and Astrophysics, 2020, 636, A108.	2.1	25

# 110	ARTICLE Stellar initial mass function variation in massive early-type galaxies: the potential role of the deuterium abundance. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4051-4059.	IF 1.6	Citations
111	Variable Accretion onto Protoplanet Host Star PDS 70. Astrophysical Journal, 2020, 892, 81.	1.6	26
112	The Evolution of the Inner Regions of Protoplanetary Disks. Astrophysical Journal, 2020, 893, 56.	1.6	18
113	The Solar Wind Prevents Reaccretion of Debris after Mercury's Giant Impact. Planetary Science Journal, 2020, 1, 7.	1.5	9
114	The Physics of Star Cluster Formation and Evolution. Space Science Reviews, 2020, 216, 1.	3.7	65
115	Physical Processes in Star Formation. Space Science Reviews, 2020, 216, 1.	3.7	43
116	The UV Perspective of Low-Mass Star Formation. Galaxies, 2020, 8, 27.	1.1	12
117	The Circumstellar Environment around the Embedded Protostar EC 53. Astrophysical Journal, 2020, 889, 20.	1.6	14
118	Protostellar accretion in low mass metal poor stars and the cosmological lithium problem. Astronomy and Astrophysics, 2020, 638, A81.	2.1	6
119	Catalogue of new Herbig Ae/Be and classical Be stars. Astronomy and Astrophysics, 2020, 638, A21.	2.1	46
120	The Planetary Luminosity Problem: "Missing Planets―and the Observational Consequences of Episodic Accretion. Astrophysical Journal, 2020, 895, 48.	1.6	29
121	Global 3D radiation magnetohydrodynamic simulations for FU Ori's accretion disc and observational signatures of magnetic fields. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3494-3514.	1.6	26
122	Star Formation in the Ultraviolet. Galaxies, 2020, 8, 43.	1.1	1
123	On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer?. Galaxies, 2020, 8, 39.	1.1	22
124	Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars. Astrophysical Journal, 2020, 890, 106.	1.6	38
125	The accretion rates and mechanisms of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 234-249.	1.6	62
126	A <i>Swift</i> view of X-ray and UV radiation in the planet-forming TÂTauri system PDSÂ70. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L56-L60.	1.2	6
127	Formation of close binaries by disc fragmentation and migration, and its statistical modelling. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5158-5171.	1.6	74

# 128	ARTICLE Short- and long-term near-infrared spectroscopic variability of eruptive protostars from VVV. Monthly Notices of the Royal Astronomical Society, 2020, 492, 294-314.	IF 1.6	Citations 22
129	Formation of moon systems around giant planets. Astronomy and Astrophysics, 2020, 633, A93.	2.1	25
130	Detectability of embedded protoplanets from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3440-3458.	1.6	26
131	The magnetic field and accretion regime of ClÂTau. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5660-5670.	1.6	36
132	2MASS J15460752â^'6258042: a mid-M dwarf hosting a prolonged accretion disc. Monthly Notices of the Royal Astronomical Society, 2020, 494, 62-68.	1.6	20
133	Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch. Icarus, 2021, 355, 114087.	1.1	17
134	Astrochemistry and compositions of planetary systems. Physics Reports, 2021, 893, 1-48.	10.3	128
136	The influence of the environment on the spin evolution of low-mass stars – I. External photoevaporation of circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3710-3729.	1.6	22
137	A Differential Measurement of Circumstellar Extinction for AA Tau's 2011 Dimming Event*. Astronomical Journal, 2021, 161, 61.	1.9	15
138	Bubbles to Chondrites-II. Chemical fractionations in chondrites. Progress in Earth and Planetary Science, 2021, 8, .	1.1	1
139	High-resolution Mid-infrared Spectroscopy of GV Tau N: Surface Accretion and Detection of NH ₃ in a Young Protoplanetary Disk. Astrophysical Journal, 2021, 908, 171.	1.6	8
140	Synthetic Light Curves of Accretion Variability in T Tauri Stars. Astrophysical Journal, 2021, 908, 16.	1.6	13
141	A faint companion around CrA-9: protoplanet or obscured binary?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6117-6139.	1.6	11
142	A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm. Astrophysical Journal, 2021, 909, 1.	1.6	8
143	Dipper-like variability of the <i>Gaia</i> alerted young star V555 Ori. Monthly Notices of the Royal Astronomical Society, 2021, 504, 185-198.	1.6	8
144	Exploring HNC and HCN line emission as probes of the protoplanetary disk temperature. Astronomy and Astrophysics, 2021, 647, A118.	2.1	10
145	Analysis of physical processes in eruptive YSOs with near-infrared spectra and multiwavelength light curves. Monthly Notices of the Royal Astronomical Society, 2021, 504, 830-856.	1.6	20
146	An <i>HST</i> /STIS view of protoplanetary discs in UpperÂScorpius: observations of three young M stars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3074-3083.	1.6	2

#	Article	IF	CITATIONS
147	Earth's carbon deficit caused by early loss through irreversible sublimation. Science Advances, 2021, 7,	4.7	27
148	Which planets trigger longer lived vortices: low-mass or high-mass?. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3963-3985.	1.6	16
149	Gas Infalling Motions in the Envelopes of Very Low Luminosity Objects. Astrophysical Journal, 2021, 910, 112.	1.6	4
150	Modulated accretion in the T Tauri star RY Tau – a stable MHD propeller or a planet at 0.2 au?. Monthly Notices of the Royal Astronomical Society, 2021, 504, 871-877.	1.6	5
151	Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 b. Astronomical Journal, 2021, 161, 244.	1.9	31
152	Testing the models of X-ray driven photoevaporation with accreting stars in the Orion Nebula Cluster. Astronomy and Astrophysics, 2021, 648, A121.	2.1	12
153	Star-disk interaction in the T Tauri star V2129 Ophiuchi: An evolving accretion-ejection structure. Astronomy and Astrophysics, 2021, 649, A68.	2.1	13
154	Measuring Young Stars in Space and Time. II. The Pre-main-sequence Stellar Content of N44. Astronomical Journal, 2021, 161, 257.	1.9	6
155	Effect of mass-loss due to stellar winds on the formation of supermassive black hole seeds in dense nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2186-2194.	1.6	8
156	Theoretical Predictions of Surface Light Element Abundances in Protostellar and Pre-Main Sequence Phase. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3
157	The GALAH survey and symbiotic stars – I. Discovery and follow-up of 33 candidate accreting-only systems. Monthly Notices of the Royal Astronomical Society, 2021, 505, 6121-6154.	1.6	16
158	KMOS study of the mass accretion rate from Class I to Class II in NGC 1333. Astronomy and Astrophysics, 2021, 650, A43.	2.1	25
159	Evolution of the atomic component in protostellar outflows. Astronomy and Astrophysics, 2021, 650, A173.	2.1	5
160	PENELLOPE: The ESO data legacy program to complement the <i>Hubble</i> UV Legacy Library of Young Stars (ULLYSES). Astronomy and Astrophysics, 2021, 650, A196.	2.1	32
161	Terrestrial planet compositions controlled by accretion disk magnetic field. Progress in Earth and Planetary Science, 2021, 8, .	1.1	12
162	An ALMA study of outflow parameters of protoclusters: outflow feedback to maintain the turbulence. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4316-4334.	1.6	9
163	Evolution of the Water Snow Line in Magnetically Accreting Protoplanetary Disks. Astrophysical Journal, 2021, 916, 72.	1.6	15
164	Transport of Protostellar Cosmic Rays in Turbulent Dense Cores. Astrophysical Journal, 2021, 915, 43.	1.6	10

#	Article	IF	CITATIONS
165	Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures. Space Science Reviews, 2021, 217, 1.	3.7	81
166	The <scp>star-melt python</scp> package for emission-line analysis of YSOs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3331-3350.	1.6	8
167	Understanding the Angular Momentum Evolution of T Tauri and Herbig Ae/Be Stars. Astronomical Journal, 2021, 162, 90.	1.9	2
168	Multicolor Variability of Young Stars in the Lagoon Nebula: Driving Causes and Intrinsic Timescales. Astronomical Journal, 2021, 162, 101.	1.9	21
169	GIARPS High-resolution Observations of T Tauri stars (GHOsT). Astronomy and Astrophysics, 2021, 652, A72.	2.1	15
170	Comparison of Planetary Hα-emission Models: A New Correlation with Accretion Luminosity. Astrophysical Journal Letters, 2021, 917, L30.	3.0	25
171	Time-dependent, long-term hydrodynamic simulations of the inner protoplanetary disk. Astronomy and Astrophysics, 2021, 655, A110.	2.1	4
172	Beyond the dips of V807 Tau, a spectropolarimetric study of a dipper's magnetosphere. Astronomy and Astrophysics, 2021, 656, A50.	2.1	8
173	Measuring the density structure of an accretion hot spot. Nature, 2021, 597, 41-44.	13.7	16
174	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2021, 655, A73.	2.1	16
175	Imprint of planet formation in the deep interior of the Sun. Astronomy and Astrophysics, 0, , .	2.1	6
176	Evidence of Accretion Burst: The Viscously Heated Inner Disk of the Embedded Protostar IRAS 16316-1540. Astrophysical Journal, 2021, 919, 116.	1.6	5
177	Jets from young stars. New Astronomy Reviews, 2021, 93, 101615.	5.2	26
178	UV astronomy and the investigation of the origin of life. , 2021, , 15-73.		2
179	An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars. Astronomy and Astrophysics, 2017, 605, A86.	2.1	45
180	Protostellar half-life: new methodology and estimates. Astronomy and Astrophysics, 2018, 618, A158.	2.1	27
181	Dust cleansing of star-forming gas. Astronomy and Astrophysics, 2018, 620, A53.	2.1	9
182	Inner disk structure of the classical T Tauri star LkCa 15. Astronomy and Astrophysics, 2018, 620, A195.	2.1	36

		CITATION REPORT		
#	Article		IF	CITATIONS
183	Constraining MHD disk winds with ALMA. Astronomy and Astrophysics, 2020, 640, A82		2.1	27
184	Possible evidence of induced repetitive magnetic reconnection in a superflare from a yo star. Astronomy and Astrophysics, 2020, 636, A96.	ung solar-type	2.1	8
185	X-shooter survey of disk accretion in Upper Scorpius. Astronomy and Astrophysics, 2020), 639, A58.	2.1	46
186	Magnetospheric accretion in the intermediate-mass T Tauri star HQ Tauri. Astronomy an Astrophysics, 2020, 642, A99.	d	2.1	19
187	Bipolar molecular outflow of the very low-mass star Par-Lup3-4. Astronomy and Astroph 640, A13.	ysics, 2020,	2.1	4
188	Strong H <i>α</i> emission and signs of accretion in a circumbinary planetary mass com MUSE. Astronomy and Astrophysics, 2020, 638, L6.	apanion from	2.1	26
189	Modeling protoplanetary disk SEDs with artificial neural networks. Astronomy and Astro 2020, 642, A171.	physics,	2.1	25
190	Magnetic torques on T Tauri stars: Accreting versus non-accreting systems. Astronomy a Astrophysics, 2020, 643, A129.	and	2.1	22
191	Investigating the magnetospheric accretion process in the young pre-transitional disk sy (V2062 Oph). Astronomy and Astrophysics, 2020, 643, A99.	ıstem DoAr 44	2.1	16
192	Measuring the atomic composition of planetary building blocks. Astronomy and Astroph 642, L15.	ıysics, 2020,	2.1	14
193	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society c 2020, 132, 102001.	of the Pacific,	1.0	29
194	Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2461-2	479.	1.6	134
195	CCAT-Prime: science with an ultra-widefield submillimeter observatory on Cerro Chajnan	tor., 2018,,.		24
196	Accretion Kinematics in the T Tauri Binary TWA 3A: Evidence for Preferential Accretion o 3A Primary. Astronomical Journal, 2019, 158, 245.	nto the TWA	1.9	25
197	Accretion Properties of PDS 70b with MUSE*. Astronomical Journal, 2020, 159, 222.		1.9	42
198	The Outburst of the Young Star Gaia19bey. Astronomical Journal, 2020, 160, 164.		1.9	14
199	Periodic Eruptive Variability of the Isolated Pre-main-sequence Star V347 Aurigae. Astror Journal, 2020, 160, 278.	ıomical	1.9	10
200	Magnetospheric Accretion as a Source of Hα Emission from Protoplanets around PDS 7 Journal, 2019, 885, 94.	0. Astrophysical	1.6	39

		Report	
#	Article	IF	CITATIONS
201	Possible Progression of Mass-flow Processes around Young Intermediate-mass Stars Based on High-resolution Near-infrared Spectroscopy. I. Taurus. Astrophysical Journal, 2019, 886, 115.	1.6	6
202	The Nature of Class I Sources: Periodic Variables in Orion. Astrophysical Journal, 2019, 885, 64.	1.6	2
203	Young Stars near Cometary Globule CG 30 in the Tumultuous Gum Nebula. Astrophysical Journal, 2020, 889, 50.	1.6	5
204	Global Hydromagnetic Simulations of Protoplanetary Disks with Stellar Irradiation and Simplified Thermochemistry. Astrophysical Journal, 2020, 896, 126.	1.6	55
205	Aluminum-26 Enrichment in the Surface of Protostellar Disks Due to Protostellar Cosmic Rays. Astrophysical Journal, 2020, 898, 79.	1.6	14
206	ALMA Observations of Young Eruptive Stars: Continuum Disk Sizes and Molecular Outflows. Astrophysical Journal, 2020, 900, 7.	1.6	7
207	High-resolution Spectroscopic Monitoring Observations of FU Orionis–type Object, V960 Mon. Astrophysical Journal, 2020, 900, 36.	1.6	14
208	Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.	1.6	49
209	Keck/OSIRIS PaÎ ² High-contrast Imaging and Updated Constraints on PDS 70b. Astronomical Journal, 2021, 162, 214.	1.9	9
210	Hydrodynamic Model of Hα Emission from Accretion Shocks of a Proto-giant Planet and Circumplanetary Disk. Astrophysical Journal, 2021, 921, 10.	1.6	8
211	Paleomagnetic evidence for a disk substructure in the early solar system. Science Advances, 2021, 7, eabj6928.	4.7	19
212	The dispersal of protoplanetary discs – III. Influence of stellar mass on disc photoevaporation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3611-3619.	1.6	30
213	Disk Evolution and the Fate of Water. Space Sciences Series of ISSI, 2017, , 233-254.	0.0	0
214	GIARPS/GRAVITY Survey: Broad-Band 0.44–2.4 Micron High-Resolution Spectra of T-Tauri and Herbig AeBe Stars – Combining High Spatial and High Spectral Resolution Data to Unveil the Inner Disc Physics. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 133-138.	0.3	0
215	Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau. International Journal of Astronomy and Astrophysics, 2019, 09, 321-334.	0.2	1
216	Arcus: the soft x-ray grating explorer. , 2019, , .		8
217	ROME (Radio Observations of Magnetized Exoplanets). II. HD 189733 Does Not Accrete Significant Material from Its Exoplanet Like a T Tauri Star from a Disk. Astrophysical Journal, 2019, 887, 229.	1.6	3
218	Near-infrared Accretion Diagnostics of Young Stellar Objects. Research Notes of the AAS, 2019, 3, 195.	0.3	1

#	Article	IF	CITATIONS
219	Constraining Temperature and Density of Accretion Flows in T Tauri Stars from Brackett Line Ratios. Research Notes of the AAS, 2020, 4, 7.	0.3	1
220	Accretion in low-mass members of the Orion Nebula Cluster with young transition disks. Astronomy and Astrophysics, 2020, 636, A86.	2.1	2
221	Steady-state accretion in magnetized protoplanetary disks. Astronomy and Astrophysics, 2022, 658, A97.	2.1	21
222	The Near-stellar Environment of Class 0 Protostars: A First Look with Near-infrared Spectroscopy. Astrophysical Journal, 2021, 921, 110.	1.6	6
223	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights. Astrophysical Journal, Supplement Series, 2021, 257, 1.	3.0	117
224	Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the Molecular Wind on the Evolution of the HD 163296 System. Astrophysical Journal, Supplement Series, 2021, 257, 16.	3.0	20
225	Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Journal, Supplement Series, 2021, 257, 5.	3.0	87
226	Bridging the Gap between Protoplanetary and Debris Disks: Separate Evolution of Millimeter and Micrometer-sized Dust. Astrophysical Journal, 2021, 921, 72.	1.6	33
227	Interferometric study on the temporal variability of the brightness distributions of protoplanetary disks. Astronomy and Astrophysics, 2020, 642, A104.	2.1	10
228	A close-encounter method for simulating the dynamics of planetesimals. Astronomy and Astrophysics, 2020, 644, A14.	2.1	0
229	КлаÑÑĐ,чĐμÑĐºĐ,Đμ Đ·Đ²ĐμĐ·ĐʹÑ‹ Ñ,Đ,Đ;а Đ¢ Đ¢ĐμĐ»ÑŒÑ†Đ°: Đ°ĐºĐºÑ€ĐμцĐ,Ñ , Đ²ĐμÑ,ĐμÑ€, ĐįÑ‹	Đ≫ðŒ. Iz	v e stiâ Kryn
230	Secular evolution of MHD wind-driven discs: analytical solutions in the expanded α-framework. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2290-2309.	1.6	35
231	A survey for variable young stars with small telescopes – V. Analysis of TX Ori, V505 Ori, and V510 the <i>HST</i> ULLYSES targets in the σ Ori cluster. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2883-2899.	₀Ori, 1.6	3
233	Accretion variability from minute to decade timescales in the classical T Tauri star CR Cha. Astronomy and Astrophysics, 2022, 660, A108.	2.1	11
234	Small-scale magnetic fields of the spectroscopic binary T Tauri stars V1878 Ori and V4046 Sgr. Astronomy and Astrophysics, 2022, 659, A151.	2.1	3
235	The Effects of Starspots on Spectroscopic Mass Estimates of Low-mass Young Stars. Astrophysical Journal, 2022, 925, 21.	1.6	10
236	Testing the Potential for Radio Variability in Disks around T Tauri Stars with Observations and Chemical Modeling. Astrophysical Journal, 2022, 924, 104.	1.6	6
237	A Census of the Low Accretors. I. The Catalog. Astronomical Journal, 2022, 163, 74.	1.9	12

#	Article	IF	CITATIONS
238	The dynamics of the TRAPPIST-1 system in the context of its formation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3814-3831.	1.6	15
239	The ODYSSEUS Survey. Motivation and First Results: Accretion, Ejection, and Disk Irradiation of CVSO 109. Astronomical Journal, 2022, 163, 114.	1.9	15
240	Kepler-167e as a Probe of the Formation Histories of Cold Giants with Inner Super-Earths. Astrophysical Journal, 2022, 926, 62.	1.6	13
241	Tracing Accretion onto Herbig Ae/Be Stars Using the BrÎ ³ Line. Astrophysical Journal, 2022, 926, 229.	1.6	13
242	The protoplanetary disk population in the <i>Ï</i> -Ophiuchi region L1688 and the time evolution of Class II YSOs. Astronomy and Astrophysics, 2022, 663, A98.	2.1	21
243	Determining Dispersal Mechanisms of Protoplanetary Disks Using Accretion and Wind Mass Loss Rates. Astrophysical Journal Letters, 2022, 926, L23.	3.0	12
244	A "no-drift" runaway pile-up of pebbles in protoplanetary disks. II. Characteristics of the resulting planetesimal belt. Astronomy and Astrophysics, 0, , .	2.1	1
245	Accretion and outflows in young stars with CUBES. Experimental Astronomy, 0, , 1.	1.6	2
246	Application of a Steady-state Accretion Disk Model to Spectrophotometry and High-resolution Spectra of Two Recent FU Ori Outbursts. Astrophysical Journal, 2022, 927, 144.	1.6	8
247	Recurrent Strong Outbursts of an EXor-like Young Eruptive Star Gaia20eae. Astrophysical Journal, 2022, 927, 125.	1.6	10
248	The Accretion Process in the DQ Tau Binary System. Astrophysical Journal, 2022, 928, 81.	1.6	4
249	An <scp> <i>Arcus</i> </scp> view of stellar space weather. Astronomische Nachrichten, 0, , .	0.6	0
250	The role of density perturbation on planet formation by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5278-5297.	1.6	5
251	RW Aur A: SpeX Spectral Evidence for Differentiated Planetesimal Formation, Migration, and Destruction in an â^¼3 Myr Old Excited CTTS System. Astrophysical Journal, 2022, 928, 189.	1.6	3
252	Pre-main sequence stars in LH 91. Astronomy and Astrophysics, 2022, 663, A74.	2.1	1
253	Dust accumulation near the magnetospheric truncation of protoplanetary discs around TÂTauri stars. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5246-5265.	1.6	6
254	Accreting protoplanets: Spectral signatures and magnitude of gas and dust extinction at H <i>\hat{l}±</i> . Astronomy and Astrophysics, 2022, 657, A38.	2.1	22
256	Laboratory modeling of jets from young stars using plasma focus facilities. Physics-Uspekhi, 2023, 66, 327-359.	0.8	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
257	Magnetic Fields and Accreting Giant Planets around PDS 70. Astrophysical Journal, 202	21, 923, 27.	1.6	4
258	Low Mass Stars as Tracers of Star and Cluster Formation. Publications of the Astronom of the Pacific, 2022, 134, 042001.	nical Society	1.0	11
259	Identification and Spectroscopic Characterization of 128 New Herbig Stars*. Astrophy 2022, 930, 39.	sical Journal,	1.6	13
260	Gas Disk Sizes from CO Line Observations: A Test of Angular Momentum Evolution. As Journal, 2022, 931, 6.	trophysical	1.6	25
261	Modelling the secular evolution of protoplanetary disc dust sizes $\hat{a} \in \hat{a}$ comparison be viscous and magnetic wind case. Monthly Notices of the Royal Astronomical Society, 2 1088-1106.	ween the 022, 514,	1.6	6
262	Hydrogen emission from accretion and outflow in T Tauri stars. Monthly Notices of the Astronomical Society, 2022, 514, 2162-2180.	Royal	1.6	6
263	A potential new phase of massive star formation. Astronomy and Astrophysics, 2022, 6	565, A22.	2.1	4
264	The Ages of Optically Bright Subclusters in the Serpens Star-forming Region. Astrophy 2022, 933, 77.	sical Journal,	1.6	2
265	PENELLOPE. Astronomy and Astrophysics, 2022, 664, L7.		2.1	9
266	Gap Opening and Inner Disk Structure in the Strongly Accreting Transition Disk of DM Astronomical Journal, 2022, 164, 105.	Tau.	1.9	4
267	Probing Magnetic Fields in Protoplanetary Disk Atmospheres through Polarized Near-IR Scattered by Aligned Grains. Astronomical Journal, 2022, 164, 99.	Light	1.9	1
268	Chandra Observations of Six Peter Pan Disks: Diversity of X-Ray-driven Internal Photoer Rates Does Not Explain Their Rare Longevity. Astrophysical Journal, 2022, 935, 111.	vaporation	1.6	0
269	Understanding Accretion Variability through TESS Observations of Taurus. Astrophysic 2022, 935, 54.	al Journal,	1.6	7
270	The He I <i>λ</i> 10830 à line as a probe of winds and accretion in young stars in Lu Scorpius. Astronomy and Astrophysics, 2022, 666, A188.	pus and Upper	2.1	7
271	Monitoring accretion rate variability in the Orion Nebula Cluster with the Wendelstein Imager. Astronomy and Astrophysics, 2022, 666, A55.	Wide Field	2.1	3
272	Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion (AB)b*. Astrophysical Journal Letters, 2022, 935, L18.	Delorme 1	3.0	12
273	Time-dependent, long-term hydrodynamic simulations of the inner protoplanetary disk Astrophysics, 2022, 667, A46.	. Astronomy and	2.1	5
274	Growing the seeds of pebble accretion through planetesimal accretion. Astronomy and 2022, 666, A108.	Astrophysics,	2.1	7

#	Article	IF	CITATIONS
275	GIARPS High-resolution Observations of T Tauri stars (GHOsT). Astronomy and Astrophysics, 2022, 667, A124.	2.1	14
276	A Multi-epoch, Multiwavelength Study of the Classical FUor V1515 Cyg Approaching Quiescence. Astrophysical Journal, 2022, 936, 64.	1.6	8
277	The Relation between the Mass Accretion Rate and the Disk Mass in Class I Protostars. Astrophysical Journal Letters, 2022, 937, L9.	3.0	8
278	<i>Gaia</i> Data Release 3. Astronomy and Astrophysics, 2023, 674, A30.	2.1	7
279	Diagnosing FU Ori-like Sources: The Parameter Space of Viscously Heated Disks in the Optical and Near-infrared. Astrophysical Journal, 2022, 936, 152.	1.6	15
280	Accretion Burst Echoes as Probes of Protostellar Environments and Episodic Mass Assembly. Astrophysical Journal, 2022, 937, 29.	1.6	4
281	Accretion variability in RU Lup. Astronomy and Astrophysics, 2022, 668, A94.	2.1	3
282	HST UV Spectroscopy of the Planet-hosting T Tauri Star PDS 70. Astrophysical Journal, 2022, 938, 134.	1.6	3
283	Towards a Comprehensive View of Accretion, Inner Disks, and Extinction in Classical T Tauri Stars: An ODYSSEUS Study of the Orion OB1b Association. Astronomical Journal, 2022, 164, 201.	1.9	10
284	Accretion and Extinction Variations in the Low-mass Pre-main-sequence Binary System WX Cha*. Astrophysical Journal, 2022, 938, 93.	1.6	3
285	Pre-main Sequence: Accretion and Outflows. , 2022, , 1-34.		1
287	The influence of metallicity on a combined stellar and disk evolution. Astronomy and Astrophysics, 2023, 669, A84.	2.1	4
288	Far-ultraviolet Flares on Accreting Protostars: Weak and Classical T Tauri Stellar Pair Analysis. Astrophysical Journal, 2022, 939, 82.	1.6	3
289	Accretion process, magnetic fields, and apsidal motion in the pre-main sequence binary DQ Tau. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5072-5088.	1.6	2
290	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2023, 669, A59.	2.1	6
291	Photometric and Spectroscopic Study of the EXor-like Eruptive Young Star Gaia19fct. Astrophysical Journal, 2022, 941, 165.	1.6	8
292	X-ray and UV radiation in the planet-forming T-Tauri system PDS 70. Signs of accretion and coronal activity. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4514-4528.	1.6	1
293	The evolution of circumstellar discs in the galactic centre: an application to the G-clouds. Monthly Notices of the Royal Astronomical Society, 2022, 519, 397-417.	1.6	6

		CITATION REPORT		
#	Article		IF	CITATIONS
294	Accretion Variability of the Multiple T Tauri System VW Cha. Astrophysical Journal, 2022,	941, 177.	1.6	4
295	Spectroscopic Confirmation of a Population of Isolated, Intermediate-mass Young Stellar Astronomical Journal, 2023, 165, 3.	Objects.	1.9	3
296	Planet engulfment signatures in twin stars. Monthly Notices of the Royal Astronomical So 518, 5465-5474.	ociety, 2022,	1.6	8
297	Three-dimensional Simulations of Magnetospheric Accretion in a T Tauri Star: Accretion a Structures Just Around the Star. Astrophysical Journal, 2022, 941, 73.	nd Wind	1.6	8
298	Toward a population synthesis of disks and planets. Astronomy and Astrophysics, 2023,	673, A78.	2.1	6
299	Resolved near-UV hydrogen emission lines at 40-Myr super-Jovian protoplanet Delorme 1 Astronomy and Astrophysics, 2023, 669, L12.	(AB)b.	2.1	7
300	Misalignment of the outer disk of DK Tau and a first look at its magnetic field using spectropolarimetry. Astronomy and Astrophysics, 2023, 670, A165.		2.1	2
301	Physical conditions for dust grain alignment in Class 0 protostellar cores. Astronomy and Astrophysics, 2023, 671, A167.		2.1	2
302	Pre-main-sequence Brackett Emitters in the APOGEE DR17 Catalog: Line Strengths and P Properties of Accretion Columns. Astrophysical Journal, 2023, 942, 22.	hysical	1.6	2
304	Herbig Stars. Space Science Reviews, 2023, 219, .		3.7	8
305	Stable accretion and episodic outflows in the young transition disk system GM Aurigae. A and Astrophysics, 2023, 672, A5.	Astronomy	2.1	3
306	Spectral Energy Distribution for T Tauri Stars with a Debris Disk. Astronomy Reports, 202	2, 66, 965-980.	0.2	0
307	When, where, and how many planets end up in first-order resonances?. Monthly Notices Astronomical Society, 2023, 522, 828-846.	of the Royal	1.6	3
308	The predictive power of numerical simulations to study accretion and outflow in T Tauri S Proceedings of the International Astronomical Union, 2020, 16, 234-245.	itars.	0.0	0
309	A Census of the Low Accretors. II. Accretion Properties. Astrophysical Journal, 2023, 944,	90.	1.6	6
310	The Mass Accretion Rate and Stellar Properties in Class I Protostars. Astrophysical Journa 135.	, 2023, 944,	1.6	9
311	Lyα Scattering Models Trace Accretion and Outflow Kinematics in T Tauri Systems*. Astr Journal, 2023, 944, 185.	ophysical	1.6	3
312	A High-resolution Optical Survey of Upper Sco: Evidence for Coevolution of Accretion and Winds. Astrophysical Journal, 2023, 945, 112.	l Disk	1.6	4

#	Article	IF	CITATIONS
313	Correlating Changes in Spot Filling Factors with Stellar Rotation: The Case of LkCa 4. Astrophysical Journal, 2023, 946, 10.	1.6	1
314	Comparison the Massive Star Formation Theorem of Collision and Accretion. , 0, 38, 391-398.		0
315	JWST Observations of Young protoStars (JOYS). Astronomy and Astrophysics, 2023, 673, A121.	2.1	9
316	What governs the spin distribution of very young < 1 Myr low-mass stars. Astronomy and Astrophysics, 0, , .	2.1	2
317	A search for thermal gyro-synchrotron emission from hot stellar coronae. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1394-1410.	1.6	0
318	Chemical Modeling of Orion Nebula Cluster Disks: Evidence for Massive, Compact Gas Disks with Interstellar Gas-to-dust Ratios. Astrophysical Journal, 2023, 947, 7.	1.6	5
319	Strong Variability in AzV 493, an Extreme Oe-type Star in the SMC. Astrophysical Journal, 2023, 947, 27.	1.6	1
320	New eruptive variable(s) in the RAFCL 7009S H <scp>ii</scp> region. Monthly Notices of the Royal Astronomical Society, 2023, 522, 2171-2180.	1.6	1
346	Comparison ofÂTwo Methods forÂModeling theÂDynamics ofÂGas Flows inÂaÂProtoplanetary Disk. Communications in Computer and Information Science, 2023, , 269-284.	0.4	0
347	FU Orionis (Object). , 2023, , 1086-1088.		0
388	Pre-main Sequence: Accretion and Outflows. , 2024, , 3237-3270.		0