Gravitational Instabilities in Circumstellar Disks

Annual Review of Astronomy and Astrophysics 54, 271-311 DOI: 10.1146/annurev-astro-081915-023307

Citation Report

#	Article	IF	CITATIONS
1	Spiral arms detected around an infant star. Physics Today, 2016, 69, 22-23.	0.3	1
2	Accretion onto Pre-Main-Sequence Stars. Annual Review of Astronomy and Astrophysics, 2016, 54, 135-180.	24.3	391
3	A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature, 2016, 538, 483-486.	27.8	188
4	Fragmentation of Kozai–Lidov Disks. Astrophysical Journal Letters, 2017, 835, L29.	8.3	38
5	On the fragmentation boundary in magnetized self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3406-3416.	4.4	21
6	HOW BRIGHT ARE PLANET-INDUCED SPIRAL ARMS IN SCATTERED LIGHT?. Astrophysical Journal, 2017, 835, 38.	4.5	68
7	Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity. Astrophysical Journal, 2017, 840, 32.	4.5	79
8	Time evolution of the water snowline in viscous discs. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2869-2878.	4.4	7
9	ALMA Observations of Starless Core Substructure in Ophiuchus. Astrophysical Journal, 2017, 838, 114.	4.5	32
10	The effect of radiative feedback on disc fragmentation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2-18.	4.4	29
11	Structure of radiation-dominated gravitoturbulent quasar discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4018-4027.	4.4	2
12	Slowly-growing gap-opening planets trigger weaker vortices. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3533-3543.	4.4	45
13	Protoplanetary disc â€̃isochrones' and the evolution of discs in the MË™-Md plane. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4700-4706.	4.4	62
14	The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations. Astrophysical Journal, 2017, 848, 40.	4.5	42
15	Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 2017, 3, e1700407.	10.3	174
16	Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks. Astrophysical Journal, 2017, 847, 31.	4.5	64
17	Mass Transport from the Envelope to the Disk of V346 Nor: A Case Study for the Luminosity Problem in an FUor-type Young Eruptive Star. Astrophysical Journal, 2017, 843, 45.	4.5	20
18	A desert of gas giant planets beyond tens of au: from feast to famine. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2387-2409.	4.4	44

ATION RED

#	Article	IF	CITATIONS
19	Gravitational instabilities in a protosolar-like disc – II. Continuum emission and mass estimates. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1828-1847.	4.4	12
20	Formation and survival of Population III stellar systems. Monthly Notices of the Royal Astronomical Society, 2017, 470, 898-914.	4.4	74
21	The Young Substellar Companion ROXs 12 B: Near-infrared Spectrum, System Architecture, and Spin–Orbit Misalignment [*] . Astronomical Journal, 2017, 154, 165.	4.7	45
22	Precessing Jet and Large Dust Grains in the V380 Ori NE Star-forming Region. Astrophysical Journal, Supplement Series, 2017, 232, 24.	7.7	11
23	In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3206-3219.	4.4	29
24	Gravito-turbulence in irradiated protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 561-578.	4.4	11
25	Protostellar accretion traced with chemistry. Astronomy and Astrophysics, 2017, 602, A120.	5.1	39
26	Changes in the metallicity of gas giant planets due to pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 477, 593-615.	4.4	18
27	The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162.	4.5	71
28	Evolution and Photoevaporation of Protoplanetary Disks in Clusters: The Role of Pre-stellar Core Properties. Astrophysical Journal, 2018, 853, 22.	4.5	5
29	Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation. Astrophysical Journal, 2018, 853, 37.	4.5	98
30	On fragmentation of turbulent self-gravitating discs in the long cooling time regime. Monthly Notices of the Royal Astronomical Society, 2018, 475, 921-931.	4.4	3
31	Rings and gaps in the disc around Elias 24 revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5296-5312.	4.4	79
32	Planetary-like spirals caused by moving shadows in transition discs. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L35-L39.	3.3	44
33	A Brief Overview of Planet Formation. , 2018, , 1-19.		1
34	Formation of Giant Planets. , 2018, , 1-25.		2
35	Giant Planet Formation and Migration. Space Science Reviews, 2018, 214, 1.	8.1	19
36	Spiral Arms in Disks: Planets or Gravitational Instability?. Astrophysical Journal, 2018, 862, 103.	4.5	64

_

#	Article	IF	CITATIONS
37	ALMA continuum observations of the protoplanetary disk AS 209. Astronomy and Astrophysics, 2018, 610, A24.	5.1	140
38	The interplay between the viscosity and EUV radiation on the dispersal of protoplanetary discs. Astrophysics and Space Science, 2018, 363, 1.	1.4	1
39	Multiple star systems in the Orion nebula. Astronomy and Astrophysics, 2018, 620, A116.	5.1	23
40	Giant planet migration during FU Orionis outbursts: 1D disc models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3438-3446.	4.4	1
41	An Ultra Metal-poor Star Near the Hydrogen-burning Limit*. Astrophysical Journal, 2018, 867, 98.	4.5	30
42	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
43	Formation of Giant Planets. , 2018, , 2319-2343.		6
44	Occurrence Rates from Direct Imaging Surveys. , 2018, , 1967-1983.		11
45	Circumstellar Discs: What Will Be Next?. , 2018, , 3321-3352.		4
46	Properties and Occurrence Rates for Kepler Exoplanet Candidates as a Function of Host Star Metallicity from the DR25 Catalog. Astronomical Journal, 2018, 156, 221.	4.7	45
47	The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks. Astrophysical Journal Letters, 2018, 869, L46.	8.3	250
48	The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks. Astrophysical Journal Letters, 2018, 869, L43.	8.3	121
49	Gas-assisted Growth of Protoplanets in a Turbulent Medium. Astrophysical Journal, 2018, 861, 74.	4.5	11
50	The Maximum Mass Solar Nebula and the early formation of planets. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3273-3278.	4.4	22
51	Fragmentation and disk formation during high-mass star formation. Astronomy and Astrophysics, 2018, 617, A100.	5.1	76
52	Protoplanetary Disk Sizes and Angular Momentum Transport. Astrophysical Journal, 2018, 864, 168.	4.5	41
53	High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. Astrophysical Journal Letters, 2018, 866, L6.	8.3	69
54	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	4.4	676

#	Article	IF	CITATIONS
55	Core fragmentation and Toomre stability analysis of W3(H ₂ O). Astronomy and Astrophysics, 2018, 618, A46.	5.1	38
56	Evolution of Circumbinary Protoplanetary Disks with Photoevaporative Winds Driven by External Far-ultraviolet Radiation. Astrophysical Journal, 2018, 867, 41.	4.5	5
57	Restrictions on the Growth of Gas Giant Cores via Pebble Accretion. Astrophysical Journal, 2018, 864, 66.	4.5	12
58	The Eccentric Cavity, Triple Rings, Two-armed Spirals, and Double Clumps of the MWC 758 Disk. Astrophysical Journal, 2018, 860, 124.	4.5	126
59	Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4868-4889.	4.4	88
60	On the diversity and statistical properties of protostellar discs. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5618-5658.	4.4	213
61	Occurrence Rates from Direct Imaging Surveys. , 2018, , 1-17.		0
62	Magnetorotational instability and dynamo action in gravito-turbulent astrophysical discs. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2212-2232.	4.4	20
63	Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment–fragment interactions. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5036-5048.	4.4	77
64	From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars. Astrophysical Journal, 2018, 857, 40.	4.5	10
65	Probing Episodic Accretion in Very Low Luminosity Objects. Astrophysical Journal, 2018, 854, 15.	4.5	25
66	Evidence for the start of planet formation in a young circumstellar disk. Nature Astronomy, 2018, 2, 646-651.	10.1	74
67	Formation of Giant Planets. , 2018, , 1-25.		1
68	A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets?. Astrophysical Journal Letters, 2018, 857, L9.	8.3	22
69	Transforming Dust to Planets. Space Science Reviews, 2018, 214, 1.	8.1	12
70	Vortex survival in 3D self-gravitating accretion discs. Monthly Notices of the Royal Astronomical Society, 2018, 478, 575-591.	4.4	12
71	The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7. Astrophysical Journal, 2018, 856, 164.	4.5	10
72	The route to massive black hole formation via merger-driven direct collapse: a review. Reports on Progress in Physics, 2019, 82, 016901.	20.1	55

#	Article	IF	CITATIONS
73	Nonaxisymmetric instabilities and star-disk coupling I. Moderate mass disks. Astrophysics and Space Science, 2019, 364, 1.	1.4	0
74	Super-Eddington Accretion Disks around Supermassive Black Holes. Astrophysical Journal, 2019, 880, 67.	4.5	128
76	Constraining the initial planetary population in the gravitational instability model. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4873-4889.	4.4	12
77	Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences (Switzerland), 2019, 9, 105.	2.2	51
78	Thermal Infrared Imaging of MWC 758 with the Large Binocular Telescope: Planetary-driven Spiral Arms?. Astrophysical Journal, 2019, 882, 20.	4.5	23
79	The Observability of Vortex-driven Spiral Arms in Protoplanetary Disks: Basic Spiral Properties. Astrophysical Journal Letters, 2019, 883, L39.	8.3	17
80	The Concentration and Growth of Solids in Fragmenting Circumstellar Disks. Astrophysical Journal, 2019, 881, 162.	4.5	13
81	Chronology of Episodic Accretion in Protostars—An ALMA Survey of the CO and H ₂ O Snowlines. Astrophysical Journal, 2019, 884, 149.	4.5	47
82	On the origin of wide-orbit ALMA planets: giant protoplanets disrupted by their cores. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5187-5201.	4.4	9
83	Time-dependent evolution of the protoplanetary discs with magnetic winds. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4623-4637.	4.4	5
84	Angular momentum transport in accretion disks: a hydrodynamical perspective. EAS Publications Series, 2019, 82, 391-413.	0.3	16
85	Forming Pop III binaries in self-gravitating discs: how to keep the orbital angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2658-2672.	4.4	25
86	A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Science, 2019, 365, 1441-1445.	12.6	78
87	Gravitoturbulent dynamos in astrophysical discs. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3989-4008.	4.4	19
88	Giant planets and brown dwarfs on wide orbits: a code comparison project. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4398-4413.	4.4	17
89	The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au. Astronomical Journal, 2019, 158, 13.	4.7	270
90	A dust and gas cavity in the disc around CQ Tau revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4638-4654.	4.4	33
91	The Temporal Requirements of Directly Observing Self-gravitating Spiral Waves in Protoplanetary Disks with ALMA. Astrophysical Journal, 2019, 871, 228.	4.5	24

#	Article	IF	Citations
92	A Fast Poisson Solver of Second-order Accuracy for Isolated Systems in Three-dimensional Cartesian and Cylindrical Coordinates. Astrophysical Journal, Supplement Series, 2019, 241, 24.	7.7	11
93	Diagnosing the Clumpy Protoplanetary Disk of the UXor Type Young Star GM Cephei. Astrophysical Journal, 2019, 871, 183.	4.5	7
94	The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophysical Journal, 2019, 875, 61.	4.5	140
95	A 3D hydrodynamics study of gravitational instabilities in a young circumbinary disc. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2347-2361.	4.4	4
96	Growth and Settling of Dust Particles in Protoplanetary Nebulae: Implications for Opacity, Thermal Profile, and Gravitational Instability. Astrophysical Journal, 2019, 874, 26.	4.5	12
97	A Hypothesis for the Rapid Formation of Planets. Astrophysical Journal Letters, 2019, 874, L34.	8.3	22
98	Dusty spirals triggered by shadows in transition discs. Astronomy and Astrophysics, 2019, 622, A43.	5.1	11
99	Flybys in protoplanetary discs: I. Gas and dust dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4114-4139.	4.4	85
100	Non-linear outcome of gravitational instability in an irradiated protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2019, 485, 266-285.	4.4	23
101	Super-Earths in the TWÂHya disc. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L130-L135.	3.3	16
102	Structure of a Protobinary System: An Asymmetric Circumbinary Disk and Spiral Arms. Astrophysical Journal, 2019, 871, 36.	4.5	21
103	Precise radial velocities of giant stars. Astronomy and Astrophysics, 2019, 624, A18.	5.1	13
104	On the episodic excursions of massive protostars in the Hertzsprung–Russell diagram. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2482-2498.	4.4	17
105	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	5.1	55
106	Is the ring inside or outside the planet?: the effect of planet migration on dust rings. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3678-3695.	4.4	36
107	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
108	Misaligned accretion disc formation via Kozai–Lidov oscillations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 315-325.	4.4	33
109	The Role of Magnetic Fields in Protostellar Outflows and Star Formation. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	53

#	Article	IF	CITATIONS
110	Jupiter formed as a pebble pile around the N ₂ ice line. Astronomy and Astrophysics, 2019, 632, L11.	5.1	48
111	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2019, 631, A1.	5.1	16
112	Self-gravitating disks in binary systems: an SPH approach. Astronomy and Astrophysics, 2019, 628, A82.	5.1	2
113	ALMA study of the HD 100453 AB system and the tidal interaction of the companion with the disk. Astronomy and Astrophysics, 2019, 624, A33.	5.1	31
114	Greening of the brown-dwarf desert. Astronomy and Astrophysics, 2019, 628, A64.	5.1	19
115	Highly Embedded 8 μm cores of Star Formation in the Spiral Arms and Filaments of 15 Nearby Disk Galaxies. Astrophysical Journal, Supplement Series, 2019, 245, 14.	7.7	13
116	The statistical properties of stars and their dependence on metallicity. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2341-2361.	4.4	64
117	The viscous evolution of circumstellar discs in young star clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 732-742.	4.4	17
118	Study of the structure of the inflow/outflow region in the self-gravitating standard accretion disks. New Astronomy, 2020, 81, 101426.	1.8	0
119	Gravitoviscous protoplanetary discs with a dust component – IV. Disc outer edges, spectral indices, and opacity gaps. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5578-5597.	4.4	10
120	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics, 2020, 58, 483-528.	24.3	220
121	Peter Pan discs: finding Neverland's parameters. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L111-L115.	3.3	11
122	The close binary fraction as a function of stellar parameters in APOGEE: a strong anticorrelation with α abundances. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1607-1626.	4.4	34
123	Massive discs around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4130-4148.	4.4	26
124	The Physics of Star Cluster Formation and Evolution. Space Science Reviews, 2020, 216, 1.	8.1	65
125	Highlights of exoplanetary science from Spitzer. Nature Astronomy, 2020, 4, 453-466.	10.1	16
126	TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission*. Astronomical Journal, 2020, 159, 151.	4.7	29
127	The Origin of the Stellar Mass Distribution and Multiplicity. Space Science Reviews, 2020, 216, 1.	8.1	29

		CITATION REPORT		
#	Article		IF	CITATIONS
128	Planet formation by pebble accretion in ringed disks. Astronomy and Astrophysics, 2020), 638, A1.	5.1	49
129	The Planetary Luminosity Problem: "Missing Planets―and the Observational Conse Accretion. Astrophysical Journal, 2020, 895, 48.	quences of Episodic	4.5	29
130	Planet formation around M dwarfs via disc instability. Astronomy and Astrophysics, 202	0, 633, A116.	5.1	35
131	Obliquity Constraints on an Extrasolar Planetary-mass Companion. Astronomical Journa 181.	l, 2020, 159,	4.7	37
132	Structure of the self-gravitating accretion discs in the presence of outflow. Monthly Not Royal Astronomical Society, 2020, 496, 434-441.	ices of the	4.4	0
133	Setting the Stage: Planet Formation and Volatile Delivery. Space Science Reviews, 2020	, 216, 1.	8.1	24
134	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysi A5.	cs, 2020, 637,	5.1	20
135	Formation of close binaries by disc fragmentation and migration, and its statistical mod Monthly Notices of the Royal Astronomical Society, 2020, 491, 5158-5171.	elling.	4.4	74
136	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Characterization of Class 0 and Class I Protostellar Disks. Astrophysical Journal, 2020, 8	Statistical 90, 130.	4.5	170
137	Do the TRAPPIST-1 Planets Have Hydrogen-rich Atmospheres?. Astrophysical Journal, 20	20, 889, 77.	4.5	24
138	Observations of Planetary Systems. , 2020, , 1-48.			0
139	Terrestrial Planet Formation. , 2020, , 181-219.			0
141	Protoplanetary Disk Structure. , 2020, , 49-85.			0
142	Protoplanetary Disk Evolution. , 2020, , 86-140.			0
143	Planetesimal Formation. , 2020, , 141-180.			0
144	Giant Planet Formation. , 2020, , 220-246.			0
145	Early Evolution of Planetary Systems. , 2020, , 247-300.			0
150	Shadowing and multiple rings in the protoplanetary disk of HD 139614. Astronomy and 2020, 635, A121.	Astrophysics,	5.1	34

#	Article	IF	CITATIONS
151	Effects of dust-charge gradient and polarization forces on the waves and Jeans instability in strongly coupled dusty plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126462.	2.1	16
152	The paradox of youth for ALMA planet candidates. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2910-2925.	4.4	5
153	Constraining planet formation around 6–8 M⊙ stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 765-775.	4.4	12
154	Global Simulations of Self-gravitating Magnetized Protoplanetary Disks. Astrophysical Journal, 2020, 891, 154.	4.5	24
155	Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A. Astrophysical Journal Letters, 2021, 907, L10.	8.3	13
156	Spiral Arm Pattern Motion in the SAO 206462 Protoplanetary Disk. Astrophysical Journal Letters, 2021, 906, L9.	8.3	16
157	The influence of infall on the properties of protoplanetary discs. Astronomy and Astrophysics, 2021, 645, A43.	5.1	18
158	Comparison of Gaia and Hipparcos parallaxes of close visual binary stars and the impact on determinations of their masses. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
159	Kozai–Lidov oscillations triggered by a tilt instability of detached circumplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4426-4434.	4.4	3
160	Searching for wide-orbit gravitational instability protoplanets with ALMA in the dust continuum. Monthly Notices of the Royal Astronomical Society, 2021, 502, 953-968.	4.4	4
161	History of the solar nebula from meteorite paleomagnetism. Science Advances, 2021, 7, .	10.3	39
162	Formation and evolution of protostellar accretion discs – I.ÂAngular-momentum budget, gravitational self-regulation, and numerical convergence. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4911-4929.	4.4	21
163	A faint companion around CrA-9: protoplanet or obscured binary?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6117-6139.	4.4	11
164	A two-step gravitational cascade for the fragmentation of self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4192-4207.	4.4	10
165	Ring Formation in Protoplanetary Disks Driven by an Eccentric Instability. Astrophysical Journal, 2021, 910, 79.	4.5	3
166	Stellar Evolution in AGN Disks. Astrophysical Journal, 2021, 910, 94.	4.5	66
167	Eruptive Behavior of Magnetically Layered Protoplanetary Disks in Low-metallicity Environments. Astrophysical Journal, 2021, 909, 31.	4.5	4
168	The asymmetric inner disk of the Herbig Ae star HD 163296 in the eyes of VLTI/MATISSE: evidence for a vortex?. Astronomy and Astrophysics, 2021, 647, A56.	5.1	22

		CITATION REPORT		
#	Article		IF	CITATIONS
169	Particle Dynamics in 3D Self-gravitating Disks. I. Spirals. Astrophysical Journal, 2021, 90	9, 135.	4.5	10
170	Discovery of a directly imaged planet to the young solar analog YSES 2. Astronomy and 2021, 648, A73.	Astrophysics,	5.1	25
171	A highly non-Keplerian protoplanetary disc. Astronomy and Astrophysics, 2021, 648, A1	9.	5.1	23
172	Linear Stability Analysis of a Magnetic Rotating Disk with Ohmic Dissipation and Ambip Astrophysical Journal, 2021, 910, 163.	olar Diffusion.	4.5	6
173	Growth of Massive Disks and Early Disk Fragmentation in Primordial Star Formation. As Journal, 2021, 911, 52.	trophysical	4.5	12
174	Gravitoviscous Protoplanetary Disks with a Dust Component. V. The Dynamic Model for and Sublimation of Volatiles. Astrophysical Journal, 2021, 910, 153.	^r Freeze-out	4.5	9
175	Survival of ALMA rings in the absence of pressure maxima. Monthly Notices of the Roya Society, 2021, 505, 1162-1179.	l Astronomical	4.4	15
176	STARFORGE: Towards a comprehensive numerical model of star cluster formation and f Monthly Notices of the Royal Astronomical Society, 2021, 506, 2199-2231.	eedback.	4.4	73
177	An upper limit for the growth of inner planets?. Monthly Notices of the Royal Astronom 2021, 505, 869-888.	ical Society,	4.4	3
178	Spiral structures in gravito-turbulent gaseous disks. Astronomy and Astrophysics, 2021	, 650, A49.	5.1	11
179	Spiral Arms and a Massive Dust Disk with Non-Keplerian Kinematics: Possible Evidence f Gravitational Instability in the Disk of Elias 2–27. Astrophysical Journal, 2021, 914, 88	or }.	4.5	38
180	A Dynamical Measurement of the Disk Mass in Elias 2–27. Astrophysical Journal Lette	rs, 2021, 914, L27.	8.3	29
181	Collapse of turbulent massive cores with ambipolar diffusion and hybrid radiative transf Astronomy and Astrophysics, 2021, 652, A69.	er.	5.1	22
182	On the secular evolution of the ratio between gas and dust radii in protoplanetary discs Notices of the Royal Astronomical Society, 2021, 507, 818-833.	. Monthly	4.4	27
183	Evolution of the Water Snow Line in Magnetically Accreting Protoplanetary Disks. Astro Journal, 2021, 916, 72.	physical	4.5	15
184	A multiwavelength analysis of the spiral arms in the protoplanetary disk around WaOph and Astrophysics, 2021, 654, A35.	6. Astronomy	5.1	8
185	ALMA 870 \hat{l}_{4} m continuum observations of HD 100546. Astronomy and Astrophysics, 2	2021, 651, A90.	5.1	20
186	Primordial obliquities of brown dwarfs and super-Jupiters from fragmenting gravito-turb Monthly Notices of the Royal Astronomical Society, 2021, 507, 5187-5194.	ulent discs.	4.4	12

#	Article	IF	CITATIONS
187	Large Adaptive Optics Survey for Substellar Objects around Young, Nearby, Low-mass Stars with Robo-AO. Astronomical Journal, 2021, 162, 102.	4.7	10
188	Disk fragmentation in high-mass star formation. Astronomy and Astrophysics, 2021, 655, A84.	5.1	13
189	The young protostellar disc in IRAS 16293â´´2422 B is hot and shows signatures of gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2583-2599.	4.4	12
190	Formation of ring-like structures in flared α-discs with X-ray/FUV photoevaporation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 950-965.	4.4	Ο
191	Massive Compact Disks around FU Orionis–type Young Eruptive Stars Revealed by ALMA. Astrophysical Journal, Supplement Series, 2021, 256, 30.	7.7	23
192	Formation and evolution of protostellar accretion discs – II. From 3D simulation to a simple semi-analytic model of Class 0/I discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2142-2168.	4.4	23
193	Gravitational fragmentation of extremely metal-poor circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4767-4785.	4.4	6
194	Circumstellar Discs: What Will Be Next?. , 2017, , 1-32.		2
195	Constraints from Planets in Binaries. Astrophysics and Space Science Library, 2017, , 315-337.	2.7	3
196	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	2.7	11
197	Zooming in on Individual Star Formation: Low- and High-Mass Stars. Space Science Reviews, 2020, 216, 1.	8.1	33
199	The impact of numerical oversteepening on the fragmentation boundary in self-gravitating disks. Astronomy and Astrophysics, 2017, 606, A70.	5.1	9
200	Missing water in Class I protostellar disks. Astronomy and Astrophysics, 2020, 636, A26.	5.1	18
201	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2020, 636, A65.	5.1	19
202	Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astronomy and Astrophysics, 2020, 640, A19.	5.1	114
203	X-shooter survey of disk accretion in Upper Scorpius. Astronomy and Astrophysics, 2020, 639, A58.	5.1	46
204	Annular substructures in the transition disks around LkCa 15 and J1610. Astronomy and Astrophysics, 2020, 639, A121.	5.1	36
205	Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): A close low-mass companion to ET Cha. Astronomy and Astrophysics, 2020, 642, A119.	5.1	10

#	Article	IF	CITATIONS
206	Orbital features of distant trans-Neptunian objects induced by giant gaseous clumps. Astronomy and Astrophysics, 2020, 642, L20.	5.1	2
207	Accretion bursts in magnetized gas-dust protoplanetary disks. Astronomy and Astrophysics, 2020, 644, A74.	5.1	17
208	Fragmentation favoured in discs around higher mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5041-5051.	4.4	14
209	Inferring (sub)millimetre dust opacities and temperature structure in edge-on protostellar discs from resolved multiwavelength continuum observations: the case of the HH 212 disc. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1316-1335.	4.4	17
210	First Images of the Protoplanetary Disk around PDS 201. Astronomical Journal, 2020, 159, 252.	4.7	8
211	High-resolution Near-infrared Polarimetry and Submillimeter Imaging of FS Tau A: Possible Streamers in Misaligned Circumbinary Disk System. Astrophysical Journal, 2020, 889, 140.	4.5	3
212	Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.	4.5	49
213	Young Faithful: The Eruptions of EC 53 as It Cycles through Filling and Draining the Inner Disk. Astrophysical Journal, 2020, 903, 5.	4.5	21
214	Constraining the Chemical Signatures and the Outburst Mechanism of the Class 0 Protostar HOPS 383. Astrophysical Journal, 2020, 904, 78.	4.5	6
215	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. IV. Unveiling the Embedded Intermediate-Mass Protostar and Disk within OMC2-FIR3/HOPS-370. Astrophysical Journal, 2020, 905, 162.	4.5	13
216	A Dust Trap in the Young Multiple System HD 34700. Astrophysical Journal, 2020, 905, 120.	4.5	5
217	Global Spiral Density Wave Modes in Protoplanetary Disks: Morphology of Spiral Arms. Astrophysical Journal, 2021, 906, 19.	4.5	5
218	Dynamical Evidence of a Spiral Arm–driving Planet in the MWC 758 Protoplanetary Disk. Astrophysical Journal Letters, 2020, 898, L38.	8.3	24
219	Formation of Mass Gap Objects in Highly Asymmetric Mergers. Astrophysical Journal Letters, 2020, 899, L15.	8.3	31
220	Orbital parameters of the hierarchical triplet system CN Lyn. Monthly Notices of the Royal Astronomical Society, 2021, 508, 6111-6117.	4.4	3
221	GRB variabilities and following gravitational waves induced by gravitational instability in NDAFs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 6068-6076.	4.4	2
222	Investigating Protoplanetary Disk Cooling through Kinematics: Analytical GI Wiggle. Astrophysical Journal Letters, 2021, 920, L41.	8.3	8
223	The ¹² CO/ ¹³ CO isotopologue ratio of a young, isolated brown dwarf. Astronomy and Astrophysics, 2021, 656, A76.	5.1	19

#	Article	IF	CITATIONS
224	ALMA observations of the Extended Green Object G19.01â^'0.03 – I. A Keplerian disc in a massive protostellar system. Monthly Notices of the Royal Astronomical Society, 2021, 509, 748-762.	4.4	12
225	Giant Planet Formation and Migration. Space Sciences Series of ISSI, 2018, , 255-289.	0.0	0
226	Numerical study of toroidal magnetic field on the self-gravitating protoplanetary disks. International Journal of Modern Physics D, 2020, 29, 2050067.	2.1	1
227	Saturation mechanism and generated viscosity in gravito-turbulent accretion disks. Astronomy and Astrophysics, 2020, 640, A53.	5.1	2
228	Dust dynamics in planet-driven spirals. Astronomy and Astrophysics, 2020, 643, A92.	5.1	6
229	Pairing function of visual binary stars. Monthly Notices of the Royal Astronomical Society, 2020, 501, 769-783.	4.4	4
230	Secular evolution of MHD wind-driven discs: analytical solutions in the expanded α-framework. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2290-2309.	4.4	35
231	A multi-planetary system orbiting the early-M dwarf TOI-1238. Astronomy and Astrophysics, 2022, 658, A138.	5.1	7
232	An Eccentric Brown Dwarf Eclipsing an M dwarf. Astronomical Journal, 2022, 163, 89.	4.7	8
233	The vertical shear instability in poorly ionized, magnetized protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1182-1200.	4.4	7
234	The VLA/ALMA Nascent Disk And Multiplicity (VANDAM) Survey of Orion Protostars. V. A Characterization of Protostellar Multiplicity. Astrophysical Journal, 2022, 925, 39.	4.5	19
235	Efficiently Imaging Accreting Protoplanets from Space: Reference Star Differential Imaging of the PDS 70 Planetary System Using the HST/WFC3 Archival PSF Library. Astronomical Journal, 2022, 163, 119.	4.7	9
236	Small-scale sectorial perturbation modes against the background of a pulsating model of disk-like self-gravitating systems. Open Astronomy, 2022, 31, 92-98.	0.6	1
237	A large population study of protoplanetary disks. Astronomy and Astrophysics, 2022, 661, A66.	5.1	14
238	The Family of V1311 Ori: a Young Sextuple System or a Minicluster?. Astronomical Journal, 2022, 163, 127.	4.7	2
239	A 16 au Binary in the Class 0 Protostar L1157 MMS. Astrophysical Journal, 2022, 928, 61.	4.5	5
240	Can Stellar-mass Black Hole Growth Disrupt Disks of Active Galactic Nuclei? The Role of Mechanical Feedback. Astrophysical Journal, 2022, 927, 41.	4.5	23
241	Magnetic Spirals in Accretion Flows Originated from Misaligned Magnetic Fields. Astrophysical Journal, 2022, 928, 85.	4.5	3

		CITATION R	EPORT	
#	Article		IF	Citations
242	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2022, 66	53, A48.	5.1	12
243	Rapid Growth of Seed Black Holes during Early Bulge Formation. Astrophysical Journal, 2022, 9	27, 237.	4.5	16
244	Constraining protoplanetary disc mass using the GI wiggle. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1671-1679.		4.4	9
245	Giant planet imaged orbiting two massive stars. Nature, 2021, 600, 227-228.		27.8	0
246	Combined dynamo of gravitational and magneto-rotational instability in irradiated accretion dis Astronomy and Astrophysics, 2022, 663, A176.	SCS.	5.1	3
247	The Physical Properties of the SVS 13 Protobinary System: Two Circumstellar Disks and a Spiral Circumbinary Disk in the Making. Astrophysical Journal, 2022, 930, 91.	ing	4.5	13
248	Calibrated gas accretion and orbital migration of protoplanets in 1D disc models. Astronomy an Astrophysics, 0, , .	nd	5.1	1
249	Modelling the secular evolution of protoplanetary disc dust sizes $\hat{a} \in \hat{a}$ comparison between th viscous and magnetic wind case. Monthly Notices of the Royal Astronomical Society, 2022, 51 1088-1106.	e 4,	4.4	6
250	A semi-analytical model for the temporal evolution of the episodic disc-to-star accretion rate du star formation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5659-5672.	ıring	4.4	2
251	Gravitoturbulent dynamo in global simulations of gaseous disks. Astronomy and Astrophysics, 663, A138.	2022,	5.1	4
252	A giant planet shaping the disk around the very low-mass star CIDA 1. Astronomy and Astrophy 2022, 665, A25.	/sics,	5.1	6
253	H2O MegaMaser emission in NGC 4258 indicative of a periodic disc instability. Nature Astrono 6, 976-983.	my, 2022,	10.1	7
254	Centrifugal barrier and super-Keplerian rotation in protostellar disc formation. Monthly Notices the Royal Astronomical Society, 2022, 517, 213-221.	of	4.4	2
255	Direct Formation of Planetary Embryos in Self-gravitating Disks. Astrophysical Journal, 2022, 93	33, 100.	4.5	9
256	Kinematic Evidence for an Embedded Planet in the IM Lupi Disk. Astrophysical Journal Letters, 2 L11.	.022, 934,	8.3	9
257	A VLA View of the Flared, Asymmetric Disk around the Class 0 Protostar L1527 IRS. Astrophysic Journal, 2022, 934, 95.	cal	4.5	14
258	Distributions of gas and small and large grains in the LkH $\langle i \rangle \hat{I} \pm \langle i \rangle$ 330 disk trace a young plane system,. Astronomy and Astrophysics, 2022, 665, A128.	etary	5.1	3
259	Spiral arms in broad-line regions of active galactic nuclei. Astronomy and Astrophysics, 2022, 6	66, A86.	5.1	5

#	Article	IF	CITATIONS
260	Protostellar-disc fragmentation across all metallicities. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5506-5522.	4.4	6
261	Formation of Dust Clumps with Sub-Jupiter Mass and Cold Shadowed Region in Gravitationally Unstable Disk around Class 0/I Protostar in L1527 IRS. Astrophysical Journal, 2022, 934, 163.	4.5	14
262	Testing a New Model of Embedded Protostellar Disks against Observations: The Majority of Orion Class 0/I Disks Are Likely Warm, Massive, and Gravitationally Unstable. Astrophysical Journal, 2022, 934, 156.	4.5	12
263	An analytical solution to measure the gas size in protoplanetary discs in the viscous self-similar scenario. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 518, L69-L74.	3.3	5
264	Episodic accretion and mergers during growth of massive protostars. Monthly Notices of the Royal Astronomical Society, 2022, 518, 791-809.	4.4	6
265	Dynamical mass measurements of two protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4481-4493.	4.4	9
266	Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4693-4712.	4.4	5
267	Turbulent Transport of Dust Particles in Protostellar Disks: The Effect of Upstream Diffusion. Astrophysical Journal, 2022, 940, 117.	4.5	4
268	The link between infall location, early disc size, and the fraction of self-gravitationally fragmenting discs. Astronomy and Astrophysics, 2023, 669, A31.	5.1	2
269	Local gravitational instability of stratified rotating fluids: three-dimensional criteria for gaseous discs. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5154-5162.	4.4	0
270	Dust Hot Spots at 10 au Scales around the Class 0 Binary IRAS 16293–2422 A: A Departure from the Passive Irradiation Model. Astrophysical Journal Letters, 2022, 941, L23.	8.3	7
271	The role of the drag force in the gravitational stability of dusty planet forming disc – I. Analytical theory. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2017-2029.	4.4	4
272	Kinematics and brightness temperatures of transition discs. Astronomy and Astrophysics, 2023, 670, A154.	5.1	13
273	Formation of pebbles in (gravito-)viscous protoplanetary disks with various turbulent strengths. Astronomy and Astrophysics, 2023, 670, A81.	5.1	3
274	The impact of the initial core temperature on protostellar disc fragmentation. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
275	Evolution of the reservoirs of volatiles in the protosolar nebula. Astronomy and Astrophysics, 2023, 670, A28.	5.1	4
276	The McDonald Accelerating Stars Survey: Architecture of the Ancient Five-planet Host System Kepler-444. Astronomical Journal, 2023, 165, 73.	4.7	6
277	Gravito-turbulence in local disk simulations with an adaptive moving mesh. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2

#	Article	IF	CITATIONS
278	Streamers feeding the SVS13-A protobinary system: astrochemistry reveals accretion shocks?. Faraday Discussions, 0, 245, 164-180.	3.2	1
279	Long-term Protoplanetary Disk Evolution from Molecular Cloud Core Collapse and Implications for Planet Formation. II. Strong Disk Self-gravity. Astrophysical Journal, 2023, 944, 32.	4.5	2
280	300: An ACA 870 μm Continuum Survey of Orion Protostars and Their Evolution. Astrophysical Journal, 2023, 944, 49.	4.5	4
281	The Mass Accretion Rate and Stellar Properties in Class I Protostars. Astrophysical Journal, 2023, 944, 135.	4.5	9
282	Disk fragmentation around a massive protostar: Comparison of two 3D codes. Astronomy and Astrophysics, 2023, 672, A88.	5.1	2
283	A Keplerian disk with a four-arm spiral birthing an episodically accreting high-mass protostar. Nature Astronomy, 2023, 7, 557-568.	10.1	7
284	Kinematics signature of a giant planet in the disk of AS 209. Astronomy and Astrophysics, 2023, 672, A125.	5.1	2
285	The Disc Miner. Astronomy and Astrophysics, 2023, 674, A113.	5.1	5
286	Massive pre-stellar cores in radiation-magneto-turbulent simulations of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2023, 522, 5374-5392.	4.4	2
287	The role of the drag force in the gravitational stability of dusty planet-forming disc – II. Numerical simulations. Monthly Notices of the Royal Astronomical Society, 2023, 522, 6217-6235.	4.4	0
288	Filling in the gaps: can gravitationally unstable discs form the seeds of gas giant planets?. Monthly Notices of the Royal Astronomical Society, 2023, 523, 3348-3362.	4.4	3
289	Resolving the binary components of the outbursting protostar HBC 494 with ALMA. Monthly Notices of the Royal Astronomical Society, 2023, 523, 4970-4991.	4.4	2
290	The First Stars: Formation, Properties, and Impact. Annual Review of Astronomy and Astrophysics, 2023, 61, 65-130.	24.3	16
291	Acoustic stability of a self-gravitating cylinder leading to astrostructure formation. Scientific Reports, 2023, 13, .	3.3	Ο
292	Observations of planet forming disks in multiple stellar systems. European Physical Journal Plus, 2023, 138, .	2.6	3
293	First Detection of a Linear Structure in the Midplane of the Young HH 211 Protostellar Disk: A Spiral Arm?. Astrophysical Journal Letters, 2023, 951, L2.	8.3	1
294	Early Planet Formation in Embedded Disks (eDisk). II. Limited Dust Settling and Prominent Snow Surfaces in the Edge-on Class I Disk IRAS 04302+2247. Astrophysical Journal, 2023, 951, 9.	4.5	12
295	An imaged 15â€ <i>M</i> _{Jup} companion within a hierarchical quadruple system. Astronomy and Astrophysics, 2023, 676, L10.	5.1	2

#	Article	IF	CITATIONS
296	Direct images and spectroscopy of a giant protoplanet driving spiral arms in MWC 758. Nature Astronomy, 2023, 7, 1208-1217.	10.1	7
297	High-sensitivity Observations of the H ₂ 0 Megamasers of NGC 1068: Precise Astrometry and Detailed Kinematics. Astrophysical Journal, 2023, 951, 109.	4.5	3
298	Planet-disk-wind interaction: The magnetized fate of protoplanets. Astronomy and Astrophysics, 2023, 677, A70.	5.1	2
299	Kinematics and stability of high-mass protostellar disk candidates at sub-arcsecond resolution. Astronomy and Astrophysics, 2023, 677, A171.	5.1	2
300	Spirals and Clumps in V960 Mon: Signs of Planet Formation via Gravitational Instability around an FU Ori Star?. Astrophysical Journal Letters, 2023, 952, L17.	8.3	0
301	Early Planet Formation in Embedded Disks (eDisk). VII. Keplerian Disk, Disk Substructure, and Accretion Streamers in the Class 0 Protostar IRAS 16544–1604 in CB 68. Astrophysical Journal, 2023, 953, 190.	4.5	9
302	On the origin of planetary-mass objects in NGC 1333. Monthly Notices of the Royal Astronomical Society, 2023, 525, 1677-1686.	4.4	0
303	The persistence of magneto-rotational turbulence in gravitationally turbulent accretion disks. Astronomy and Astrophysics, 0, , .	5.1	0
304	The VLT MUSE NFM view of outflows and externally photoevaporating discs near the orion bara˜ Monthly Notices of the Royal Astronomical Society, 2023, 525, 4129-4142.	4.4	1
305	ALMA observations of the Extended Green Object G19.01–0.03 – <scp>ii</scp> . A massive protostar with typical chemical abundances surrounded by four low-mass pre-stellar core candidates. Monthly Notices of the Royal Astronomical Society, 2023, 525, 6146-6169.	4.4	0
306	Multiples among B stars in the Scorpius-Centaurus association. Astronomy and Astrophysics, 2023, 678, A93.	5.1	2
307	Early Planet Formation in Embedded Disks (eDisk). IX. High-resolution ALMA Observations of the Class O Protostar R CrA IRS5N and Its Surroundings. Astrophysical Journal, 2023, 954, 69.	4.5	2
308	A resolved rotating disk wind from a young T Tauri star in the Bok globule CB 26. Astronomy and Astrophysics, 2023, 678, A135.	5.1	2
309	Gravitational Instability, Spiral Substructure, and Modest Grain Growth in a Typical Protostellar Disk: Modeling Multiwavelength Dust Continuum Observations of TMC1A. Astrophysical Journal, 2023, 954, 190.	4.5	4
310	Long-term Evolution of Massive-star Post-common-envelope Circumbinary Disks and the Environments of Fast Luminous Transients. Astrophysical Journal, 2023, 955, 125.	4.5	2
311	Finding Substructures in Protostellar Disks in Ophiuchus. Astronomical Journal, 2023, 166, 184.	4.7	1
312	Centimeter-sized Grains in the Compact Dust Ring around Very-low-mass Star CIDA 1. Astronomical Journal, 2023, 166, 186.	4.7	0
313	Exploring the brown dwarf desert with precision radial velocities and Gaia DR3 astrometric orbits. Astronomy and Astrophysics, 0, , .	5.1	0

		CITATION REPORT		
#	Article	IF	Citations	
314	Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetar Mass Companion HD 106906 b in the Near-infrared. Astronomical Journal, 2023, 166, 192.	y 4.7	0	
315	Mass and Angular Momentum Transport in a Gravitationally Unstable Protoplanetary Disk with Improved 3D Radiative Hydrodynamics. Astrophysical Journal, 2023, 958, 139.	4.5	0	
316	Constraining the gas mass of Herbig disks using CO isotopologues. Astronomy and Astrophysics 682, A149.	, 2024, 5.1	0	
317	Wind erosion and transport on planetesimals. Icarus, 2024, 411, 115948.	2.5	0	
318	Analytical solutions for the evolution of MHD wind-driven accretion discs. Monthly Notices of the Royal Astronomical Society, 2024, 528, 3294-3303.	4.4	0	
319	Multiwavelength detection of an ongoing FUOr-type outburst on a low-mass YSO. Monthly Notic the Royal Astronomical Society: Letters, 2023, 529, L115-L122.	es of 3.3	1	
320	Spectroscopic confirmation of high-amplitude eruptive YSOs and dipping giants from the VVV su Monthly Notices of the Royal Astronomical Society, 2024, 528, 1769-1788.	rvey. 4.4	0	
321	The 3D structure of disc-instability protoplanets. Astronomy and Astrophysics, 2024, 682, L6.	5.1	0	
322	Accretion Discs in Astrophysics. , 2024, , 473-495.		0	
323	Chapter 3: The Origins and Evolution of Planetary Systems. Astrobiology, 2024, 24, S-57-S-75.	3.0	Ο	