Investigation into optical heating and applicability of the properties of Yb³⁺ sensitized Tm<sup>3+</sub>2</sub>O₃, YAG and LaAlO₃3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub>3</sub

RSC Advances 6, 97676-97683 DOI: 10.1039/c6ra15814e

Citation Report

#	Article	IF	CITATIONS
1	Near-ultraviolet light induced visible emissions in Er 3+ -activated La 2 MoO 6 nanoparticles for solid-state lighting and non-contact thermometry. Chemical Engineering Journal, 2017, 327, 109-119.	6.6	149
2	Simultaneous phase and size manipulation in NaYF ₄ :Er ³⁺ /Yb ³⁺ upconverting nanoparticles for a non-invasion optical thermometer. New Journal of Chemistry, 2017, 41, 13855-13861.	1.4	54
3	Yb ³⁺ -Concentration dependent upconversion luminescence and temperature sensing behavior in Yb ³⁺ /Er ³⁺ codoped Gd ₂ MoO ₆ nanocrystals prepared by a facile citric-assisted sol–gel method. Inorganic Chemistry Frontiers, 2017, 4, 1987-1995.	3.0	138
4	Study for optimizing the design of optical temperature sensor. Applied Physics Letters, 2017, 111, .	1.5	19
5	Ethylene glycol assisted rapid preparation of NaEuF4 nanorods with splendid thermal stability for indoor illumination and optical displays. Dyes and Pigments, 2018, 153, 307-315.	2.0	13
6	Investigation on Two Forms of Temperature-Sensing Parameters for Fluorescence Intensity Ratio Thermometry Based on Thermal Coupled Theory. Inorganic Chemistry, 2018, 57, 1213-1219.	1.9	81
7	Luminescent properties of Eu ³⁺ -activated Gd ₂ ZnTiO ₆ double perovskite red-emitting phosphors for white light-emitting diodes and field emission displays. RSC Advances, 2018, 8, 11207-11215.	1.7	34
8	Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix. Journal of Luminescence, 2018, 194, 433-439.	1.5	43
9	Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater. Journal of Colloid and Interface Science, 2018, 514, 172-181.	5.0	167
10	Near-Infrared Light-Triggered Visible Upconversion Emissions in Er ³⁺ /Yb ³⁺ -Codoped Y ₂ Mo ₄ O ₁₅ Microparticles for Simultaneous Noncontact Optical Thermometry and Solid-State Lighting. Industrial &: Engineering Chemistry Research. 2018. 57. 13077-13086.	1.8	37
11	Synthesis and luminescent properties of Er3+-activated LaBMoO6 green-emitting phosphors for optical thermometry. Materials Research Bulletin, 2018, 107, 314-320.	2.7	34
12	Role of Ca2+ co-dopants on structural and optical properties of YF3:Tm3+/Yb3+ upconversion phosphor for improved optical thermometry. Sensors and Actuators A: Physical, 2018, 280, 179-187.	2.0	26
13	Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 691-699.	0.3	12
14	Multiwavelength near infrared downshift and downconversion emission of Tm3+ in double perovskite Y2MgTiO6:Mn4+/Tm3+ phosphors via resonance energy transfer. Journal of Luminescence, 2019, 213, 356-363.	1.5	17
15	Investigation on the Fluorescence Intensity Ratio Sensing Thermometry Based on Nonthermally Coupled Levels. ACS Applied Bio Materials, 2019, 2, 1732-1739.	2.3	49
16	NUV light induced visible emission in Er ³⁺ â€activated NaSrLa(MoO ₄)O ₃ phosphors for green LEDs and thermometer. Journal of the American Ceramic Society, 2020, 103, 1174-1186.	1.9	17
17	Facile synthesis and photoluminescence performance of Er3+-activated BiOF sub-micro particles for ratiometric thermometers. Journal of Luminescence, 2020, 226, 117416.	1.5	12
18	Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , .		20

#	Article	IF	CITATIONS
19	Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications. Laser and Photonics Reviews, 2021, 15, .	4.4	184
20	Low temperature reliability and high sensitivity of dual-channel up-conversion thermometry phosphor optimized by heterovalent ions. Materials Research Bulletin, 2021, 139, 111264.	2.7	10
21	Non-plasmonic NIR-Activated Photothermal Agents for Photothermal Therapy. , 2020, , 305-347.		4
22	High-entropy sesquioxide X2O3 upconversion transparent ceramics. Scripta Materialia, 2020, 186, 19-23.	2.6	12
23	Boltzmann relation reliability in optical temperature sensing based on upconversion studies of Er ³⁺ /Yb ³⁺ coâ€doped PZT ceramics. Luminescence, 2023, 38, 1221-1229.	1.5	3
24	Synthesis and upconversion properties of KAlF4:Yb3+/Er3+ phosphor for bioimaging application. Infrared Physics and Technology, 2022, 126, 104328.	1.3	3
25	Constructing double perovskite Eu3+/Mn4+ -codoped La2Mg1.33Ta0.67O6 phosphors for high sensitive dual-mode optical thermometers. Journal of Luminescence, 2022, 252, 119347.	1.5	14
26	Enhancing optical thermometric sensitivity through controlling particle size in LaNbO4: Yb3+, Tm3+ up-converting luminescent nanoparticles. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
28	Upconversion Luminescent Nanoheaters. Progress in Optical Science and Photonics, 2023, , 437-464.	0.3	0