Rewriting yeast central carbon metabolism for industri

Nature 537, 694-697 DOI: 10.1038/nature19769

Citation Report

#	Article	IF	CITATIONS
1	Pathway swapping: Toward modular engineering of essential cellular processes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15060-15065.	3.3	35
2	Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express, 2016, 6, 115.	1.4	39
4	High-yield chemical synthesis by reprogramming central metabolism. Nature Biotechnology, 2016, 34, 1129-1129.	9.4	4
6	Cell-Based Therapeutics: Making a Faustian Pact with Biology. Trends in Molecular Medicine, 2017, 23, 104-115.	3.5	9
7	Production of taxadiene by engineering of mevalonate pathway in <i>Escherichia coli</i> and endophytic fungus <i>Alternaria alternata</i> TPF6. Biotechnology Journal, 2017, 12, 1600697.	1.8	39
8	Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast. Biotechnology for Biofuels, 2017, 10, 43.	6.2	53
9	Bioaromas – Perspectives for sustainable development. Trends in Food Science and Technology, 2017, 62, 141-153.	7.8	72
10	Effects of acetoacetyl-CoA synthase expression on production of farnesene in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 911-922.	1.4	30
11	Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017, 41, 192-201.	3.6	190
12	Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial Cell Factories, 2017, 16, 82.	1.9	195
13	Recent advances in synthetic biology for engineering isoprenoid production in yeast. Current Opinion in Chemical Biology, 2017, 40, 47-56.	2.8	153
14	Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Research, 2017, 17, .	1.1	54
15	Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metabolic Engineering, 2017, 41, 152-158.	3.6	66
16	Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Current Opinion in Biotechnology, 2017, 45, 127-135.	3.3	58
17	Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity ofEscherichia coli. ACS Synthetic Biology, 2017, 6, 1416-1426.	1.9	33
18	Reassessing Escherichia coli as a cell factory for biofuel production. Current Opinion in Biotechnology, 2017, 45, 92-103.	3.3	53
19	Systems biology solutions for biochemical production challenges. Current Opinion in Biotechnology, 2017, 45, 85-91.	3.3	29
20	The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology, 2017, 35, 1156-1168.	4.9	67

#	Article	IF	CITATIONS
21	Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. Journal of the American Chemical Society, 2017, 139, 14526-14532.	6.6	16
22	Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synthetic and Systems Biotechnology, 2017, 2, 167-175.	1.8	74
23	Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme and Microbial Technology, 2017, 106, 60-66.	1.6	24
24	Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 2017, 48, 234-241.	3.3	99
25	Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochemical Journal, 2017, 474, 3935-3950.	1.7	51
26	Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Research, 2017, 17, .	1.1	54
27	Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. FEMS Yeast Research, 2017, 17, .	1.1	34
28	Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Research, 2017, 17, .	1.1	87
29	Bioproduction of Fuels: An Introduction. , 2017, , 3-25.		0
30	Microbial Production of Isoprenoids. , 2017, , 359-382.		6
30 31	Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402.		6 0
30 31 32	Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , .		6 0 12
30 31 32 33	Microbial Production of Isoprenoids., 2017,, 359-382. Efforts Toward Industrial Biosynthesis of Isoprene., 2017,, 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations., 0,,. Genetic engineering of host organisms for pharmaceutical synthesis. Current Opinion in Biotechnology, 2018, 53, 191-200.	3.3	6 0 12 23
30 31 32 33 33	Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , . Genetic engineering of host organisms for pharmaceutical synthesis. Current Opinion in Biotechnology, 2018, 53, 191-200. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93.	3.3 3.6	6 0 12 23 89
30 31 32 33 34 35	Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , . Genetic engineering of host organisms for pharmaceutical synthesis. Current Opinion in Biotechnology, 2018, 53, 191-200. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. Journal of the American Chemical Society, 2018, 140, 4302-4316.	3.3 3.6 6.6	6 0 12 23 89 118
 30 31 32 33 34 35 36 	 Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , . Genetic engineering of host organisms for pharmaceutical synthesis. Current Opinion in Biotechnology, 2018, 53, 191-200. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. Journal of the American Chemical Society, 2018, 140, 4302-4316. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in <i>Saccharomyces cerevisiae</i> 	3.3 3.6 6.6 1.9	6 0 12 23 89 118
 30 31 32 33 34 35 36 37 	Microbial Production of Isoprenoids. , 2017, , 359-382. Efforts Toward Industrial Biosynthesis of Isoprene. , 2017, , 383-402. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , . Genetic engineering of host organisms for pharmaceutical synthesis. Current Opinion in Biotechnology, 2018, 53, 191-200. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. Journal of the American Chemical Society, 2018, 140, 4302-4316. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in <i>Saccharomyces cerevisiae Forein Acylation Affects the Artificial Biosynthetic Pathway for Pinosylvin Production in Engineered <i>E. coli Protein Acylation Affects the Artificial Biosynthetic Pathway for Pinosylvin Production in Engineered <i>E. coli</i></i></i>	3.3 3.6 6.6 1.9	 6 0 12 23 89 118 14 18

#	Article	IF	CITATIONS
39	Methyl Perillate as a Highly Functionalized Natural Starting Material for Terephthalic Acid. ChemistryOpen, 2018, 7, 201-203.	0.9	5
40	Toward industrial production of isoprenoids in <i>Escherichia coli</i> : Lessons learned from CRISPRâ€Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 2018, 115, 1000-1013.	1.7	39
41	Extending our tools and resources in the non-conventional industrial yeast Xanthophyllomyces dendrorhous through the application of metabolite profiling methodologies. Metabolomics, 2018, 14, 30.	1.4	10
42	A pathway for every product? Tools to discover and design plant metabolism. Plant Science, 2018, 273, 61-70.	1.7	18
43	Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories. ACS Synthetic Biology, 2018, 7, 1163-1166.	1.9	52
44	Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. Journal of Agricultural and Food Chemistry, 2018, 66, 2247-2258.	2.4	148
45	Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization. Biotechnology Journal, 2018, 13, 1600433.	1.8	26
46	Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters, 2018, 29, 681-686.	4.8	32
47	Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 121-133.	3.6	24
48	Use of bacterial co-cultures for the efficient production of chemicals. Current Opinion in Biotechnology, 2018, 53, 33-38.	3.3	107
49	The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends in Biotechnology, 2018, 36, 304-317.	4.9	171
50	Production of γ-terpinene by metabolically engineered <i>Escherichia coli</i> using glycerol as feedstock. RSC Advances, 2018, 8, 30851-30859.	1.7	10
51	Self-cloning CRISPR/Cpf1 facilitated genome editing in Saccharomyces cerevisiae. Bioresources and Bioprocessing, 2018, 5, .	2.0	18
52	Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microbial Cell Factories, 2018, 17, 193.	1.9	35
53	Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass and Bioenergy, 2018, 119, 54-60.	2.9	120
54	Systematic Analysis of Bottlenecks in a Multibranched and Multilevel Regulated Pathway: The Molecular Fundamentals of <scp>l</scp> -Methionine Biosynthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 2577-2589.	1.9	59
55	Microbial Platform for Terpenoid Production: Escherichia coli and Yeast. Frontiers in Microbiology, 2018, 9, 2460.	1.5	78
56	Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes, 2018, 9, 520.	1.0	67

#	Article	IF	CITATIONS
57	Cyanobacteria as photoautotrophic biofactories of high-value chemicals. Journal of CO2 Utilization, 2018, 28, 335-366.	3.3	71
58	Artificial pathway emergence in central metabolism from three recursive phosphoketolase reactions. FEBS Journal, 2018, 285, 4367-4377.	2.2	27
59	Engineering <i>Saccharomyces cerevisiae</i> for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Journal of Agricultural and Food Chemistry, 2018, 66, 12009-12016.	2.4	19
60	High-pressure pyrolysis of isoprenoid hydrocarbon p-menthane in a tandem micro-reactor with online GC–MS/FID. Journal of Analytical and Applied Pyrolysis, 2018, 135, 122-132.	2.6	17
61	CRISPR/Cpf1 facilitated large fragment deletion in <i>Saccharomyces cerevisiae</i> . Journal of Basic Microbiology, 2018, 58, 1100-1104.	1.8	11
62	Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9, 1933.	5.8	118
63	Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Biotechnology Letters, 2018, 40, 1253-1261.	1.1	9
64	Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 2018, 3, 925-935.	19.8	146
65	Systematic Engineering for Improved Carbon Economy in the Biosynthesis of Polyhydroxyalkanoates and Isoprenoids. Materials, 2018, 11, 1271.	1.3	1
66	Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes, 2018, 9, 340.	1.0	37
67	Approaches and Recent Developments for the Commercial Production of Semi-synthetic Artemisinin. Frontiers in Plant Science, 2018, 9, 87.	1.7	71
68	Establishing an innovative carbohydrate metabolic pathway for efficient production of 2-keto-l-gulonic acid in Ketogulonicigenium robustum initiated by intronic promoters. Microbial Cell Factories, 2018, 17, 81.	1.9	8
69	Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Research, 2018, 18, .	1.1	8
70	Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. Journal of Biotechnology, 2018, 281, 106-114.	1.9	71
71	The Smell of Synthetic Biology: Engineering Strategies for Aroma Compound Production in Yeast. Fermentation, 2018, 4, 54.	1.4	27
72	Clucose-Dependent Promoters for Dynamic Regulation of Metabolic Pathways. Frontiers in Bioengineering and Biotechnology, 2018, 6, 63.	2.0	27
73	Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 481-490.	1.4	14
74	Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metabolic Engineering, 2018, 48, 33-43.	3.6	49

	CHAHON	KLPORI	
#	Article	IF	Citations
75	Deep learning to predict the lab-of-origin of engineered DNA. Nature Communications, 2018, 9, 3135.	5.8	55
76	Metabolic engineering ofSaccharomyces cerevisiaefor production of fatty acid–derived hydrocarbons. Biotechnology and Bioengineering, 2018, 115, 2139-2147.	1.7	25
77	Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 449-461.	1.4	57
78	Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission. Metabolic Engineering, 2019, 51, 79-87.	3.6	55
79	Vitamin A Production by Engineered <i>Saccharomyces cerevisiae</i> from Xylose <i>via</i> Two-Phase <i>in Situ</i> Extraction. ACS Synthetic Biology, 2019, 8, 2131-2140.	1.9	51
80	Cell free biosynthesis of isoprenoids from isopentenol. Biotechnology and Bioengineering, 2019, 116, 3269-3281.	1.7	30
81	Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 2019, 10, 3751.	5.8	84
82	Diatom isoprenoids: Advances and biotechnological potential. Biotechnology Advances, 2019, 37, 107417.	6.0	25
83	Build Your Bioprocess on a Solid Strain—β-Carotene Production in Recombinant Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2019, 7, 171.	2.0	25
84	Off-Colony Screening of Biosynthetic Libraries by Rapid Laser-Enabled Mass Spectrometry. ACS Synthetic Biology, 2019, 8, 2566-2575.	1.9	17
86	Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10, 4976.	5.8	177
87	Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2019, 19, .	1.1	11
88	Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nature Communications, 2019, 10, 3799.	5.8	71
90	Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158513.	1.2	6
91	Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 165-180.	3.6	70
92	Identifying and engineering the ideal microbial terpenoid production host. Applied Microbiology and Biotechnology, 2019, 103, 5501-5516.	1.7	114
93	Recent trends in metabolic engineering of microbial chemical factories. Current Opinion in Biotechnology, 2019, 60, 188-197.	3.3	88
94	Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 968-975.	1.9	79

#	Article	IF	CITATIONS
95	Integrated production and separation of biosurfactants. Process Biochemistry, 2019, 83, 1-8.	1.8	45
96	Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production. Journal of Agricultural and Food Chemistry, 2019, 67, 13451-13459.	2.4	25
97	Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019, 10, 2142.	5.8	254
98	Cell factory engineering for improved production of natural products. Natural Product Reports, 2019, 36, 1233-1236.	5.2	37
99	Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019, 14, 82-107.	1.3	84
100	Simplified in Vitro and in Vivo Bioaccess to Prenylated Compounds. ACS Omega, 2019, 4, 7838-7849.	1.6	14
101	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	3.2	89
102	Grand Research Challenges for Sustainable Industrial Biotechnology. Trends in Biotechnology, 2019, 37, 1042-1050.	4.9	94
103	Bio-Products from Sugar-Based Fermentation Processes. , 2019, , 281-312.		8
104	Biosynthesis, regulation, and engineering of microbially produced branched biofuels. Biotechnology for Biofuels, 2019, 12, 84.	6.2	29
105	Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii. Algal Research, 2019, 39, 101462.	2.4	22
106	Yeast Genome-Scale Metabolic Models for Simulating Genotype–Phenotype Relations. Progress in Molecular and Subcellular Biology, 2019, 58, 111-133.	0.9	11
107	Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microbial Cell Factories, 2019, 18, 55.	1.9	55
108	Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 25.	1.9	27
109	Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genetics, 2019, 15, e1008037.	1.5	26
110	Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnology for Biofuels, 2019, 12, 41.	6.2	51
111	Yeast Systems Biology: Model Organism and Cell Factory. Biotechnology Journal, 2019, 14, e1800421.	1.8	159
112	Effects of overexpression of <i>STB5</i> in <i>Saccharomyces cerevisiae</i> on fatty acid biosynthesis, physiology and transcriptome. FEMS Yeast Research, 2019, 19, .	1.1	8

ARTICLE IF CITATIONS # Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends in 113 4.9 8 Biotechnology, 2019, 37, 805-816. Enhanced Î²-Amyrin Synthesis in <i>Saccharomyces cerevisiae</i> by Coupling An Optimal Acetyl-CoA Supply Pathway. Journal of Agricultural and Food Chemistry, 2019, 67, 3723-3732. 114 2.4 115 Formation of Isoprenoids., 2019, , 57-85. 3 Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of 1.9 116 abscisic acid. Microbial Cell Factories, 2019, 18, 205. Engineering the oleaginous yeast Yarrowia lipolytica for production of 1±-farnesene. Biotechnology 117 6.2 86 for Biofuels, 2019, 12, 296. Recent advancements in fungal-derived fuel and chemical production and commercialization. Current 3.3 Opinion in Biotechnology, 2019, 57, 1-9. Engineering Microorganisms for Enhanced CO2 Sequestration. Trends in Biotechnology, 2019, 37, 119 4.9 86 532-547. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of 3.6 44 lysine synthesis pathway of Corynebacterium glutamicum. Metabolić Engineering, 2019, 52, 77-86. Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends in Biotechnology, 2019, 37, 181-197. 121 4.9 309 Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for 3.6 251 high-yield production of lycopene. Metabolic Engineering, 2019, 52, 134-142. Engineering Plant Secondary Metabolism in Microbial Systems. Plant Physiology, 2019, 179, 844-861. 123 2.3125 124 A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2, 18-33. 16.1 394 Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing 125 membrane flexibility and NAPDH production. Applied Microbiology and Biotechnology, 2019, 103, 1.7 87 211-223. Synthetic Biology for Fundamental Biochemical Discovery. Biochemistry, 2019, 58, 1464-1469. 1.2 Structural and functional analyses of microbial metabolic networks reveal novel insights into 127 3.2 6 genome-scale metabolic fluxes. Briefings in Bioinformatics, 2019, 20, 1590-1603. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Natural Product Reports, 2020, 37, 80-99. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in <i>Saccharomyces 129 1.8 24 cerevisiae</i>. Biotechnology Journal, 2020, 15, e1900173. High-throughput screening for improved microbial cell factories, perspective and promise. Current 3.3 Opinion in Biotechnology, 2020, 62, 22-28.

#	Article	IF	CITATIONS
131	Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 2020, 119, 109562.	8.2	56
132	The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 2020, 57, 151-161.	3.6	141
133	Experimental and kinetic modeling of p-cymene pyrolysis under atmospheric and high pressures. Fuel, 2020, 260, 116407.	3.4	9
134	Green algal hydrocarbon metabolism is an exceptional source of sustainable chemicals. Current Opinion in Biotechnology, 2020, 61, 28-37.	3.3	25
135	Engineering of <i>Saccharomyces cerevisiae</i> for the production of (+)â€ambrein. Yeast, 2020, 37, 163-172.	0.8	8
136	Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis. Journal of Agricultural and Food Chemistry, 2020, 68, 10252-10264.	2.4	38
137	Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications, 2020, 10, e00118.	1.9	72
138	Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme and Microbial Technology, 2020, 134, 109485.	1.6	16
139	Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 83-96.	1.4	14
140	Clean manufacturing powered by biology: how Amyris has deployed technology and aims to do it better. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 965-975.	1.4	13
141	Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances, 2020, 44, 107628.	6.0	55
142	Increasing metabolic pathway flux by using machine learning models. Current Opinion in Biotechnology, 2020, 66, 179-185.	3.3	6
143	Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast. Applied Microbiology and Biotechnology, 2020, 104, 9551-9563.	1.7	19
144	Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metabolic Engineering, 2020, 62, 150-160.	3.6	30
145	Efficient Biosynthesis of <i>R</i> -(â^')-Linalool through Adjusting the Expression Strategy and Increasing GPP Supply in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 8381-8390.	2.4	23
146	Highâ€level βâ€carotene production from xylose by engineered <i>Saccharomyces cerevisiae</i> without overexpression of a truncated <i>HMG1</i> (t <i>HMG1</i>). Biotechnology and Bioengineering, 2020, 117, 3522-3532.	1.7	30
147	Sustainable Production of Microbial Isoprenoid Derived Advanced Biojet Fuels Using Different Generation Feedstocks: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 599560.	2.0	39
148	Metabolic Engineering of Different Microbial Hosts for Lycopene Production. Journal of Agricultural and Food Chemistry, 2020, 68, 14104-14122.	2.4	24

#	Article	IF	CITATIONS
149	Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31789-31799.	3.3	108
150	An automated workflow to screen alkene reductases using high-throughput thin layer chromatography. Biotechnology for Biofuels, 2020, 13, 184.	6.2	2
151	Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synthetic Biology, 2020, 9, 3236-3244.	1.9	36
152	You get what you screen for: on the value of fermentation characterization in high-throughput strain improvements in industrial settings. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 913-927.	1.4	13
153	Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresource Technology, 2020, 317, 123991.	4.8	65
154	Panâ€Genomeâ€Scale Network Reconstruction: Harnessing Phylogenomics Increases the Quantity and Quality of Metabolic Models. Biotechnology Journal, 2020, 15, e1900519.	1.8	9
155	Systems and synthetic metabolic engineering for production of biochemicals. , 2020, , 207-235.		2
156	Engineering Isoprenoid Quinone Production in Yeast. ACS Synthetic Biology, 2020, 9, 2239-2245.	1.9	4
157	Regulation of intracellular ATP supply and its application in industrial biotechnology. Critical Reviews in Biotechnology, 2020, 40, 1151-1162.	5.1	11
158	A machine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 2020, 11, 4879.	5.8	129
159	Experimental and Kinetic Modeling of Biomass Derived Hydrocarbon <i>p</i> -Menthane Pyrolysis. Energy & Fuels, 2020, 34, 12634-12645.	2.5	7
160	Yarrowia lipolytica Strains Engineered for the Production of Terpenoids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 945.	2.0	50
161	<i>Yarrowia lipolytica</i> as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. Journal of Agricultural and Food Chemistry, 2020, 68, 10730-10740.	2.4	22
162	Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microbial Cell Factories, 2020, 19, 167.	1.9	9
163	Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microbial Cell Factories, 2020, 19, 226.	1.9	19
164	Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Current Opinion in Chemical Biology, 2020, 58, 146-154.	2.8	20
165	Rewiring central carbon metabolism for tyrosol and salidroside production in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2020, 117, 2410-2419.	1.7	32
166	Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Applied Microbiology and Biotechnology, 2020, 104, 5725-5737.	1.7	90

	Сітат	TION REPORT	
#	ARTICLE 3D Printed Bioresponsive Devices with Selective Permeability Inspired by Eggshell Membrane for	IF	CITATIONS
107	Effective Biochemical Conversion. ACS Applied Materials & amp; Interfaces, 2020, 12, 30112-30119.	4.0	5
168	Engineered Saccharomyces cerevisiae for the de novo synthesis of the aroma compound longifolene. Chemical Engineering Science, 2020, 226, 115799.	1.9	13
169	Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Journal of Biotechnology, 2020, 319, 74-81.	1.9	31
170	Adenosine Triphosphate and Carbon Efficient Route to Second Generation Biofuel Isopentanol. ACS Synthetic Biology, 2020, 9, 468-474.	1.9	9
171	The Potential Production of the Bioactive Compound Pinene Using Whey Permeate. Processes, 2020, 8, 263.	1.3	8
172	Comparative Transcriptomics Analysis of the Responses of the Filamentous Fungus Glarea lozoyensis to Different Carbon Sources. Frontiers in Microbiology, 2020, 11, 190.	1.5	5
173	Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5, 179-186.	1.8	40
174	Engineering <i>Yarrowia lipolytica</i> as a Chassis for <i>De Novo</i> Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synthetic Biology, 2020, 9, 2096-2106.	1.9	59
176	Engineering Saccharomyces cerevisiae for Fungal Natural Product Production. , 2020, , 217-243.		0
177	A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nature Communications, 2020, 11, 3337.	5.8	101
178	Extrachromosomal Genetic Engineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> Enables the Heterologous Production of Monoterpenoids. ACS Synthetic Biology, 2020, 9, 598-612.	1.9	49
179	Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science, 2020, 294, 110457.	1.7	125
180	Advanced Strategies for Production of Natural Products in Yeast. IScience, 2020, 23, 100879.	1.9	107
181	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	1.7	14
182	Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: A study for the development of potential yeast platform for improved production of triterpenoid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158661.	1.2	7
183	Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production. Trends in Biotechnology, 2020, 38, 766-778.	4.9	92
184	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> To Overproduce Squalene. Journal of Agricultural and Food Chemistry, 2020, 68, 2132-2138.	2.4	43
185	Microbial Chassis Development for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38, 779-796.	4.9	84

#	Article	IF	CITATIONS
186	Production of Terpenoids by Synthetic Biology Approaches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 347.	2.0	50
187	Novel Strategies and Platforms for Industrial Isoprenoid Engineering. Trends in Biotechnology, 2020, 38, 811-822.	4.9	48
188	Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends in Biotechnology, 2020, 38, 797-810.	4.9	81
189	Biosynthesis of terpene compounds using the non-model yeast Yarrowia lipolytica: grand challenges and a few perspectives. Current Opinion in Biotechnology, 2020, 64, 134-140.	3.3	32
190	<i>Agrocybe aegerita</i> Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi. ACS Chemical Biology, 2020, 15, 1268-1277.	1.6	40
191	Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Carotenoid Production From Xylose-Glucose Mixtures. Frontiers in Bioengineering and Biotechnology, 2020, 8, 435.	2.0	23
192	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 2021, 51, 1479-1532.	6.6	50
193	High-throughput screening for high-efficiency small-molecule biosynthesis. Metabolic Engineering, 2021, 63, 102-125.	3.6	24
194	The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Research, 2021, 49, D575-D588.	6.5	119
195	Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nature Chemical Biology, 2021, 17, 96-103.	3.9	75
196	Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds. Metabolic Engineering, 2021, 65, 223-231.	3.6	31
197	Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. Advances in Applied Microbiology, 2021, 114, 1-35.	1.3	11
198	Positioning <i>Bacillus subtilis</i> as terpenoid cell factory. Journal of Applied Microbiology, 2021, 130, 1839-1856.	1.4	11
200	Microbial Oil as a Sustainable Source of Energy and Nutrients. Encyclopedia of the UN Sustainable Development Goals, 2021, , 890-904.	0.0	Ο
201	Saccharomyces cerevisiae as a microbial cell factory. , 2021, , 319-333.		5
202	Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Research, 2021, 21, .	1.1	6
203	The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Natural Product Reports, 2022, 39, 335-388.	5.2	25
204	Alternative metabolic pathways and strategies to high-titre terpenoid production in <i>Escherichia coli</i> . Natural Product Reports, 2022, 39, 90-118.	5.2	38

#	Article	IF	CITATIONS
205	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	18.7	175
206	Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. Journal of the American Chemical Society, 2021, 143, 3794-3807.	6.6	28
207	Impact of oxygen supply on production of terpenoids by microorganisms: State of the art. Chinese Journal of Chemical Engineering, 2021, 30, 46-53.	1.7	5
208	Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 635265.	2.0	9
209	Advanced Strategies for the Synthesis of Terpenoids in <i>Yarrowia lipolytica</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 2367-2381.	2.4	41
210	Anaerobic Production of Isoprene by Engineered <i>Methanosarcina</i> Species Archaea. Applied and Environmental Microbiology, 2021, 87, .	1.4	21
211	Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis. Microbial Cell Factories, 2021, 20, 54.	1.9	18
212	Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in <i>Synechocystis</i> sp. PCC 6803 Grown under Photomixotrophic Conditions. ACS Synthetic Biology, 2021, 10, 836-846.	1.9	15
213	Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Frontiers in Bioengineering and Biotechnology, 2021, 9, 633741.	2.0	2
214	Overproduction of α-Farnesene in <i>Saccharomyces cerevisiae</i> by Farnesene Synthase Screening and Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2021, 69, 3103-3113.	2.4	33
215	Production of βâ€carotene in <i>Saccharomyces cerevisiae</i> through altering yeast lipid metabolism. Biotechnology and Bioengineering, 2021, 118, 2043-2052.	1.7	30
216	Engineered yeast genomes accurately assembled from pure and mixed samples. Nature Communications, 2021, 12, 1485.	5.8	11
217	Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals, 2021, 14, 295.	1.7	28
219	Engineering Saccharomyces cerevisiae for isoprenol production. Metabolic Engineering, 2021, 64, 154-166.	3.6	34
220	Genetically Engineered Oleaginous Yeast <i>Lipomyces starkeyi</i> for Sesquiterpene α-Zingiberene Production. ACS Synthetic Biology, 2021, 10, 1000-1008.	1.9	5
221	Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 2021, 4, 395-406.	16.1	75
223	Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass. Biotechnology for Biofuels, 2021, 14, 101.	6.2	31
224	Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnology Advances, 2021, 48, 107728.	6.0	36

#	Article	IF	CITATIONS
226	Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 2022, 40, 149-165.	4.9	21
227	Engineering the oleaginous yeast <i>Yarrowia lipolytica</i> for βâ€farnesene overproduction. Biotechnology Journal, 2021, 16, e2100097.	1.8	27
228	Increasing lipid yield in Yarrowia lipolytica through phosphoketolase and phosphotransacetylase expression in a phosphofructokinase deletion strain. Biotechnology for Biofuels, 2021, 14, 113.	6.2	12
229	Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment. Science of the Total Environment, 2021, 769, 144771.	3.9	13
230	Synthetic Protein Scaffolds for Improving <i>R</i> -(â^²)-Linalool Production in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 5663-5670.	2.4	18
231	Production of octanoic acid in <i>Saccharomyces cerevisiae</i> : Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnology and Bioengineering, 2021, 118, 3046-3057.	1.7	6
232	Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals. Microorganisms, 2021, 9, 1079.	1.6	19
233	A Modular Inâ€Vitro Platform for the Production of Terpenes and Polyketides from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 16420-16425.	7.2	37
234	Phytosterols and Novel Triterpenes Recovered from Industrial Fermentation Coproducts Exert In Vitro Anti-Inflammatory Activity in Macrophages. Pharmaceuticals, 2021, 14, 583.	1.7	12
236	Heterologous expression and metabolic engineering tools for improving terpenoids production. Current Opinion in Biotechnology, 2021, 69, 281-289.	3.3	20
237	Dual Regulation of Cytoplasm and Peroxisomes for Improved Î ^c -Farnesene Production in Recombinant <i>Pichia pastoris</i> . ACS Synthetic Biology, 2021, 10, 1563-1573.	1.9	30
238	Eine modulare Inâ€vitroâ€Plattform für die Produktion von Terpenen und Polyketiden aus CO 2. Angewandte Chemie, 2021, 133, 16556-16561.	1.6	2
239	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	13.6	126
240	Evolution-aided engineering of plant specialized metabolism. ABIOTECH, 2021, 2, 240-263.	1.8	11
241	Yeasts as microbial cell factories for sustainable production of biofuels. Renewable and Sustainable Energy Reviews, 2021, 143, 110907.	8.2	25
242	Combined Biosynthetic Pathway Engineering and Storage Pool Expansion for High-Level Production of Ergosterol in Industrial Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 681666.	2.0	12
243	Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. Biotechnology for Biofuels, 2021, 14, 147.	6.2	18
244	Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in <i>Saccharomyces cerevisiae</i> Biotechnology and Bioengineering 2021, 118, 4269-4277	1.7	10

#	Article	IF	CITATIONS
245	Metabolic engineering of <i>Yarrowia lipolytica</i> for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 2021, , 1-16.	5.1	26
247	Metabolic engineering strategies for sesquiterpene production in microorganism. Critical Reviews in Biotechnology, 2022, 42, 73-92.	5.1	24
248	Enhancement of Patchoulol Production in <i>Escherichia coli via</i> Multiple Engineering Strategies. Journal of Agricultural and Food Chemistry, 2021, 69, 7572-7580.	2.4	18
249	Utilization of ethanol for itaconic acid biosynthesis by engineered <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2021, 21, .	1.1	5
250	Engineering acetyl-CoA supply and <i>ERG9</i> repression to enhance mevalonate production in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	11
251	Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. Journal of Agricultural and Food Chemistry, 2021, 69, 9498-9510.	2.4	32
252	Synthetic Biology in Plants, a Boon for Coming Decades. Molecular Biotechnology, 2021, 63, 1138-1154.	1.3	8
253	LuxAB-Based Microbial Cell Factories for the Sensing, Manufacturing and Transformation of Industrial Aldehydes. Catalysts, 2021, 11, 953.	1.6	7
254	α-Farnesene production from lipid by engineered Yarrowia lipolytica. Bioresources and Bioprocessing, 2021, 8, .	2.0	19
255	Physiological limitations and opportunities in microbial metabolic engineering. Nature Reviews Microbiology, 2022, 20, 35-48.	13.6	53
257	Exploiting Polyploidy for Markerless and Plasmid-Free Genome Engineering in Cyanobacteria. ACS Synthetic Biology, 2021, 10, 2371-2382.	1.9	7
258	A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO2 recycling. Metabolic Engineering, 2021, 67, 387-395.	3.6	5
259	Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Research International, 2021, 147, 110487.	2.9	15
260	Increased biosynthesis of acetyl-CoA in the yeast Saccharomyces cerevisiae by overexpression of a deregulated pantothenate kinase gene and engineering of the coenzyme A biosynthetic pathway. Applied Microbiology and Biotechnology, 2021, 105, 7321-7337.	1.7	9
261	Auxinâ€mediated induction of <i>GAL</i> promoters by conditional degradation of Mig1p improves sesquiterpene production in <i>Saccharomyces cerevisiae</i> with engineered acetyl oA synthesis. Microbial Biotechnology, 2021, 14, 2627-2642.	2.0	14
262	Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metabolic Engineering, 2021, 67, 104-111.	3.6	57
263	Co-upgrading of ethanol-assisted depolymerized lignin: A new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresource Technology, 2021, 338, 125563.	4.8	20
264	Synthetic biology potential for carbon sequestration into biocommodities. Journal of Cleaner Production, 2021, 323, 129176.	4.6	7

ARTICLE IF CITATIONS # Two-stage dynamic deregulation of metabolism improves process robustness & amp; scalability in 265 3.6 14 engineered É. coli.. Metabolic Engineering, 2021, 68, 106-118. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. 4.8 Bioresource Technology, 2021, 341, 125877. 267 Metabolic engineering approaches for high-yield hydrocarbon biofuels., 2022, 253-270. 2 Production of plant volatile terpenoids (rose oil) by yeast cell factories. Green Chemistry, 2021, 23, 5088-5096. Developing a biorefinery from spent coffee grounds using subcritical water and hydrothermal 269 2.9 10 carbonisation. Biomass Conversion and Biorefinery, 2023, 13, 1279-1295. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in <i>Saccharomyces cerevisiae</i>. Journal of Agricultural and Food Chemistry, 2.4 2021, 69, 1003-1010. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest 271 0.4 14 Advances and Challenges. Methods in Molecular Biology, 2019, 2049, 329-345. 14 Engineering Saccharomyces cerevisiae for Production of Fatty Acids and Their Derivatives., 2020, 4 339-368. 273 Microbial Production of Isoprenoids., 2016, , 1-24. 4 274 Microbial Production of Isoprenoids., 2017, , 1-24. Formation of Isoprenoids., 2017, , 1-29. 275 3 Engineering triacylglycerol production from sugars in oleaginous yeasts. Current Opinion in Biotechnology, 2020, 62, 239-247. 3.3 Recent advances and future directions in plant and yeast engineering to improve lignocellulosic 277 8.2 41 biofuel production. Renewable and Sustainable Energy Reviews, 2020, 134, 110390. Biosynthesis of α-Pinene by Genetically Engineered <i>Yarrowia lipolytica</i> from Low-Cost Renewable Feedstocks. Journal of Agricultural and Food Chemistry, 2021, 69, 275-285. 278 2.4 34 Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 283 4.6 17 1,3-butanediol in <i>Escherichia coli </i>. Green Chemistry, 2021, 23, 8694-8706. Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass. 284 24 Metabolic Engineering, 2022, 71, 2-12. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene 285 3.6 51 overproduction. Metabolic Engineering, 2021, 68, 232-245. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnology Advances, 2021, 53, 107841.

ARTICLE IF CITATIONS Bioproduction of Fuels: An Introduction., 2016, , 1-23. 287 0 Efforts Toward Industrial Biosynthesis of Isoprene., 2017, , 1-20. Metabolic Engineering of Methanotrophs for the Production of Chemicals and Fuels. Microbiology 293 0.3 3 Monographs, 2019, , 163-203. Strategies for the Biosynthesis of Pharmaceuticals and Nutraceuticals in Microbes from Renewable 1.2 Feedstock. Current Medicinal Chemistry, 2020, 27, 4613-4621. Microbial Oil as Sustainable Source of Energy and Nutrients. Encyclopedia of the UN Sustainable 300 0.0 0 Development Goals, 2020, , 1-15. Novel Internal Emulsifiers for High Biocontent Sustainable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2021, 9, 147-157. 3.2 302 Produtos quÃmicos a partir da biomassa., 2020, , 31-44. 0 Application of Metabolic Engineering for Biofuel Production in Microorganisms. Clean Energy 0.3 Production Technologies, 2020, , 243-261. Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 304 0 2020, , 352-376. Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (â^')-eremophilene 309 3.6 24 overproduction in engineered yeast. Metabolic Engineering, 2022, 69, 122-133. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communications, 310 17 5.8 2021, 12, 6916. Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in <i>Saccharomyces 311 2.4 cerevisiae</i>. Journal of Agricultural and Food Chemistry, 2022, 70, 815-825. Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon 312 1.9 11 sources. Chemical Engineering Science, 2022, 249, 117342. Combined bioderivatization and engineering approach to improve the efficiency of geraniol production. Green Chemistry, 2022, 24, 864-876. 313 4.6 Progress and perspectives for microbial production of farnesene. Bioresource Technology, 2022, 347, 315 4.8 18 126682. Pathway engineering strategies for improved product yield in yeast-based industrial ethanol 1.8 production. Synthetic and Systems Biotechnology, 2022, 7, 554-566. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to 317 15.6 93 fuels. Energy and Environmental Science, 2022, 15, 938-990. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering. Microbial Cell Factories, 2022, 21, 19.

		CITATION REPORT	
#	Article	IF	Citations
319	Bioproduction of terpenoid aroma compounds by microbial cell factories. , 2022, , 275-290.		0
320	From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals, 2022, 265.	15, 1.7	25
321	CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nature Communications, 2022, 13, 891.	5.8	39
322	Reverse \hat{I}^2 -oxidation pathways for efficient chemical production. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	14
323	Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae. Microorganisms, 2022, 10, 650.	1.6	14
325	Bio-upgrading of ethanol to fatty acid ethyl esters by metabolic engineering of Pseudomonas putida KT2440. Bioresource Technology, 2022, 350, 126899.	4.8	10
326	Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation(China), 2022, 3, 100228.	5.2	13
327	Recent advances in biofuel production through metabolic engineering. Bioresource Technology, 20. 352, 127037.	22, 4.8	36
328	Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels Engineering Microbiology, 2022, 2, 100013.	2.2	1
329	Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72, 107-115.	3.6	22
330	Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2021, 69, 15468-15483.	2.4	10
331	Wholeâ€cell biocatalysis: Advancements toward the biosynthesis of fuels. Biofuels, Bioproducts and Biorefining, 2022, 16, 859-876.	1.9	13
332	Recent progress in strategies for steroid production in yeasts. World Journal of Microbiology and Biotechnology, 2022, 38, 93.	1.7	3
333	Innovation trends in industrial biotechnology. Trends in Biotechnology, 2022, 40, 1160-1172.	4.9	30
341	Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods in Molecular Biology, 2022, 2489, 333-367.	0.4	3
342	Enhancing fluxes through the mevalonate pathway in <i>Saccharomyces cerevisiae</i> by engineer the HMGR and βâ€alanine metabolism. Microbial Biotechnology, 2022, 15, 2292-2306.	ng 2.0	19
343	The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production. Frontiers in Microbiology, 2022, 13, .	1.5	5
344	Identification of the sesquiterpene synthase AcTPS1 and high production of (–)-germacrene D in metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21, 89.	1.9	10

#	Article	IF	CITATIONS
345	Continuous extraction and concentration of secreted metabolites from engineered microbes using membrane technology. Green Chemistry, 2022, 24, 5479-5489.	4.6	18
346	An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae. Nature Communications, 2022, 13, .	5.8	16
347	Engineering the oleaginous yeast Candida tropicalis for $\hat{I}\pm$ -humulene overproduction. , 2022, 15, .		4
348	Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microbial Cell Factories, 2022, 21, .	1.9	22
349	Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nature Communications, 2022, 13, .	5.8	28
350	Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene. Journal of Agricultural and Food Chemistry, 2022, 70, 7180-7187.	2.4	9
351	Solarâ€Driven Overproduction of Biofuels in Microorganisms. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
352	Solarâ€driven Overproduction of Biofuels inÂMicroorganisms. Angewandte Chemie, 0, , .	1.6	0
353	Flux Regulation Through Glycolysis and Respiration is Balanced by Inositol Pyrophosphates. SSRN Electronic Journal, 0, , .	0.4	0
354	Recent Advances in Directed Yeast Genome Evolution. Journal of Fungi (Basel, Switzerland), 2022, 8, 635.	1.5	2
356	Metabolic engineering of Neurospora crassa for increasing carotenoids synthesis. African Journal of Biotechnology, 2022, 21, 156-166.	0.3	1
357	Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nature Communications, 2022, 13, .	5.8	39
358	Recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3â€hydroxypropionic acid. Biotechnology and Bioengineering, 2022, 119, 2639-2668.	1.7	17
359	Metabolic engineering of Ashbya gossypii for limonene production from xylose. , 2022, 15, .		3
360	Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nature Metabolism, 2022, 4, 932-943.	5.1	51
361	Making small molecules in plants: A chassis for synthetic biologyâ€based production of plant natural products. Journal of Integrative Plant Biology, 2023, 65, 417-443.	4.1	14
362	Optimizing microbial networks through metabolic bypasses. Biotechnology Advances, 2022, 60, 108035.	6.0	13
363	Metabolic engineering of Aureobasidium melanogenum 9–1 for overproduction of liamocins by enhancing supply of acetyl-CoA and ATP. Microbiological Research, 2022, 265, 127172.	2.5	4

#	Article	IF	CITATIONS
364	Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022–2050. Green Chemistry, 2022, 24, 6373-6405.	4.6	29
365	Microbial Production of Flavors and Fragrances by Yarrowia lipolytica. , 2022, , 1-28.		0
366	Accumulation and Enrichment of Trace Elements by Yeast Cells and Their Applications: A Critical Review. Microorganisms, 2022, 10, 1746.	1.6	5
367	Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. Fermentation, 2022, 8, 429.	1.4	7
370	Bioindustrial manufacturing readiness levels (BioMRLs) as a shared framework for measuring and communicating the maturity of bioproduct manufacturing processes. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	3
371	Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism. MBio, 2022, 13, .	1.8	2
372	Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. , 2022, 15, .		16
373	Phenolic compounds modulation in β-farnesene fed-batch fermentation using sugarcane syrup as feedstock. Industrial Crops and Products, 2022, 188, 115721.	2.5	10
374	Reconstructing ethanol oxidation pathway in Pseudomonas putida KT2440 for bio-upgrading of ethanol to biodegradable polyhydroxybutanoates. International Journal of Biological Macromolecules, 2022, 222, 902-914.	3.6	2
375	Multi-level engineering of <i>Saccharomyces cerevisiae</i> for the synthesis and accumulation of retinal. Green Chemistry, 2022, 24, 8259-8263.	4.6	5
376	β-Farnesene Production from Low-Cost Glucose in Lignocellulosic Hydrolysate by Engineered Yarrowia lipolytica. Fermentation, 2022, 8, 532.	1.4	9
377	Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. Biotechnology and Bioprocess Engineering, 2022, 27, 697-705.	1.4	1
378	Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nature Metabolism, 2022, 4, 1551-1559.	5.1	20
379	An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae. , 2022, 15, .		4
380	Engineering yeast for high-level production of diterpenoid sclareol. Metabolic Engineering, 2023, 75, 19-28.	3.6	20
381	Recent Advances in Multiple Strategies for the Synthesis of Terpenes by Engineered Yeast. Fermentation, 2022, 8, 615.	1.4	6
383	Engineering yeast for bio-production of food ingredients. Systems Microbiology and Biomanufacturing, 2023, 3, 2-11.	1.5	2
384	Sustainable biosynthesis of valuable diterpenes in microbes. Engineering Microbiology, 2023, 3, 100058.	2.2	2

#	Article	IF	CITATIONS
385	Microbial Production of Terpenes. , 2022, , 1-38.		0
386	Alleviating glucose repression and enhancing respiratory capacity to increase itaconic acid production. Synthetic and Systems Biotechnology, 2023, 8, 129-140.	1.8	2
387	Spent Yeast Valorization for Food Applications: Effect of Different Extraction Methodologies. Foods, 2022, 11, 4002.	1.9	4
388	Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Advances in Nutrition, 2023, 14, 238-255.	2.9	16
389	Total enzymatic synthesis of cis-α-irone from a simple carbon source. Nature Communications, 2022, 13,	5.8	7
390	Cofactor Engineering for Efficient Production of α-Farnesene by Rational Modification of NADPH and ATP Regeneration Pathway in Pichia pastoris. International Journal of Molecular Sciences, 2023, 24, 1767.	1.8	4
392	Metabolic engineering for sustainability and health. Trends in Biotechnology, 2023, 41, 425-451.	4.9	17
394	Increasing cellular fitness and product yields in Pseudomonas putida through an engineered phosphoketolase shunt. Microbial Cell Factories, 2023, 22, .	1.9	2
395	å•̂æ^生物å¦ä¼~化微生物碳代谢è;‡çï‹ä¸sš"碳ä¿å~与碳固定. Chinese Science Bulletin, 2023,	, ,0.4	1
396	Strain Design and Optimization Methods for Sustainable Production. , 2023, , 1-15.		0
397	Chinese yam (Dioscorea): Nutritional value, beneficial effects, and food and pharmaceutical applications. Trends in Food Science and Technology, 2023, 134, 29-40.	7.8	24
398	Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate. Metabolic Engineering Communications, 2023, 16, e00220.	1.9	2
399	Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnology Advances, 2023, 65, 108151.	6.0	10
400	Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. Journal of Agricultural and Food Chemistry, 2023, 71, 2197-2210.	2.4	6
401	Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell, 2023, 186, 748-763.e15.	13.5	14
402	Advances in the metabolic engineering of <i>Saccharomyces cerevisiae</i> and <i>Yarrowia lipolytica</i> for the production of l² -carotene. Critical Reviews in Biotechnology, 2024, 44, 337-351.	5.1	5
403	Semi-synthetic terpenoids with differential adjuvant properties as sustainable replacements for shark squalene in vaccine emulsions. Npj Vaccines, 2023, 8, .	2.9	7
404	Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene. Metabolic Engineering, 2023, 76, 225-231.	3.6	15

#	ARTICLE	IF	Citations
405	Strengthening microbial cell factories for efficient production of bioactive molecules. Biotechnology and Genetic Engineering Reviews, 0, , 1-34.	2.4	0
406	GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. Frontiers in Plant Science, 0, 14, .	1.7	1
407	Commercialization and technology transfers of bioprocess. , 2023, , 455-469.		1
408	Screening strategies. , 2023, , 23-46.		1
409	A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae. , 2023, 16, .		1
410	Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Microbial Cell Factories, 2023, 22, .	1.9	7
411	Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system. Chem Catalysis, 2023, 3, 100557.	2.9	4
414	Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synthetic Biology, 2023, 12, 1119-1132.	1.9	7
415	Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts, 2023, 13, 657.	1.6	3
416	Systematic Analysis of Metabolic Bottlenecks in the Methylerythritol 4-Phosphate (MEP) Pathway of Zymomonas mobilis. MSystems, 2023, 8, .	1.7	6
417	A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nature Communications, 2023, 14, .	5.8	7
418	Systematic modulating carbon metabolism to improve α-farnesene production in Pichia pastoris. Fuel Processing Technology, 2023, 247, 107757.	3.7	3
419	Advances in the optimization of central carbon metabolism in metabolic engineering. Microbial Cell Factories, 2023, 22, .	1.9	9
423	Engineered yeasts for the production of biofuel and platform chemicals. , 2023, , 21-46.		0
433	Systems metabolic engineering of microorganisms for food and cosmetics production. , 2023, 1, 832-857.		10
437	Microbial Production of Astaxanthin. , 2023, , 1-38.		0
447	Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Natural Product Reports, 2023, 40, 1822-1848.	5.2	5
458	Modeling the Microbial Cells for Biotechnological Applications. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 121-151.	0.2	0

#	Article	IF	Citations
486	Engineering biology fundamental for plant-derived bioactive compounds: challenges and prospects. , 2024, , 285-313.		0
487	Yeast cell factories for the biosynthesis of plant-derived bioactive terpenoids. , 2024, , 145-157.		0