Structure and Kinematics of Early-Type Galaxies from I

Annual Review of Astronomy and Astrophysics 54, 597-665

DOI: 10.1146/annurev-astro-082214-122432

Citation Report

#	Article	IF	Citations
1	THE INFORMATION CONTENT OF STELLAR HALOS: STELLAR POPULATION GRADIENTS AND ACCRETION HISTORIES IN EARLY-TYPE ILLUSTRIS GALAXIES. Astrophysical Journal, 2016, 833, 158.	1.6	49
2	KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS*. Astrophysical Journal, 2016, 831, 149.	1.6	83
3	Improved Dynamical Constraints on the Mass of the Central Black Hole in NGC 404. Astrophysical Journal, 2017, 836, 237.	1.6	71
4	One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophysical Journal, 2017, 836, 152.	1.6	279
5	The MASSIVE Survey. VI. The Spatial Distribution and Kinematics of Warm Ionized Gas in the Most Massive Local Early-type Galaxies. Astrophysical Journal, 2017, 837, 40.	1.6	27
6	Revisiting the Bulge–Halo Conspiracy. I. Dependence on Galaxy Properties and Halo Mass. Astrophysical Journal, 2017, 840, 34.	1.6	31
7	The MASSIVE Survey $\hat{a} \in \mathcal{C}$ V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 356-384.	1.6	82
8	Rotating Starburst Cores in Massive Galaxies at zÂ=Â2.5. Astrophysical Journal Letters, 2017, 841, L25.	3.0	67
9	SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies. Astrophysical Journal, 2017, 838, 77.	1.6	73
10	Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature, 2017, 543, 397-401.	13.7	177
11	Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 192-212.	1.6	32
12	Dominant dark matter and a counter-rotating disc: MUSE view of the low-luminosity S0 galaxy NGC 5102. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4789-4806.	1.6	55
13	A STUDY OF CENTRAL GALAXY ROTATION WITH STELLAR MASS AND ENVIRONMENT. Astronomical Journal, 2017, 153, 89.	1.9	14
14	Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway*. Astrophysical Journal, 2017, 845, 145.	1.6	29
15	Galaxy properties from J-PAS narrow-band photometry. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4722-4746.	1.6	8
16	The SAMI Galaxy Survey: Mass as the Driver of the Kinematic Morphology–Density Relation in Clusters. Astrophysical Journal, 2017, 844, 59.	1.6	65
17	Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Monthly Notices of the Royal Astronomical Society, 2017, 466, 798-811.	1.6	823
18	The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4Â<ÂZÂ<Â1.6*. Astrophysical Journal, 2017, 846, 120.	1.6	31

#	Article	IF	CITATIONS
19	Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?. Astrophysical Journal, 2017, 850, 15.	1.6	15
20	The SAMI Galaxy Survey: kinematics of dusty early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1991-2006.	1.6	14
21	The Spectroscopy and H-band Imaging of Virgo Cluster Galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-total Mass Relation. Astrophysical Journal, 2017, 843, 74.	1.6	27
22	Untangling galaxy components: full spectral bulge–disc decomposition. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2024-2033.	1.6	42
23	SDSS-IV MaNGA $\hat{a}\in$ " the spatially resolved transition from star formation to quiescence. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2570-2589.	1.6	85
24	The SLUGGS survey: using extended stellar kinematics to disentangle the formation histories of low-mass SO galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4540-4557.	1.6	29
25	The structural and dynamical properties of compact elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4216-4245.	1.6	49
26	Towards a new classification of galaxies: principal component analysis of CALIFA circular velocity curves. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2539-2594.	1.6	30
27	The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at $z\hat{A}a\%f\hat{A}1.80$ in JKCS 041*. Astrophysical Journal, 2017, 850, 203.	1.6	17
28	The MASSIVE Survey – VII. The relationship of angular momentum, stellar mass and environment of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1428-1445.	1.6	75
29	Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4005-4026.	1.6	30
30	The SAMI Galaxy Survey: revising the fraction of slow rotators in IFS galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1272-1285.	1.6	57
31	The SAMI Galaxy Survey: global stellar populations on the size–mass plane. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2833-2855.	1.6	72
32	How to break the density-anisotropy degeneracy in spherical stellar systems. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4541-4558.	1.6	61
33	The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 966-978.	1.6	38
34	MUSE stares into the shadows: the high-resolution dust attenuation curve of NGC 5626. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1286-1299.	1.6	17
35	SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA. Astrophysical Journal Letters, 2017, 851, L33.	3.0	28
36	The Faber–Jackson relation and Fundamental Plane from halo abundance matching. Monthly Notices of the Royal Astronomical Society, 2017, 465, 820-833.	1.6	36

3

#	Article	IF	Citations
37	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A5.	2.1	54
38	The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population. Astrophysical Journal, 2018, 855, 142.	1.6	74
39	A relation between the characteristic stellar ages of galaxies and their intrinsic shapes. Nature Astronomy, 2018, 2, 483-488.	4.2	49
40	Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes. Astrophysical Journal, 2018, 857, 17.	1.6	20
41	SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4711-4737.	1.6	107
42	Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies. Astrophysical Journal, 2018, 856, 115.	1.6	21
43	A quartet of black holes and a missing duo: probing the low end of the MBHâ \in "Îf relation with the adaptive optics assisted integral-field spectroscopy. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3030-3064.	1.6	37
44	Two channels of supermassive black hole growth as seen on the galaxies mass–size plane. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5237-5247.	1.6	20
45	The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. Astrophysical Journal, 2018, 857, 22.	1.6	57
46	Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in zÂâ^¼Â0.8 Quiescent Galaxies. Astrophysical Journal, 2018, 858, 60.	1.6	52
47	The KMOS ^{3D} Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths*. Astrophysical Journal, 2018, 855, 97.	1.6	32
48	SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies. Astrophysical Journal, 2018, 852, 36.	1.6	23
49	The Physical Characteristics of Interstellar Medium in NGC 3665 with Herschel Observations*. Astrophysical Journal, 2018, 854, 111.	1.6	4
50	The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 380-397.	1.6	9
51	A Subarcsecond Near-infrared View of Massive Galaxies at zÂ>Â1 with Gemini Multi-conjugate Adaptive Optics. Astrophysical Journal, 2018, 864, 8.	1.6	4
52	SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass–size plane. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1765-1775.	1.6	89
53	$H < i > \hat{i} \pm < /i > i$ imaging observations of early-type galaxies from the ATLAS < sup > 3D < /sup > survey. Astronomy and Astrophysics, 2018, 611, A28.	2.1	17
54	The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 141-152.	1.6	18

#	Article	IF	CITATIONS
55	SDSS-IV MaNGA: the formation sequence of SO galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5580-5591.	1.6	54
56	Isothermal Bondi Accretion in Two-component Jaffe Galaxies with a Central Black Hole. Astrophysical Journal, 2018, 868, 91.	1.6	11
57	The MASSIVE Survey – X. Misalignment between kinematic and photometric axes and intrinsic shapes of massive early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2810-2826.	1.6	32
58	On the observational diagnostics to separate classical and disk-like bulges. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3623-3642.	1.6	19
59	Angular Momentum – Conference Summary. Proceedings of the International Astronomical Union, 2018, 14, 197-202.	0.0	0
60	The SAMI Galaxy Survey: embedded discs and radial trends in outer dynamical support across the Hubble sequence. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3105-3116.	1.6	7
61	The EDGE–CALIFA survey: validating stellar dynamical mass models with CO kinematics. Monthly Notices of the Royal Astronomical Society, 2018, 477, 254-292.	1.6	44
62	Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. Astronomy and Astrophysics, 2018, 615, A27.	2.1	61
63	The SAMI Galaxy Survey: Data Release Two with absorption-line physics value-added products. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2299-2319.	1.6	73
64	A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophysical Journal, 2018, 865, 13.	1.6	85
65	The fate of the Antennae galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3934-3958.	1.6	20
66	SO galaxies are faded spirals: clues from their angular momentum content. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2137-2167.	1.6	36
67	The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39Â<ÂzÂ<Â1.61*. Astrophysical Journal, 2018, 856, 8.	1.6	17
68	The diversity of atomic hydrogen in slow rotator early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2741-2759.	1.6	13
69	Field spheroid-dominated galaxies in a î-CDM Universe. Astronomy and Astrophysics, 2018, 614, A85.	2.1	7
70	Fornax3D project: Overall goals, galaxy sample, MUSE data analysis, and initial results. Astronomy and Astrophysics, 2018, 616, A121.	2.1	71
71	A study of environmental effects on galaxy spin using MaNGA data. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1567-1577.	1.6	13
72	Three dynamically distinct stellar populations in the halo of M49. Astronomy and Astrophysics, 2018, 616, A123.	2.1	24

#	Article	IF	CITATIONS
73	The Formation of Extremely Diffuse Galaxy Cores by Merging Supermassive Black Holes. Astrophysical Journal, 2018, 864, 113.	1.6	45
74	Kinematics of simulated galaxies – I. Connecting dynamical and morphological properties of early-type galaxies at different redshifts. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4636-4658.	1.6	57
75	M^*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2560-2571.	1.6	23
76	SDSS-IV MaNGA: The Intrinsic Shape of Slow Rotator Early-type Galaxies. Astrophysical Journal Letters, 2018, 863, L19.	3.0	25
77	Neutral versus ionized gas kinematics at z \hat{a} % f 2.6: the AGN-host starburst galaxy PKS \hat{a} €%0529-549. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5440-5447.	1.6	21
78	The gravitationally unstable gas disk of a starburst galaxy 12 billion years ago. Nature, 2018, 560, 613-616.	13.7	61
79	The role of mergers in driving morphological transformation over cosmic time. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2266-2283.	1.6	83
80	SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 230-235.	1.6	15
81	Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5327-5337.	1.6	37
82	The origin and properties of massive prolate galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1489-1511.	1.6	40
83	SDSS-IV MaNGA: the different quenching histories of fast and slow rotators. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2679-2687.	1.6	27
84	NGC 5626: a massive fast rotator with a twist. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L47-L51.	1.2	1
85	Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3700-3729.	1.6	61
86	Revisiting the bulge–halo conspiracy – II. Towards explaining its puzzling dependence on redshift. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2878-2890.	1.6	12
87	Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation. Astrophysical Journal, 2018, 856, 114.	1.6	27
88	The connection between mass, environment, and slow rotation in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4327-4345.	1.6	65
89	Resolving Quiescent Galaxies at zÂ≳Â2. II. Direct Measures of Rotational Support. Astrophysical Journal, 2018, 862, 126.	1.6	53
90	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z $\hat{a}^{1/4}$ 2*. Astrophysical Journal, 2018, 859, 56.	1.6	100

#	Article	IF	CITATIONS
91	Does black-hole growth depend on the cosmic environment?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1022-1042.	1.6	31
92	Modeling Nearly Spherical Pure-bulge Galaxies with a Stellar Mass-to-light Ratio Gradient under the Î-CDM and MOND Paradigms. I. Methodology, Dynamical Stellar Mass, and Fundamental Mass Plane. Astrophysical Journal, 2018, 860, 81.	1.6	12
93	On the gravitomagnetic origins of the anomalous flat rotation curves of spiral galaxies. New Astronomy, 2019, 67, 1-15.	0.8	5
94	Zoom-in cosmological hydrodynamical simulation of a star-forming barred, spiral galaxy at redshift zÂ= 2. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4674-4689.	1.6	8
95	The Fornax3D project: Tracing the assembly history of the cluster from the kinematic and line-strength maps. Astronomy and Astrophysics, 2019, 627, A136.	2.1	49
96	Optical long-slit spectroscopy in the cluster Abell S0805. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3685-3715.	1.6	4
97	Star formation quenching imprinted on the internal structure of naked red nuggets. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4939-4950.	1.6	14
98	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	1.6	109
99	Unravelling the origin of the counter-rotating core in IC 1459 with KMOS and MUSE. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1679-1694.	1.6	7
100	Photometric and kinematic misalignments and their evolution among fast and slow rotators in the illustris simulation. Monthly Notices of the Royal Astronomical Society, 2019, 489, 534-547.	1.6	1
101	High polarisation extinction ratio of the TM-pass polariser with silicon carbideÂ/ÂgrapheneÂ/Âsilicon multilayers. Pramana - Journal of Physics, 2019, 93, 1.	0.9	4
102	MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts. Astrophysical Journal, 2019, 882, 61.	1.6	49
103	Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the †green valley'. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1265-1290.	1.6	36
104	The impact of AGN on stellar kinematics and orbits in simulated massive galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2702-2722.	1.6	17
105	Post-starburst galaxies in SDSS-IV MaNGA. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5709-5722.	1.6	35
106	SDSS-IV MaNGA: the inner density slopes of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2124-2138.	1.6	19
107	Galaxy properties as revealed by MaNGA – II. Differences in stellar populations of slow and fast rotator ellipticals and dependence on environment. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5633-5652.	1.6	29
108	ldentifying Kinematic Structures in Simulated Galaxies Using Unsupervised Machine Learning. Astrophysical Journal, 2019, 884, 129.	1.6	21

#	Article	IF	Citations
109	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	1.6	66
110	The Gas Kinematics, Excitation, and Chemistry, in Connection with Star Formation, in Lenticular Galaxies. Astrophysical Journal, Supplement Series, 2019, 244, 6.	3.0	29
111	WISDOM project – V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383. Monthly Notices of the Royal Astronomical Society, 2019, 490, 319-330.	1.6	32
112	Re. I. Understanding galaxy sizes, associated luminosity densities, and the artificial division of the early-type galaxy population. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	28
113	The distribution of dark matter in galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	155
114	Modeling Nearly Spherical Pure-bulge Galaxies with a Stellar Mass-to-light Ratio Gradient under the IrCDM and MOND Paradigms. II. The Orbital Anisotropy of Slow Rotators within the Effective Radius. Astrophysical Journal, 2019, 874, 41.	1.6	9
115	On the Origin of Star–Gas Counterrotation in Low-mass Galaxies. Astrophysical Journal, 2019, 878, 143.	1.6	37
116	Combining stellar populations with orbit-superposition dynamical modelling: the formation history of the lenticular galaxy NGC 3115. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3776-3796.	1.6	45
117	Spotting the differences between active and non-active twin galaxies on kpc-scales: a pilot study. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3794-3815.	1.6	3
118	Total density profile of massive early-type galaxies in H <scp>orizon</scp> -AGN simulation: impact of AGN feedback and comparison with observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4615-4627.	1.6	22
119	Recovering stellar population parameters via different population models and stellar libraries. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1675-1693.	1.6	22
120	CNO Emission of an Unlensed Submillimeter Galaxy at zÂ=Â4.3. Astrophysical Journal, 2019, 876, 1.	1.6	33
121	SDSS-IV MaNGA: full spectroscopic bulge-disc decomposition of MaNGA early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1546-1558.	1.6	26
122	Orbit properties of massive prolate galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3048-3059.	1.6	3
123	SDSS-IV MaNGA PyMorph Photometric and Deep Learning Morphological Catalogues and implications for bulge properties and stellar angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2057-2077.	1.6	69
124	The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE. Monthly Notices of the Royal Astronomical Society, 2019, 485, 972-987.	1.6	59
125	A numerical twist on the spin parameter, \hat{i} » <i>R</i> . Monthly Notices of the Royal Astronomical Society, 2019, 483, 249-262.	1.6	16
126	The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 869-891.	1.6	67

#	Article	IF	CITATIONS
127	The SAMI Galaxy Survey: satellite galaxies undergo little structural change during their quenching phase. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2656-2665.	1.6	32
128	A 40 Billion Solar-mass Black Hole in the Extreme Core of Holm 15A, the Central Galaxy of Abell 85. Astrophysical Journal, 2019, 887, 195.	1.6	61
129	The properties of the kinematically distinct components in NGC 448 and NGC 4365. Astronomy and Astrophysics, 2019, 623, A87.	2.1	13
130	Assembly of spheroid-dominated galaxies in the EAGLE simulation. Astronomy and Astrophysics, 2019, 629, A37.	2.1	14
131	Revealing the cosmic evolution of boxy/peanut-shaped bulges from HST COSMOS and SDSS. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4721-4739.	1.6	25
132	The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Overview. Astronomical Journal, 2019, 158, 231.	1.9	209
133	The CALIFA view on stellar angular momentum across the Hubble sequence. Astronomy and Astrophysics, 2019, 632, A59.	2.1	35
134	A comparison of stellar and gas-phase chemical abundances in dusty early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 562-573.	1.6	13
135	The SAMI Galaxy Survey: rules of behaviour for spin-ellipticity radial tracks in galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 324-343.	1.6	4
136	Highâ€resolution morphology and surface photometry of KIG 685 and KIG 895 with ARGOS+LUCI using the Large Binocular Telescope. Astronomische Nachrichten, 2020, 341, 10-25.	0.6	2
137	The SAMI galaxy survey: a range in S0 properties indicating multiple formation pathways. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2372-2383.	1.6	26
138	Host galaxy properties of changing-look AGNs revealed in the MaNGA survey. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3985-3994.	1.6	6
139	The SAMI–Fornax Dwarfs Survey I: sample, observations, and the specific stellar angular momentum of dwarf elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1571-1582.	1.6	19
140	Dependence of the Fundamental Plane of Early-type Galaxies on Age and Internal Structure. Astrophysical Journal, 2020, 897, 121.	1.6	7
141	SDSS-IV MaNGA: the $[\hat{l}\pm/Fe]$ of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3011-3025.	1.6	8
142	First Gaia dynamical model of the Milky Way disc with six phase space coordinates: a test for galaxy dynamics. Monthly Notices of the Royal Astronomical Society, 2020, 494, 6001-6011.	1.6	33
143	Quenching as a Contest between Galaxy Halos and Their Central Black Holes. Astrophysical Journal, 2020, 897, 102.	1.6	66
144	Nuclear star clusters. Astronomy and Astrophysics Review, 2020, 28, 1.	9.1	172

#	Article	IF	Citations
145	TDCOSMO. Astronomy and Astrophysics, 2020, 639, A101.	2.1	126
146	SDSS-IV MaNGA: stellar population correlates with stellar root-mean-square velocity Vrms gradients or total-density-profile slopes at fixed effective velocity dispersion le. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4820-4827.	1.6	6
147	Larger $\langle i \rangle \hat{l} \rangle \langle i \rangle \langle $	2.1	8
148	Evidence for Initial Mass Function Variation in Massive Early-Type Galaxies. Annual Review of Astronomy and Astrophysics, 2020, 58, 577-615.	8.1	49
149	Star-Forming Galaxies at Cosmic Noon. Annual Review of Astronomy and Astrophysics, 2020, 58, 661-725.	8.1	98
150	Kinematics of simulated galaxies II: Probing the stellar kinematics of galaxies out to large radii. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3778-3799.	1.6	23
151	A precise benchmark for cluster scaling relations: Fundamental Plane, Mass Plane, and IMF in the Coma cluster from dynamical models. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5619-5635.	1.6	9
152	SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1958-1977.	1.6	30
153	Recovering \hat{l} »R and $V/\hat{l}f$ from seeing-dominated IFS data. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2018-2038.	1.6	27
154	Efficient solution of the anisotropic spherically aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4819-4837.	1.6	39
155	K-CLASH: spatially resolving star-forming galaxies in field and cluster environments at z â‰^ 0.2–0.6. Monthly Notices of the Royal Astronomical Society, 2020, 496, 649-675.	1.6	11
156	Are the Milky Way and Andromeda unusual? A comparison with Milky Way and Andromeda analogues. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4943-4954.	1.6	14
157	The SAMI Galaxy Survey: decomposed stellar kinematics of galaxy bulges and disks. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4638-4658.	1.6	32
158	Measuring the mass of the supermassive black hole of the lenticular galaxy NGC 4546. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2620-2629.	1.6	2
159	Spatially Resolved Spectroscopic Properties of Low-Redshift Star-Forming Galaxies. Annual Review of Astronomy and Astrophysics, 2020, 58, 99-155.	8.1	126
160	Formation channels of slowly rotating early-type galaxies. Astronomy and Astrophysics, 2020, 635, A129.	2.1	22
161	Galaxy properties as revealed by MaNGA – III. Kinematic profiles and stellar population gradients in SOs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2894-2908.	1.6	23
162	Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5930-5939.	1.6	12

#	Article	IF	CITATIONS
163	The MASSIVE Survey. XV. A Stellar Dynamical Mass Measurement of the Supermassive Black Hole in Massive Elliptical Galaxy NGC 1453. Astrophysical Journal, 2020, 891, 4.	1.6	19
164	An Accurate Analytic Mass Model for Lensing Galaxies. Astrophysical Journal, 2020, 892, 62.	1.6	11
165	Virial models and anisotropy of velocity dispersion in E-galaxies. Astrophysics and Space Science, 2020, 365, 1.	0.5	0
166	Inward bound: the incredible journey of massive black holes as they pair and merge – I. The effect of mass ratio in flattened rotating galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 492, 256-267.	1.6	16
167	Comparison of SEDs of very massive radio-loud and radio-quiet AGN. Monthly Notices of the Royal Astronomical Society, 2020, 492, 315-325.	1.6	14
168	Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3672-3701.	1.6	20
169	Galaxy sizes and the galaxy–halo connection – I. The remarkable tightness of the size distributions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1671-1690.	1.6	28
170	Galaxies hosting an active galactic nucleus: a view from the CALIFA survey. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3073-3090.	1.6	61
171	The MAGPI survey: Science goals, design, observing strategy, early results and theoretical framework. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	15
172	The Correlation between Black Hole Mass and Stellar Mass for Classical Bulges and the Cores of Ellipticals. Astrophysical Journal, 2021, 907, 6.	1.6	14
173	The SAMI Galaxy Survey: Bulge and Disk Stellar Population Properties in Cluster Galaxies. Astrophysical Journal, 2021, 906, 100.	1.6	17
174	Dark matter haloes of massive elliptical galaxies at <i>z</i> â ¹ /4 0.2 are well described by the Navarro–Frenk–White profile. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2380-2405.	1.6	47
175	Size, shade, or shape? The contribution of galaxies of different types to the star formation history of the Universe from SDSS-IVÂMaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3128-3143.	1.6	5
176	The SAMI Galaxy Survey: Kinematics of Stars and Gas in Brightest Group Galaxies—The Role of Group Dynamics. Astrophysical Journal, 2021, 908, 123.	1.6	8
177	The stellar halos of ETGs in the IllustrisTNG simulations. Astronomy and Astrophysics, 2021, 647, A95.	2.1	34
180	A SAMI and MaNGA view on the stellar kinematics of galaxies on the star-forming main sequence. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4992-5005.	1.6	20
181	Galaxies with kinematically distinct cores in Illustris. Astronomy and Astrophysics, 2021, 647, A103.	2.1	6
182	Low-mass compact elliptical galaxies: spatially resolved stellar populations and kinematics with the Keck Cosmic Web Imager. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5455-5472.	1.6	10

#	Article	IF	CITATIONS
183	A mid-life crisis of the Universe? A giant red disk galaxy at $z=0.76$. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	0
184	The Fornax3D project: Assembly histories of lenticular galaxies from a combined dynamical and population orbital analysis. Astronomy and Astrophysics, 2021, 647, A145.	2.1	22
185	Fast rotating and low-turbulence discs at $\langle i \rangle z \langle i \rangle \hat{a} \in \hat{a} \% f \hat{a} \in \hat{a} \% f \hat{a} = \hat{a} \% f \hat{a} \% f \hat{a} = \hat{a} \% f \hat{a} \% f \hat{a} = \hat{a} \% f \hat{a} \% f \hat{a} \% f \hat{a} = \hat{a} \% f \hat{a} \% $	2.1	31
186	Asymmetry Revisited: The Effect of Dust Attenuation and Galaxy Inclination. Astrophysical Journal, 2021, 911, 145.	1.6	5
187	Deciphering the origin of ionized gas in IC 1459 with VLT/MUSE. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5087-5097.	1.6	1
188	The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5098-5130.	1.6	30
189	The evolution of compact massive quiescent and star-forming galaxies derived from the ⟨i⟩R⟨ i⟩eâ€"⟨i⟩R⟨ i⟩h and ⟨i⟩M⟨ i⟩starâ€"⟨i⟩M⟨ i⟩h relations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4555-4570.	1.6	13
190	The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3078-3106.	1.6	22
192	The Fundamental Plane in the LEGA-C Survey: Unraveling the M/L Ratio Variations of Massive Star-forming and Quiescent Galaxies at z $\hat{a}^{-1}/4$ 0.8. Astrophysical Journal, 2021, 913, 103.	1.6	19
194	Accurate Identification of Galaxy Mergers with Stellar Kinematics. Astrophysical Journal, 2021, 912, 45.	1.6	16
195	The SAMI Galaxy Survey: the role of disc fading and progenitor bias in kinematic transitions. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2247-2266.	1.6	9
196	TDCOSMO. Astronomy and Astrophysics, 2021, 649, A61.	2.1	40
197	An adiabatic, X-ray emitting cavity in the galaxy/group NGC 4636 and a new stellar mass-to-light ratio for the central galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2030-2040.	1.6	0
198	Jeans modelling of axisymmetric galaxies with multiple stellar populations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1480-1497.	1.6	3
199	A search for active galactic nuclei in low-mass compact galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4702-4714.	1.6	12
200	The puzzling origin of massive compact galaxies in MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 507, 300-317.	1.6	5
201	TDCOSMO. Astronomy and Astrophysics, 2021, 652, A7.	2.1	11
202	The role of AGN feedback in the structure, kinematics, and evolution of ETGs in Horizon simulations. Astronomy and Astrophysics, 2021, 652, A44.	2.1	5

#	Article	IF	CITATIONS
203	SDSS-IV MaNGA: Stellar M/L gradients and the M/L-colour relation in galaxies. Monthly Notices of the Royal Astronomical Society, 2021 , 507 , 2488 - 2499 .	1.6	16
204	Dynamical Model of the Milky Way Using APOGEE and Gaia Data. Astrophysical Journal, 2021, 916, 112.	1.6	20
205	Two interacting galaxies hiding as one, revealed by MaNGA. Astronomy and Astrophysics, 2021, 653, A47.	2.1	5
206	Extremely efficient mergers of intermediate-mass black hole binaries in nucleated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1174-1188.	1.6	4
207	Constraining the Milky Way's ultraviolet-to-infrared SED with Gaussian process regression. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4459-4483.	1.6	6
208	The SAMI Galaxy Survey: Detection of Environmental Dependence of Galaxy Spin in Observations and Simulations Using Marked Correlation Functions. Astrophysical Journal, 2021, 918, 84.	1.6	4
209	The SAMI galaxy survey: Mass and environment as independent drivers of galaxy dynamics. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2307-2328.	1.6	18
210	The two phases of core formation – orbital evolution in the centres of ellipticals with supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4610-4624.	1.6	10
211	Globular Cluster Systems and Galaxy Formation. , 2020, , 245-277.		20
212	The halo of M 49 and its environment as traced by planetary nebulae populations. Astronomy and Astrophysics, 2017, 603, A104.	2.1	21
213	Spatially-resolved star formation histories of CALIFA galaxies. Astronomy and Astrophysics, 2017, 607, A128.	2.1	52
214	The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: The kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass. Astronomy and Astrophysics, 2018, 618, A94.	2.1	41
215	SDSS-IV MaNGA: Global and local stellar population properties of elliptical galaxies. Astronomy and Astrophysics, 2020, 644, A117.	2.1	26
216	Double-peak emission line galaxies in the SDSS catalogue. Astronomy and Astrophysics, 2020, 641, A171.	2.1	15
217	Gravitational Lensing and Dynamics (GLaD): combined analysis to unveil properties of high-redshift galaxies. Astronomy and Astrophysics, 2020, 643, A135.	2.1	12
218	Morphology and surface photometry of a sample of isolated early-type galaxies from deep imaging. Astronomy and Astrophysics, 2020, 640, A38.	2.1	10
219	From spirals to lenticulars: Evidence from the rotation curves and mass models of three early-type galaxies. Astronomy and Astrophysics, 2020, 641, A31.	2.1	13
220	Compact, bulge-dominated structures of spectroscopically confirmed quiescent galaxies at <i>z</i> â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2659-2676.	1.6	20

#	Article	IF	Citations
221	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4359-4382.	1.6	38
222	SDSS-IV MaNGA: when is morphology imprinted on galaxies?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L42-L46.	1.2	7
223	A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Global and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92.	1.6	8
224	A Scenario for Ultradiffuse Satellite Galaxies with Low Velocity Dispersions: The Case of [KKS 2000]04. Astrophysical Journal, 2020, 893, 66.	1.6	13
225	The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87.	1.6	19
226	Rotation Curves in z â ¹ ¼ 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophysical Journal, 2020, 902, 98.	1.6	55
227	Galaxy Sizes Since $z\hat{A}=\hat{A}2$ from the Perspective of Stellar Mass Distribution within Galaxies. Astrophysical Journal, 2020, 905, 170.	1.6	27
228	THE VIRIAL RELATION AND INTRINSIC SHAPE OF EARLY-TYPE GALAXIES. Journal of the Korean Astronomical Society, 2016, 49, 193-198.	1.5	2
229	Resolved Nuclear Kinematics Link the Formation and Growth of Nuclear Star Clusters with the Evolution of Their Early- and Late-type Hosts. Astrophysical Journal, 2021, 921, 8.	1.6	6
230	Probing modified Newtonian dynamics with hypervelocity stars. Astronomy and Astrophysics, 2022, 657, Al15.	2.1	3
231	The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0 < z < 1.4. Astrophysical Journal, 2021, 920, 32.	1.6	5
232	Galactic traversability: a new concept for extragalactic SETI. International Journal of Astrobiology, 2021, 20, 359-376.	0.9	1
233	Key dynamical results from the SAMI Galaxy Survey. Proceedings of the International Astronomical Union, 2019, 14, 213-221.	0.0	0
234	The diverse nature and formation paths of slow rotator galaxies in the <scp>eagle</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4372-4391.	1.6	23
235	A Comparison of Stellar Kinematics Derived from Two Gemini NIFS Reduction Pipelines. Research Notes of the AAS, 2020, 4, 250.	0.3	1
236	Physical explanation for the galaxy distribution on the (\hat{l} »R, \hat{l} μ) and ($<$ i>> $V<$ $ i>$ $ if$, \hat{l} μ) diagrams or for the limit on orbital anisotropy. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L27-L31.	1.2	3
237	Quenched, bulge-dominated, but dynamically cold galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5062-5074.	1.6	2
238	CANDELS Meets GSWLC: Evolution of the Relationship between Morphology and Star Formation Since zÂ=Â2. Astrophysical Journal, 2020, 902, 77.	1.6	11

#	Article	IF	CITATIONS
239	Dynamics of Companion Galaxies of Early-type Galaxies. Astrophysical Journal, 2020, 903, 38.	1.6	2
240	Capturing the Physics of MaNGA Galaxies with Self-supervised Machine Learning. Astrophysical Journal, 2021, 921, 177.	1.6	10
241	Relic galaxy analogues in TNG50 simulation: the formation pathways of surviving red nuggets in a cosmological simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 245-264.	1.6	8
242	Stellar masses, sizes, and radial profiles for 465 nearby early-type galaxies: An extension to the <i>Spitzer</i> survey of stellar structure in Galaxies (S ⁴ G). Astronomy and Astrophysics, 2022, 660, A69.	2.1	11
243	Evidence for Impact of Galaxy Mergers on Stellar Kinematics of Early-type Galaxies. Astrophysical Journal, 2022, 925, 168.	1.6	10
244	Triaxial Orbit-based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Application to Massive Elliptical Galaxy NGC 1453. Astrophysical Journal, 2022, 926, 30.	1.6	15
245	What drives galaxy quenching? A deep connection between galaxy kinematics and quenching in the local Universe. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1913-1941.	1.6	17
246	Rotation Curves of Galaxies and Their Dependence on Morphology and Stellar Mass. Astrophysical Journal, 2021, 922, 249.	1.6	7
247	Point-spread Function Deconvolution of the IFU Data and Restoration of Galaxy Stellar Kinematics. Astrophysical Journal, Supplement Series, 2021, 257, 66.	3.0	4
248	Formation and Evolution of Galaxies: Starlight Synthesis Algorithm. International Journal of Astronomy and Astrophysics, 2022, 12, 68-93.	0.2	0
249	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^1/4 0.8. Astrophysical Journal, 2022, 926, 134.	1.6	70
250	Star-forming SO Galaxies in SDSS-MaNGA: fading spirals or rejuvenated SOs?. Monthly Notices of the Royal Astronomical Society, 2022, 513, 389-404.	1.6	13
251	Insights into the Evolution of Five Isolated Galaxies. Astrophysical Journal, 2022, 927, 124.	1.6	3
252	Tomography of the le-Re and L-Sigma Planes. Universe, 2022, 8, 8.	0.9	3
253	SDSS-IV MaNGA: integral-field kinematics and stellar population of a sample of galaxies with counter-rotating stellar discs selected from about 4000 galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 139-157.	1.6	15
254	3D intrinsic shapes of quiescent galaxies in observations and simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4814-4832.	1.6	6
255	Disc cloaking: Establishing a lower limit to the number density of local compact massive spheroids/bulges and the potential fate of some high- <i>z</i> red nuggets. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3410-3451.	1.6	8
256	Centrally Concentrated H i Distribution Enhances Star Formation in Galaxies. Astrophysical Journal, 2022, 930, 85.	1.6	3

#	Article	IF	CITATIONS
257	The SAMI Galaxy Survey: The Internal Orbital Structure and Mass Distribution of Passive Galaxies from Triaxial Orbit-superposition Schwarzschild Models. Astrophysical Journal, 2022, 930, 153.	1.6	18
258	The SAMI galaxy survey: The link between $[\hat{l}\pm$ /Fe] and kinematic morphology. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
259	A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3938-3955.	1.6	6
260	The spectroscopy and <i>H</i> -band imaging of Virgo cluster galaxies (SHIVir) survey: data catalogue and kinematic profiles. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2356-2375.	1.6	1
261	Unexplored outflows in nearby low luminosity AGNs. Astronomy and Astrophysics, 2022, 664, A135.	2.1	9
262	Consequences of the lack of azimuthal freedom in the modeling of lensing galaxies. Astronomy and Astrophysics, 2022, 663, A179.	2.1	10
263	Merger histories of brightest group galaxies from MUSE stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1104-1121.	1.6	7
264	Kiloparsec view of a typical star-forming galaxy when the Universe was \hat{a}^4 1 Gyr old. Astronomy and Astrophysics, 2022, 665, L8.	2.1	11
265	Shapes of galaxies hosting radio-loud AGNs with z â‰ ≇ €"1. Astronomy and Astrophysics, 2022, 665, A114.	2.1	2
266	The galaxy-wide stellar initial mass function in the presence of cluster-to-cluster IMF variations. Astronomy and Astrophysics, 2022, 666, A113.	2.1	4
267	Dissecting Nearby Galaxies with piXedfit. II. Spatially Resolved Scaling Relations among Stars, Dust, and Gas. Astrophysical Journal, 2022, 935, 98.	1.6	7
268	The SAMI Galaxy Survey: flipping of the spin–filament alignment correlates most strongly with growth of the bulge. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3569-3591.	1.6	11
269	The miniJPAS survey. Astronomy and Astrophysics, 2022, 666, A84.	2.1	9
270	Reconstructing the Assembly of Massive Galaxies. I. The Importance of the Progenitor Effect in the Observed Properties of Quiescent Galaxies at z â‰^ 2. Astrophysical Journal, 2022, 935, 120.	1.6	15
271	Aging of galaxies along the morphological sequence, marked by bulge growth and disk quenching. Astronomy and Astrophysics, 2022, 666, A170.	2.1	7
272	The SAMI–Fornax Dwarfs Survey – II. The Stellar Mass Fundamental Plane and the dark matter fraction of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4714-4735.	1.6	5
273	TDCOSMO. Astronomy and Astrophysics, 2022, 667, A123.	2.1	11
274	Reorientation Rates of Structural and Kinematic Axes in Simulated Massive Galaxies and the Origins of Prolate Rotation. Astrophysical Journal, 2022, 937, 38.	1.6	1

#	ARTICLE	IF	Citations
275	Massive Early-type Galaxies in the HSC-SSP: Flux Fraction of Tidal Features and Merger Rates. Astrophysical Journal, Supplement Series, 2022, 262, 39.	3.0	6
276	Beyond Galaxy Bimodality: The Complex Interplay between Kinematic Morphology and Star Formation in the Local Universe. Astrophysical Journal, 2022, 937, 117.	1.6	9
277	The SAMI Galaxy Survey: physical drivers of stellar-gas kinematic misalignments in the nearby Universe. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2677-2696.	1.6	10
278	Accuracy and precision of triaxial orbit models $\hat{a} \in \mathbb{N}$ II. Viewing angles, shape, and orbital structure. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3445-3458.	1.6	5
279	The MOSDEF survey: a new view of a remarkable $\langle i\rangle z\langle i\rangle \hat{A}=1.89$ merger. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4405-4416.	1.6	0
280	Origin of the differences in rotational support among early-type galaxies: The case of galaxies outside clusters. Astronomy and Astrophysics, 2023, 672, A27.	2.1	3
281	Stellar population analysis of MaNGA early-type galaxies: IMF dependence and systematic effects. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4713-4733.	1.6	3
282	Massive quiescent galaxies at $\langle i \rangle z \langle i \rangle$ â ¹ / ₄ 3: A comparison of selection, stellar population, and structural properties with simulation predictions. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5953-5975.	1.6	11
283	Ageing and quenching through the ageing diagram: predictions from simulations and observational constraints. Monthly Notices of the Royal Astronomical Society, 2023, 520, 193-209.	1.6	7
284	Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies. Astronomy and Astrophysics, 0, , .	2.1	1
285	Galactic scaling rules in a modified dynamical model. New Astronomy, 2023, 101, 102020.	0.8	0
286	The Fornax3D project: Environmental effects on the assembly of dynamically cold disks in Fornax cluster galaxies. Astronomy and Astrophysics, 2023, 672, A84.	2.1	3
287	Late growth of early-type galaxies in low-z massive clusters. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1221-1232.	1.6	1
288	TDCOSMO. Astronomy and Astrophysics, 2023, 673, A9.	2.1	20
289	The SAMI Galaxy Survey: Environmental analysis of the orbital structures of passive galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2671-2691.	1.6	4
290	MaNGA integral-field stellar kinematics of LoTSS radio galaxies: Luminous radio galaxies tend to be slow rotators. Astronomy and Astrophysics, 2023, 673, A12.	2.1	1
291	Impact of Galaxy Mergers on Stellar Population Profiles of Early-type Galaxies. Astrophysical Journal, 2023, 946, 41.	1.6	1
292	Expectations of the Size Evolution of Massive Galaxies at 3 â‰⊉ â‰₲ from the TNG50 Simulation: The CEERS/JWST View. Astrophysical Journal, 2023, 946, 71.	1.6	15

ARTICLE IF CITATIONS

Digging deeper into NGC 6868 I: Stellar population. Monthly Notices of the Royal Astronomical Society, 2023, 522, 2570-2583. 1.6 1