The extracellular matrix – the underâ€recognized ele

Journal of Pathology 240, 397-409

DOI: 10.1002/path.4808

Citation Report

#	Article	IF	CITATIONS
1	Interplay of extracellular matrix and leukocytes in lung inflammation. Cellular Immunology, 2017, 312, 1-14.	3.0	89
2	Engineering Bioartificial Lungs for Transplantation. Current Stem Cell Reports, 2017, 3, 55-67.	1.6	3
3	The peritoneum: healing, immunity, and diseases. Journal of Pathology, 2017, 243, 137-147.	4.5	93
4	Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Advanced Drug Delivery Reviews, 2017, 121, 101-116.	13.7	121
5	Electrospun Decellularized Lung Matrix Scaffold for Airway Smooth Muscle Culture. ACS Biomaterials Science and Engineering, 2017, 3, 3480-3492.	5.2	43
6	Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. DMM Disease Models and Mechanisms, 2017, 10, 1301-1312.	2.4	110
7	The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. European Respiratory Journal, 2017, 50, 1601805.	6.7	341
8	Fibrillin-2 and Tenascin-C bridge the age gap in lung epithelial regeneration. Biomaterials, 2017, 140, 212-219.	11.4	54
9	Best of Milan 2017â€"repair of the emphysematous lung: mesenchymal stromal cell and matrix. Journal of Thoracic Disease, 2017, 9, S1544-S1547.	1.4	3
10	The multifaceted roles of perlecan in fibrosis. Matrix Biology, 2018, 68-69, 150-166.	3.6	40
11	Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biology, 2018, 71-72, 205-224.	3.6	147
12	Quantifying extracellular matrix turnover in human lung scaffold cultures. Scientific Reports, 2018, 8, 5409.	3.3	44
13	The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biology, 2018, 68-69, 81-93.	3.6	281
14	The IncRNA H19 Mediates Pulmonary Fibrosis by Regulating the miR-196a/COL1A1 Axis. Inflammation, 2018, 41, 896-903.	3.8	74
15	Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biology, 2018, 73, 64-76.	3.6	65
16	FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis. Respiratory Research, 2018, 19, 67.	3.6	21
17	Matrix remodeling in chronic lung diseases. Matrix Biology, 2018, 73, 52-63.	3.6	37
18	Pulmonary and diaphragmatic pathology in collagen type I $\hat{l}\pm 1$ mutant mice with osteogenesis imperfecta. Pediatric Research, 2018, 83, 1165-1171.	2.3	19

#	Article	IF	CITATIONS
19	Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis. Journal of Allergy and Clinical Immunology, 2018, 142, 1457-1468.	2.9	27
20	Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Journal of Proteomics, 2018, 189, 23-33.	2.4	61
21	Epithelial–mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Developmental Dynamics, 2018, 247, 346-358.	1.8	190
22	<scp>VEGF</scp> synthesis is induced by prostacyclin and <scp>TGF</scp> â€Î² in distal lung fibroblasts from <scp>COPD</scp> patients and control subjects: <scp>I</scp> mplications for pulmonary vascular remodelling. Respirology, 2018, 23, 68-75.	2.3	29
23	Generation of a Close-to-Native <i>In Vitro</i> System to Study Lung Cells–Extracellular Matrix Crosstalk. Tissue Engineering - Part C: Methods, 2018, 24, 1-13.	2.1	7
24	Lysyl Oxidase–Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1–induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 461-470.	2.9	44
25	Lung bioengineering: advances and challenges in lung decellularization and recellularization. Current Opinion in Organ Transplantation, 2018, 23, 673-678.	1.6	29
26	Equine lung decellularization: a potential approach for in vitro modeling the role of the extracellular matrix in asthma. Journal of Tissue Engineering, 2018, 9, 204173141881016.	5.5	10
27	A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells. Journal of Visualized Experiments, 2018, , .	0.3	8
28	Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 3028.	4.1	735
29	Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs, 2018, 78, 1717-1740.	10.9	62
30	Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Scientific Reports, 2018, 8, 13877.	3.3	121
31	Diagnostic role of circulating extracellular matrix-related proteins in non-small cell lung cancer. BMC Cancer, 2018, 18, 899.	2.6	45
32	Multi-omic molecular profiling of lung cancer in COPD. European Respiratory Journal, 2018, 52, 1702665.	6.7	25
33	Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L162-L172.	2.9	114
34	Low back pain and gastroesophageal reflux in patients with COPD: the disease in the breath. International Journal of COPD, 2018, Volume 13, 325-334.	2.3	29
35	Aging and anatomical variations in lung tissue stiffness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L946-L955.	2.9	103
36	IncRNA PFAR Promotes Lung Fibroblast Activation and Fibrosis by Targeting miR-138 to Regulate the YAP1-Twist Axis. Molecular Therapy, 2018, 26, 2206-2217.	8.2	70

#	Article	IF	Citations
37	Cystic Lung Disease from Protein Deposition: Pathogenesis and Associated Conditions. Current Radiology Reports, 2018, 6, 1.	1.4	4
38	Chronic features of allergic asthma are enhanced in the absence of resistin-like molecule-beta. Scientific Reports, 2018, 8, 7061.	3.3	12
39	Fibroblast-to-myofibroblast transition in bronchial asthma. Cellular and Molecular Life Sciences, 2018, 75, 3943-3961.	5.4	95
40	TGF- \hat{l}^21 -induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH ₂ -terminal kinase-1-dependent manner. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L984-L997.	2.9	25
41	Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biology, 2019, 80, 14-28.	3.6	100
42	Regenerative Medicine of the Respiratory Tract. , 2019, , 1059-1072.		1
43	A high content, phenotypic â€~scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts. BMC Biomedical Engineering, 2019, 1, 14.	2.6	14
44	Magnetic microboats for floating, stiffness tunable, air–liquid interface epithelial cultures. Lab on A Chip, 2019, 19, 2786-2798.	6.0	15
45	Thermal Liquid Biopsy (TLB): A Predictive Score Derived from Serum Thermograms as a Clinical Tool for Screening Lung Cancer Patients. Cancers, 2019, 11, 1012.	3.7	12
46	<p>Epithelial–mesenchymal transition is driven by transcriptional and post transcriptional modulations in COPD: implications for disease progression and new therapeutics</p> . International Journal of COPD, 2019, Volume 14, 1603-1610.	2.3	20
47	Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respiratory Research, 2019, 20, 222.	3.6	23
48	Small airway hyperresponsiveness in COPD: relationship between structure and function in lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L537-L546.	2.9	26
49	Laminin $\hat{l}\pm 4$ contributes to airway remodeling and inflammation in asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L768-L777.	2.9	12
50	Tumor Extracellular Matrix Remodeling: New Perspectives as a Circulating Tool in the Diagnosis and Prognosis of Solid Tumors. Cells, 2019, 8, 81.	4.1	69
51	Mechanisms of Fibrosis., 2019,, 9-31.		3
52	Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. International Journal of Molecular Sciences, 2019, 20, 2438.	4.1	9
53	Pulmonary fibrosis: a disease of alveolar collapse and collagen deposition. Expert Review of Respiratory Medicine, 2019, 13, 615-619.	2.5	37
54	Transcriptomic Sequencing of Airway Epithelial Cell NCI-H292 Induced by Synthetic Cationic Polypeptides. BioMed Research International, 2019, 2019, 1-13.	1.9	1

#	ARTICLE	IF	CITATIONS
55	Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Human Molecular Genetics, 2019, 28, 2352-2364.	2.9	19
56	Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies?. Cells, 2019, 8, 342.	4.1	95
57	Expression, activity and localization of lysosomal sulfatases in Chronic Obstructive Pulmonary Disease. Scientific Reports, 2019, 9, 1991.	3.3	4
58	Quantitative proteomic characterization of lung tissue in idiopathic pulmonary fibrosis. Clinical Proteomics, 2019, 16, 6.	2.1	50
60	Dynamic Reciprocity: The Role of the Extracellular Matrix Microenvironment in Amplifying and Sustaining Pathological Lung Fibrosis. Molecular and Translational Medicine, 2019, , 239-270.	0.4	1
61	Tissue-informed engineering strategies for modeling human pulmonary diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L303-L320.	2.9	24
62	Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clinical Biomechanics, 2019, 66, 20-31.	1.2	11
63	Basic and translational science advances in congenital diaphragmatic hernia. Seminars in Perinatology, 2020, 44, 151170.	2.5	21
64	ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Annals of Biomedical Engineering, 2020, 48, 1071-1089.	2.5	104
65	Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. Journal of Pathology, 2020, 250, 624-635.	4.5	116
66	Association of the Collagen Type IV Alpha 1 Chain Gene rs3783107 GG Genotype with Hypertension, Asthma, and Eczema: The Tampere Adult Population Cardiovascular Risk Study. Genetic Testing and Molecular Biomarkers, 2020, 24, 6-9.	0.7	0
67	Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nature Reviews Rheumatology, 2020, 16, 11-31.	8.0	320
68	A Novel Fibroblast Reporter Cell Line for in vitro Studies of Pulmonary Fibrosis. Frontiers in Physiology, 2020, 11, 567675.	2.8	7
69	CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death and Disease, 2020, 11, 553.	6.3	35
70	Extracellular matrix remodelling in COPD. European Respiratory Review, 2020, 29, 190124.	7.1	28
71	Silver Nanoparticles Alter Cell Viability Ex Vivo and in Vitro and Induce Proinflammatory Effects in Human Lung Fibroblasts. Nanomaterials, 2020, 10, 1868.	4.1	14
72	Where We Stand: Lung Organotypic Living Systems That Emulate Human-Relevant Host–Environment/Pathogen Interactions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 989.	4.1	21
73	Lung Development Genes and Adult Lung Function. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 853-865.	5.6	23

#	Article	IF	CITATIONS
74	A viscoelastic two-dimensional network model of the lung extracellular matrix. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2241-2253.	2.8	9
75	Exposure to Air Pollution Exacerbates Inflammation in Rats with Preexisting COPD. Mediators of Inflammation, 2020, 2020, 1-12.	3.0	25
76	RELMÎ \pm Is Induced in Airway Epithelial Cells by Oncostatin M without Requirement of STAT6 or IL-6 in Mouse Lungs In Vivo. Cells, 2020, 9, 1338.	4.1	6
77	Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1225-1236.	5.6	20
78	Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases <i>in vitro</i> . Journal of Materials Chemistry B, 2020, 8, 6814-6826.	5.8	64
79	Recent advances in imaging of cell elasticity. , 2021, , 257-296.		1
80	The Applications of the Recellularization Organs in Organ Replacement at the Stage of Animal Research., 2021,, 415-487.		0
81	Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs. Advances in Experimental Medicine and Biology, 2021, 1335, 87-101.	1.6	5
82	Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Communications Biology, 2021, 4, 168.	4.4	161
85	Macrophage–stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. Journal of Pathology, 2021, 254, 344-357.	4.5	32
86	Assay of extracellular matrix degradation and transmigration of chicken peripheral blood mononuclear cells after infection with genotype VII Newcastle disease virus in vitro. Journal of Virological Methods, 2021, 290, 114076.	2.1	0
87	Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases. Frontiers in Pharmacology, 2021, 12, 645558.	3.5	12
88	Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Frontiers in Pharmacology, 2021, 12, 645858.	3.5	17
89	Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion, 2021, 58, 184-199.	3.4	3
90	The Stress of Lung Aging: Endoplasmic Reticulum and Senescence Tête-Ã-Tête. Physiology, 2021, 36, 150-159.	3.1	7
91	Stiffening of the extracellular matrix is a sufficient condition for airway hyperreactivity. Journal of Applied Physiology, 2021, 130, 1635-1645.	2.5	13
92	Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells, 2021, 10, 1602.	4.1	25
93	A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells, 2021, 10, 1538.	4.1	22

#	Article	IF	CITATIONS
94	Genetic Signatures From RNA Sequencing of Pediatric Localized Scleroderma Skin. Frontiers in Pediatrics, 2021, 9, 669116.	1.9	15
95	Airway smooth muscle pathophysiology in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 1983-1995.	2.9	44
96	The critical role of collagen VI in lung development and chronic lung disease. Matrix Biology Plus, 2021, 10, 100058.	3.5	23
97	Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Frontiers in Pharmacology, 2021, 12, 669037.	3 . 5	8
98	The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells, 2021, 10, 1706.	4.1	13
99	Interplay between Extracellular Matrix and Neutrophils in Diseases. Journal of Immunology Research, 2021, 2021, 1-11.	2.2	23
100	Mechanobiology of Pulmonary Diseases: A Review of Engineering Tools to Understand Lung Mechanotransduction. Journal of Biomechanical Engineering, 2021, 143, .	1.3	13
101	Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. International Immunopharmacology, 2021, 96, 107608.	3.8	11
102	Aging increases senescence, calcium signaling, and extracellular matrix deposition in human airway smooth muscle. PLoS ONE, 2021, 16, e0254710.	2.5	17
103	Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses, 2021, 13, 1590.	3.3	21
104	Modeling Extracellular Matrix-Cell Interactions in Lung Repair and Chronic Disease. Cells, 2021, 10, 2145.	4.1	16
105	Imaging the pulmonary extracellular matrix. Current Opinion in Physiology, 2021, 22, 100444.	1.8	0
106	How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering, 2021, 8, 110.	3.5	6
107	Therapeutic targets in lung tissue remodelling and fibrosis. , 2021, 225, 107839.		98
108	Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels. Polymers, 2021, 13, 3113.	4.5	23
109	Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Experimental and Molecular Pathology, 2021, 122, 104664.	2.1	6
110	The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. , 2021, 228, 107941.		17
111	Preclinical Evidence for the Role of Stem/Stromal Cells in COPD. , 2019, , 73-96.		1

#	Article	IF	CITATIONS
112	Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clinical Science, 2020, 134, 2681-2706.	4.3	73
115	Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L698-L704.	2.9	102
116	Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight, 2020, 5, .	5.0	23
117	Comparison of the Regenerative Potential for Lung Tissue of Mesenchymal Stromal Cells from Different Sources/Locations Within the Body. , 2019, , 35-55.		0
118	Clinical Application of Stem/Stromal Cells in COPD., 2019,, 97-118.		0
120	Smoking effect on the ultrastructural properties of cultured lung myofibroblasts. Ultrastructural Pathology, 2021, 45, 37-48.	0.9	1
121	The role of mutations in metalloproteinases and the epithelial growth factor receptor genes in the pathogenesis of children bronchial asthma. Pulmonologiya, 2020, 30, 17-22.	0.8	2
122	The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation. Cells, 2021, 10, 3215.	4.1	5
123	Respiratory manifestations in the <scp>Ehlers–Danlos</scp> syndromes. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2021, 187, 533-548.	1.6	8
124	The Role of the Dynamic Lung Extracellular Matrix Environment on Fibroblast Morphology and Inflammation. Cells, 2022, $11,185.$	4.1	8
125	Mechanobiological Implications of Cancer Progression in Space. Frontiers in Cell and Developmental Biology, 2021, 9, 740009.	3.7	6
127	The Multi-Faceted Extracellular Matrix: Unlocking Its Secrets for Understanding the Perpetuation of Lung Fibrosis. Current Tissue Microenvironment Reports, 2021, 2, 53-71.	3.2	8
129	Transient Agarose Spot (TAS) Assay: A New Method to Investigate Cell Migration. International Journal of Molecular Sciences, 2022, 23, 2119.	4.1	4
130	Chronic lung diseases: entangled in extracellular matrix. European Respiratory Review, 2022, 31, 210202.	7.1	21
131	An Overview of the Role of Mechanical Stretching in the Progression of Lung Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 781828.	3.7	10
132	Three-dimensional models of the lung: past, present and future: a mini review. Biochemical Society Transactions, 2022, 50, 1045-1056.	3.4	13
133	Haploinsufficiency of <i>Col5a1</i> causes intrinsic lung and respiratory changes in a mouse model of classical Ehlersâ€Danlos syndrome. Physiological Reports, 2022, 10, e15275.	1.7	4
134	Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Research and Therapy, 2022, 13, 161.	5 . 5	9

#	Article	IF	Citations
135	Biomechanical Dependence of SARS-CoV-2 Infections. ACS Applied Bio Materials, 2022, 5, 2307-2315.	4.6	1
136	An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomaterialia, 2022, 147, 50-62.	8.3	22
138	Defining the versican interactome in lung health and disease. American Journal of Physiology - Cell Physiology, 2022, 323, C249-C276.	4.6	6
139	Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS Applied Bio Materials, 2022, 5, 4668-4686.	4.6	3
140	Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology, 2022, 54, 517-525.	0.6	4
141	Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight, 2022, 7 , .	5.0	17
142	Three dimensional lung models - Three dimensional extracellular matrix models. , 2022, , 109-131.		1
143	Tissue Rigidity Increased during Carcinogenesis of NTCU-Induced Lung Squamous Cell Carcinoma In Vivo. Biomedicines, 2022, 10, 2382.	3.2	0
144	Relaxation and creep response of the alveolar lung to diagnosis and treatments for respiratory and lung disorders. Perfusion (United Kingdom), 2023, 38, 1637-1643.	1.0	2
145	Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices. Frontiers in Pharmacology, 0, 13, .	3.5	10
146	Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L558-L568.	2.9	12
149	From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. International Journal of COPD, 0, Volume 17, 2603-2621.	2.3	14
151	Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Frontiers in Pharmacology, $0,13,.$	3.5	6
152	Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science, 2022, 10, 7133-7148.	5. 4	10
153	Periostin Plasma Levels and Changes on Physical and Cognitive Capacities in Community-Dwelling Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 424-432.	3.6	2
154	Biomaterial inks and bioinks for fabricating 3D biomimetic lung tissue: A delicate balancing act between biocompatibility and mechanical printability. Bioprinting, 2023, 29, e00255.	5.8	10
155	Cell-Specific Response of NSIP- and IPF-Derived Fibroblasts to the Modification of the Elasticity, Biological Properties, and 3D Architecture of the Substrate. International Journal of Molecular Sciences, 2022, 23, 14714.	4.1	2
156	Potential Mechanisms Between HF and COPD: New Insights From Bioinformatics. Current Problems in Cardiology, 2023, 48, 101539.	2.4	2

#	Article	IF	CITATIONS
157	Idiopathic pulmonary fibrosis and lung cancer: future directions and challenges. Breathe, 2022, 18, 220147.	1.3	4
158	Development of Inhalable Spray Dried Nitrofurantoin Formulations for the Treatment of Emphysema. Pharmaceutics, 2023, 15, 146.	4.5	1
159	Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Communication and Signaling, 2023, 21, .	6.5	8
160	Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Frontiers in Physiology, 0, 14 , .	2.8	11
161	Long-term cadmium exposure induces chronic obstructive pulmonary disease-like lung lesions in a mouse model. Science of the Total Environment, 2023, 879, 163073.	8.0	8
162	Derrone Targeting the TGF Type 1 Receptor Kinase Improves Bleomycin-Mediated Pulmonary Fibrosis through Inhibition of Smad Signaling Pathway. International Journal of Molecular Sciences, 2023, 24, 7265.	4.1	2
163	Glycolytic reprogramming is involved in tissue remodeling on chronic rhinosinusitis. PLoS ONE, 2023, 18, e0281640.	2.5	0
164	Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis. ACS Applied Materials & Samp; Interfaces, 2023, 15, 15071-15083.	8.0	17
165	Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Molecular Cancer, 2023, 22, .	19.2	66
166	Adaptively Integrative Association between Multivariate Phenotypes and Transcriptomic Data for Complex Diseases. Genes, 2023, 14, 798.	2.4	0
167	Anti-fibrotic strategies and pulmonary fibrosis. Advances in Pharmacology, 2023, , .	2.0	1
168	Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. American Journal of Physiology - Cell Physiology, 2023, 325, C90-C128.	4.6	2
169	Basic Science Perspective on Engineering and Modeling the Large Airways. Advances in Experimental Medicine and Biology, 2023, , 73-106.	1.6	0
170	An Introduction to Engineering and Modeling the Lung. Advances in Experimental Medicine and Biology, 2023, , 1 -13.	1.6	0
171	Lung-on-a-Chip Models of the Lung Parenchyma. Advances in Experimental Medicine and Biology, 2023, , 191-211.	1.6	0
172	A dynamical model of TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ activation in asthmatic airways. Mathematical Medicine and Biology, 2023, 40, 238-265.	1.2	1
173	Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Frontiers in Oncology, 0, 13, .	2.8	1
174	Eosinophils and tissue remodeling: Relevance to airway disease. Journal of Allergy and Clinical Immunology, 2023, 152, 841-857.	2.9	9

#	Article	IF	CITATIONS
175	Development of a novel air–liquid interface airway tissue equivalent model for in vitro respiratory modeling studies. Scientific Reports, 2023, 13, .	3.3	3
176	In vitro strategies for mimicking dynamic cell–ECM reciprocity in 3D culture models. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	3
177	Diagnostic significance of the extracellular matrix structures in bronchial asthma in children. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2023, 68, 41-45.	0.3	0
178	Epithelial–Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target?. International Journal of Molecular Sciences, 2023, 24, 12412.	4.1	2
180	Pulmonary inflammation and fibroblast immunoregulation: from bench to be dside. Journal of Clinical Investigation, 2023, 133 , .	8.2	1
181	3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respiratory Research, 2023, 24, .	3.6	3
182	Integrated bioinformatics analysis for the identification of idiopathic pulmonary fibrosis–related genes and potential therapeutic drugs. BMC Pulmonary Medicine, 2023, 23, .	2.0	0
185	Lung stiffness of C57BL/6 versus BALB/c mice. Scientific Reports, 2023, 13, .	3.3	0
186	Investigating rutin as a potential transforming growth factor $\hat{a} \in \hat{I}^2$ type I receptor antagonist for the inhibition of bleomycin $\hat{a} \in I$ induced lung fibrosis. BioFactors, 0, , .	5.4	1
187	Translational Studies Reveal the Divergent Effects of Simtuzumab Targeting LOXL2 in Idiopathic Pulmonary Fibrosis., 2023, 1, 1-12.		0
189	Novel Serum Biomarkers for Patients with Allergic Asthma Phenotype. Biomedicines, 2024, 12, 232.	3.2	0
190	The Influence of Exosomes Derived from Mesenchymal Stem Cells on the Development of Fibrosis In Vitro. Bulletin of Experimental Biology and Medicine, 2023, 176, 253-259.	0.8	0
191	Integrative bioinformatics analysis reveals ECM and nicotine-related genes in both LUAD and LUSC, but different lung fibrosis-related genes are involved in LUAD and LUSC. Nucleosides, Nucleotides and Nucleic Acids, 0, , 1-20.	1.1	0
192	High-Throughput Extracellular Matrix Proteomics of Human Lungs Enabled by Photocleavable Surfactant and diaPASEF. Journal of Proteome Research, 0, , .	3.7	0
193	Mechanical Properties of the Extracellular Matrix. , 2024, , 1-16.		0
194	Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts. Acta Biomaterialia, 2024, 177, 118-131.	8.3	0