Use of boron cluster-containing redox nanoparticles wi neutron capture therapy to achieve high therapeutic effects

Biomaterials 104, 201-212

DOI: 10.1016/j.biomaterials.2016.06.046

Citation Report

#	Article	IF	CITATIONS
1	Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy. Biochemical and Biophysical Research Communications, 2017, 483, 147-152.	1.0	24
2	Development of Gd ₃ N@C ₈₀ encapsulated redox nanoparticles for high-performance magnetic resonance imaging. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1036-1050.	1.9	8
3	Application of surface enhanced Raman spectroscopy as a diagnostic system for hypersialylated metastatic cancers. Biomaterials, 2017, 134, 143-153.	5.7	24
4	Engineering Novel Targeted Boronâ€10â€Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imagingâ€Guided Boron Neutron Capture Therapy. Advanced Materials, 2017, 29, 1700850.	11.1	89
5	Nitroxide radical-containing nanoparticles as potential candidates for overcoming drug resistance in epidermoid cancers. Polymer, 2017, 116, 429-438.	1.8	22
6	TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation. ACS Applied Materials & amp; Interfaces, 2017, 9, 35683-35692.	4.0	66
7	Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorganic Chemistry, 2018, 57, 462-470.	1.9	24
8	Design of drug delivery systems for physical energy-induced chemical surgery. Biomaterials, 2018, 178, 583-596.	5.7	15
9	Highly Condensed Boron Cage Cluster Anions in 2D Carrier and Its Enhanced Antitumor Efficiency for Boron Neutron Capture Therapy. Advanced Functional Materials, 2018, 28, 1704470.	7.8	30
11	Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. Journal of Nanobiotechnology, 2018, 16, 87.	4.2	41
12	Properties and Applications of Metal (M) dodecahydro-closo-dodecaborates (Mn=1,2B12H12) and Their Implications for Reversible Hydrogen Storage in the Borohydrides. Inorganics, 2018, 6, 106.	1.2	14
13	Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer. Biomaterials, 2018, 178, 48-62.	5.7	43
14	Boron delivery agents for neutron capture therapy of cancer. Cancer Communications, 2018, 38, 1-15.	3.7	266
15	Polycomplexes of Hyaluronic Acid and Borates in a Solid State and Solution: Synthesis, Characterization and Perspectives of Application in Boron Neutron Capture Therapy. Polymers, 2018, 10, 181.	2.0	14
17	Asialoglycoprotein receptor targeted micelles containing carborane clusters for effective boron neutron capture therapy of hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110397.	2.5	19
18	<p>Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 8161-8177.	3.3	18
19	Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 101986.	1.7	27
20	Enhancing Boron Uptake in Brain Glioma by a Boron-Polymer/Microbubble Complex with Focused Ultrasound. ACS Applied Materials & Interfaces, 2019, 11, 11144-11156.	4.0	39

CITATION REPORT

#	Article	IF	CITATIONS
21	Study of ATP borate ester effects on cell sensitization to radiation emitted by a nuclear reactor. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	1.3	3
22	Boron agents for neutron capture therapy. Coordination Chemistry Reviews, 2020, 405, 213139.	9.5	125
23	Application of Nitroimidazole–Carbobane-Modified Phenylalanine Derivatives as Dual-Target Boron Carriers in Boron Neutron Capture Therapy. Molecular Pharmaceutics, 2020, 17, 202-211.	2.3	18
24	PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochemical and Biophysical Research Communications, 2020, 522, 669-675.	1.0	32
25	Nanoparticles for targeted cancer radiotherapy. Nano Research, 2020, 13, 2887-2897.	5.8	48
26	Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 27, 102195.	1.7	30
27	The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT). Biomaterials Science, 2020, 8, 2778-2785.	2.6	22
28	Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). Journal of Controlled Release, 2021, 330, 788-796.	4.8	17
29	Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Research, 2021, 14, 2644-2653.	5.8	32
30	Nanocząstki o wysokiej zawartości boru jako potencjalne nośniki w terapii borowo-neutronowej [*] . Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 122-132.	0.1	2
31	Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials, 2021, 269, 120631.	5.7	21
32	Preparing (Metalla)carboranes for Nanomedicine. ChemMedChem, 2021, 16, 1533-1565.	1.6	21
33	Self-Assembling Antioxidants for Ischemia–Reperfusion Injuries. Antioxidants and Redox Signaling, 2022, 36, 70-80.	2.5	10
34	Carborane based mesoporous nanoparticles as a potential agent for BNCT. Materials Chemistry Frontiers, 2021, 5, 2771-2776.	3.2	9
35	Biocompatible Iron–Boron Nanoparticles Designed for Neutron Capture Therapy Guided by Magnetic Resonance Imaging. Advanced Healthcare Materials, 2021, 10, e2001632.	3.9	24
37	Dualâ€Đepletion of Intratumoral Lactate and ATP with Radicals Generation for Cascade Metabolicâ€Chemodynamic Therapy. Advanced Science, 2021, 8, e2102595.	5.6	48
38	Boron delivery agents for boron neutron capture therapy. Chinese Science Bulletin, 2022, 67, 1517-1531.	0.4	3
39	Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. Nanoscale Advances, 2022, 4, 742-753.	2.2	5

#	Article	IF	CITATIONS
40	Boron Phenyl Alanine Targeted Chitosan-PNIPAAm Core-Shell Thermo-Responsive Nanoparticles; Boosting Drug Delivery to Glioblastoma in BNCT. Drug Development and Industrial Pharmacy, 2022, , 1-37.	0.9	3
41	Experimental synthesis, functionalized modifications and potential applications of monoelemental zero-dimensional boron nanomaterials. Journal of Materials Chemistry A, 2022, 10, 5111-5146.	5.2	15
42	Recent Advances in Nanozymes: From Matters to Bioapplications. Advanced Functional Materials, 2022, 32, .	7.8	143
43	Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. Journal of Inorganic Biochemistry, 2023, 238, 112027.	1.5	8
44	Supramolecular chemistry of anionic boron clusters and its applications in biology. Coordination Chemistry Reviews, 2023, 477, 214940.	9.5	16
45	Investigation of electrical conductivity and radical scavenging activity of boron phosphate filled polypyrrole nanocomposites. Polymer-Plastics Technology and Materials, 2023, 62, 188-196.	0.6	0
46	Metal-Doped Boron Quantum Dots for Versatile Detection of Lactate and Fluorescence Bioimaging. ACS Applied Materials & Interfaces, 2022, 14, 56986-56997.	4.0	7
47	Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells, 2022, 11, 4029.	1.8	14
48	A Multifunctional Integrated Metalâ€Free MRI Agent for Early Diagnosis of Oxidative Stress in a Mouse Model of Diabetic Cardiomyopathy. Advanced Science, 2023, 10, .	5.6	4
49	Organosilica nanoparticles containing sodium borocaptate (BSH) provide a new perspectives for boron neutron capture therapy (BNCT): efficient cellular uptake and enhanced BNCT efficacy. Nanoscale Advances, 0, , .	2.2	4