<i>TP53</i> and Decitabine in Acute Myeloid Leukemia

New England Journal of Medicine 375, 2023-2036 DOI: 10.1056/nejmoa1605949

Citation Report

#	Article	IF	CITATIONS
2	Acute Myeloid Leukemia — Many Diseases, Many Treatments. New England Journal of Medicine, 2016, 375, 2094-2095.	13.9	20
3	Choosing a hypomethylating agent in MDS: does gender matter?. Leukemia and Lymphoma, 2017, 58, 1277-1278.	0.6	2
4	Efficacy of single-agent decitabine in relapsed and refractory acute myeloid leukemia. Leukemia and Lymphoma, 2017, 58, 2127-2133.	0.6	20
5	Decitabine in <i>TP53</i> -Mutated AML. New England Journal of Medicine, 2017, 376, 796-798.	13.9	45
6	Gene expression analysis of decitabine treated AML: high impact of tumor suppressor gene expression changes. Leukemia and Lymphoma, 2017, 58, 2264-2267.	0.6	6
7	More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood, 2017, 129, 2584-2587.	0.6	51
8	Mutational landscape and response are conserved in peripheral blood of AML and MDS patients during decitabine therapy. Blood, 2017, 129, 1397-1401.	0.6	24
9	Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood, 2017, 129, 1753-1762.	0.6	278
10	Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in <i>IDH2</i> - and <i>TET2</i> -Mutant Acute Myeloid Leukemia. Cancer Discovery, 2017, 7, 494-505.	7.7	94
11	Decitabine as salvage therapy for primary induction failure of acute myeloid leukemia. Acta Oncológica, 2017, 56, 1120-1121.	0.8	3
12	Therapy-related myeloid neoplasms. Current Opinion in Hematology, 2017, 24, 152-158.	1.2	30
13	Innovative strategies for adverse karyotype acute myeloid leukemia. Current Opinion in Hematology, 2017, 24, 89-98.	1.2	2
14	The promise of epigenetic therapy: reprogramming the cancer epigenome. Current Opinion in Genetics and Development, 2017, 42, 68-77.	1.5	136
15	Successful Management of Decitabine prior to Full-Dose Idarubicin and Cytarabine in the Treatment of Refractory/Recurrent Acute Myeloid Leukemia. Acta Haematologica, 2017, 137, 195-200.	0.7	3
16	Decitabine treatment of multiple extramedullary acute myeloid leukemia involvements after essential thrombocytemia transformation. Acta Oncológica, 2017, 56, 1331-1333.	0.8	7
17	Patterns of Care and Survival for Elderly Acute Myeloid Leukemia—Challenges and Opportunities. Current Hematologic Malignancy Reports, 2017, 12, 290-299.	1.2	6
18	Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood, 2017, 130, 699-712.	0.6	128
19	Detecting truly clonal alterations from multi-region profiling of tumours. Scientific Reports, 2017, 7, 44991.	1.6	24

		CITATION REPORT		
#	Article		IF	Citations
20	TP53 mutations sensitize to decitabine. Nature Reviews Clinical Oncology, 2017, 14, 7	2-72.	12.5	2
21	DNA methyltransferase inhibitors in cancer: From pharmacology to translational studie Biochemical Pharmacology, 2017, 129, 1-13.	S.	2.0	86
22	Personalized treatment strategies for elderly patients with myelodysplastic syndromes. of Hematology, 2017, 10, 1077-1086.	Expert Review	1.0	5
23	Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Mo Hematopoiesis and Myeloid Neoplasia. Cell Stem Cell, 2017, 21, 547-555.e8.	dels Clonal	5.2	71
24	Do cytogenetics affect the post-remission strategy for older patients with AML in CR1? and Research in Clinical Haematology, 2017, 30, 306-311.	. Best Practice	0.7	6
25	The evolving role of genomic testing in assessing prognosis of patients with myelodysp syndromes. Best Practice and Research in Clinical Haematology, 2017, 30, 295-300.	lastic	0.7	7
26	How can one optimize induction therapy in AML?. Best Practice and Research in Clinica 2017, 30, 301-305.	l Haematology,	0.7	15
27	SOHO State of the Art Update and Next Questions: Biology and Treatment of Myelody Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 613-620.	splastic	0.2	8
28	Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacotherapy, 2017, 18, 1765-1780.	ion on	0.9	109
29	Very-Low-Dose Decitabine Is Effective in Treating Intermediate- or High-Risk Myelodysp Acta Haematologica, 2017, 138, 168-174.	lastic Syndrome.	0.7	9
30	Patterns of infectious complications in acute myeloid leukemia and myelodysplastic syn patients treated with 10â€day decitabine regimen. Cancer Medicine, 2017, 6, 2814-28	ndromes 21.	1.3	21
31	Therapy-related myeloid neoplasms: when genetics and environment collide. Nature Re 2017, 17, 513-527.	views Cancer,	12.8	270
32	A comparison of therapeutic dosages of decitabine in treating myelodysplastic syndror meta-analysis. Annals of Hematology, 2017, 96, 1811-1823.	ne: a	0.8	8
33	Emerging therapeutic modalities for acute myeloid leukemia (AML) in older adults. Jour Geriatric Oncology, 2017, 8, 417-420.	nal of	0.5	4
34	Targeting apoptosis in acute myeloid leukaemia. British Journal of Cancer, 2017, 117, 1	.089-1098.	2.9	61
35	Characterization of <i><scp>TP</scp>53</i> mutations in lowâ€grade myelodysplastic myelodysplastic syndromes with a nonâ€complex karyotype. European Journal of Haen 536-543.		1.1	20
36	DNA Methyltransferase Inhibitors in Myeloid Cancer. Cancer Journal (Sudbury, Mass), 2	2017, 23, 277-285.	1.0	6
37	Acute Myeloid Leukemia, Version 3.2017, NCCN Clinical Practice Guidelines in Oncolog National Comprehensive Cancer Network: JNCCN, 2017, 15, 926-957.	y. Journal of the	2.3	451

#	Article	IF	CITATIONS
38	Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. British Journal of Haematology, 2017, 179, 557-574.	1.2	115
39	Putting p53 in Context. Cell, 2017, 170, 1062-1078.	13.5	1,355
40	Vosaroxin in combination with decitabine in newly diagnosed older patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. Haematologica, 2017, 102, 1709-1717.	1.7	13
41	If All You Have Is a Hammer…: Transplantation for Myelodysplastic Syndrome after Hypomethylating Agents Fail. Biology of Blood and Marrow Transplantation, 2017, 23, 1413-1414.	2.0	0
42	First-line Therapeutic Strategies for Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S31-S36.	0.2	7
43	Therapeutic targeting of leukemic stem cells in acute myeloid leukemia – the biological background for possible strategies. Expert Opinion on Drug Discovery, 2017, 12, 1053-1065.	2.5	32
44	The interplay between epigenetic changes and the p53 protein in stem cells. Genes and Development, 2017, 31, 1195-1201.	2.7	40
45	Low-dose decitabine enhances chidamide-induced apoptosis in adult acute lymphoblast leukemia, especially for <i>p16</i> -deleted patients through DNA damage. Pharmacogenomics, 2017, 18, 1259-1270.	0.6	17
46	The who, how and why: Allogeneic transplant for acute myeloid leukemia in patients older than 60 years. Blood Reviews, 2017, 31, 362-369.	2.8	20
47	A call for action: Increasing enrollment of untreated patients with higherâ€risk myelodysplastic syndromes in firstâ€line clinical trials. Cancer, 2017, 123, 3662-3672.	2.0	39
48	Outcome of Azacitidine Therapy in Acute Myeloid Leukemia Is not Improved by Concurrent Vorinostat Therapy but Is Predicted by a Diagnostic Molecular Signature. Clinical Cancer Research, 2017, 23, 6430-6440.	3.2	74
49	Transplantation for therapy-related, <i>TP53</i> -mutated myelodysplastic syndrome – <i>not because we can, but because we should</i> . Haematologica, 2017, 102, 1970-1971.	1.7	9
50	Impact of baseline cytogenetic findings and cytogenetic response on outcome of high-risk myelodysplastic syndromes and low blast count AML treated with azacitidine. Leukemia Research, 2017, 63, 72-77.	0.4	14
51	Immunological effects of hypomethylating agents. Expert Review of Hematology, 2017, 10, 745-752.	1.0	46
53	Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncology Reports, 2017, 38, 899-907.	1.2	73
54	Hypomethylating agents (HMA) treatment for myelodysplastic syndromes: alternatives in the frontline and relapse settings. Expert Opinion on Pharmacotherapy, 2017, 18, 1213-1224.	0.9	13
55	Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia, 2017, 31, 872-881.	3.3	87
56	Altered EZH2 splicing and expression is associated with impaired histone H3 lysine 27 tri-Methylation in myelodysplastic syndrome. Leukemia Research, 2017, 63, 90-97.	0.4	24

#	Article	IF	CITATIONS
57	New Insight Into the Biology, Risk Stratification, and Targeted Treatment of Myelodysplastic Syndromes. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 480-494.	1.8	9
58	Incorporating novel approaches in the management of MDS beyond conventional hypomethylating agents. Hematology American Society of Hematology Education Program, 2017, 2017, 460-469.	0.9	6
59	How and when to decide between epigenetic therapy and chemotherapy in patients with AML. Hematology American Society of Hematology Education Program, 2017, 2017, 45-53.	0.9	28
60	Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. OncoTargets and Therapy, 2018, Volume 11, 163-173.	1.0	24
61	Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. OncoTargets and Therapy, 2018, Volume 11, 131-155.	1.0	45
62	MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. Journal of Hematology and Oncology, 2017, 10, 133.	6.9	213
63	SETBP1 mutations as a biomarker for myelodysplasia /myeloproliferative neoplasm overlap syndrome. Biomarker Research, 2017, 5, 33.	2.8	12
64	Mutations in the DNA methylation pathway and number of driver mutations predict response to azacitidine in myelodysplastic syndromes. Oncotarget, 2017, 8, 106948-106961.	0.8	38
65	Classification and risk assessment in AML: integrating cytogenetics and molecular profiling. Hematology American Society of Hematology Education Program, 2017, 2017, 37-44.	0.9	49
66	Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 812-824.	1.8	12
67	Randomized Phase II Study of Azacitidine Alone or in Combination With Lenalidomide or With Vorinostat in Higher-Risk Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia: North American Intergroup Study SWOG S1117. Journal of Clinical Oncology, 2017, 35, 2745-2753.	0.8	205
68	Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget, 2017, 8, 41498-41507.	0.8	58
69	Treatment of relapsed AML and MDS after allogeneic stem cell transplantation with decitabine and DLI—a retrospective multicenter analysis on behalf of the German Cooperative Transplant Study Group. Annals of Hematology, 2018, 97, 335-342.	0.8	67
70	Universal genetic testing for inherited susceptibility in children and adults with myelodysplastic syndrome and acute myeloid leukemia: are we there yet?. Leukemia, 2018, 32, 1482-1492.	3.3	48
71	Detailed analysis of clonal evolution and cytogenetic evolution patterns in patients with myelodysplastic syndromes (MDS) and related myeloid disorders. Blood Cancer Journal, 2018, 8, 28.	2.8	19
72	Granulomonocytic progenitors are key target cells of azacytidine in higher risk myelodysplastic syndromes and acute myeloid leukemia. Leukemia, 2018, 32, 1856-1860.	3.3	7
73	Azacitidine Use for Myeloid Neoplasms. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e147-e155.	0.2	4
74	Successful treatment of high-risk myelodysplastic syndrome with decitabine-based chemotherapy followed by haploidentical lymphocyte infusion. Medicine (United States), 2018, 97, e0434.	0.4	2

#	Article	IF	Citations
75	Azacitidine effectively reduces TP53-mutant leukemic cell burden in secondary acute myeloid leukemia after cord blood transplantation. Leukemia and Lymphoma, 2018, 59, 2755-2756.	0.6	0
76	A real-world study of clofarabine and cytarabine combination therapy for patients with acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2352-2359.	0.6	2
77	Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. , 2018, 188, 45-79.		91
78	Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nature Communications, 2018, 9, 455.	5.8	150
79	Outcomes with lower intensity therapy in <i>TP53</i> -mutated acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2238-2241.	0.6	20
80	Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood, 2018, 131, 1415-1424.	0.6	160
81	Current therapy and new drugs: a road to personalized treatment of myelodysplastic syndromes. Expert Review of Precision Medicine and Drug Development, 2018, 3, 23-31.	0.4	1
82	The most novel of the novel agents for acute myeloid leukemia. Current Opinion in Hematology, 2018, 25, 81-89.	1.2	9
83	A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E668-E675.	3.3	69
84	A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica, 2018, 103, 456-465.	1.7	84
85	A new option for remission induction in acute myeloid leukaemia. Lancet Oncology, The, 2018, 19, 156-157.	5.1	3
86	Personalizing initial therapy in acute myeloid leukemia: incorporating novel agents into clinical practice. Therapeutic Advances in Hematology, 2018, 9, 109-121.	1.1	9
87	Advancements in the management of medically less-fit and older adults with newly diagnosed acute myeloid leukemia. Expert Opinion on Pharmacotherapy, 2018, 19, 865-882.	0.9	16
88	A novel regimen for relapsed/refractory adult acute myeloid leukemia using a <i>KMT2A</i> partial tandem duplication targeted therapy: results of phase 1 study NCI 8485. Haematologica, 2018, 103, 982-987.	1.7	16
89	Lenalidomide results in a durable complete remission in acute myeloid leukemia accompanied by persistence of somatic mutations and a T-cell infiltrate in the bone marrow. Haematologica, 2018, 103, e270-e273.	1.7	1
90	Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Review of Hematology, 2018, 11, 361-371.	1.0	70
91	Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 80-90.	5.7	83
92	Initial therapy for acute myeloid leukemia in older patients: principles of care. Leukemia and Lymphoma, 2018, 59, 29-41.	0.6	11

#	Article	IF	CITATIONS
93	Acute myeloid leukemia in the elderly: therapeutic options and choice. Leukemia and Lymphoma, 2018, 59, 274-287.	0.6	59
94	CD25 expression and outcomes in older patients with acute myelogenous leukemia treated with plerixafor and decitabine. Leukemia and Lymphoma, 2018, 59, 821-828.	0.6	11
95	Somatic mutations and clonal hematopoiesis in congenital neutropenia. Blood, 2018, 131, 408-416.	0.6	91
96	Erythroleukemia-historical perspectives and recent advances in diagnosis and management. Blood Reviews, 2018, 32, 96-105.	2.8	35
97	Ex-vivo sensitivity profiling to guide clinical decision making in acute myeloid leukemia: A pilot study. Leukemia Research, 2018, 64, 34-41.	0.4	41
98	Myelodysplastic syndromes: 2018 update on diagnosis, riskâ€stratification and management. American Journal of Hematology, 2018, 93, 129-147.	2.0	154
99	Hypomethylating agents for treatment and prevention of relapse after allogeneic blood stem cell transplantation. International Journal of Hematology, 2018, 107, 138-150.	0.7	54
100	DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Seminars in Cancer Biology, 2018, 51, 68-79.	4.3	42
101	Epigenetics in myelodysplastic syndromes. Seminars in Cancer Biology, 2018, 51, 170-179.	4.3	45
102	Acute Myeloid Leukemia: The Good, the Bad, and the Ugly. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 555-573.	1.8	71
103	Molecular Hematopathology. , 2018, , 712-760.e18.		4
104	Treatments targeting MDS genetics: a fool's errand?. Hematology American Society of Hematology Education Program, 2018, 2018, 277-285.	0.9	5
105	The role of hypomethylating agents prior to hematopoietic cell transplantation in myelodysplastic syndromes. Best Practice and Research in Clinical Haematology, 2018, 31, 346-350.	0.7	0
106	Molecular landscape and targeted therapy of acute myeloid leukemia. Biomarker Research, 2018, 6, 32.	2.8	24
107	Current and Future Treatment Options for Myelodysplastic Syndromes: More Than Hypomethylating Agents and Lenalidomide?. Drugs, 2018, 78, 1873-1885.	4.9	1
108	A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nature Genetics, 2018, 50, 1735-1743.	9.4	62
109	Transposable Element Expression in Acute Myeloid Leukemia Transcriptome and Prognosis. Scientific Reports, 2018, 8, 16449.	1.6	16
110	Better treatment outcomes in patients with actively treated therapy-related myeloid neoplasms harboring a normal karyotype. PLoS ONE, 2018, 13, e0209800.	1.1	2

#	Article	IF	CITATIONS
111	Low clinical trial accrual of patients with myelodysplastic syndromes: Causes and potential solutions. Cancer, 2018, 124, 4601-4609.	2.0	8
112	Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia, 2018, 32, 2546-2557.	3.3	101
113	Therapy-related myeloid neoplasms: clinical perspectives. OncoTargets and Therapy, 2018, Volume 11, 5909-5915.	1.0	12
114	Patterns of mutations in TP53 mutated AML. Best Practice and Research in Clinical Haematology, 2018, 31, 379-383.	0.7	43
115	Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis, 2018, 7, 82.	2.1	14
116	TP53 mutation in allogeneic hematopoietic cell transplantation for de novo myelodysplastic syndrome. Leukemia Research, 2018, 74, 97-104.	0.4	9
117	Acute myeloid leukemia: 2019 update on riskâ€stratification and management. American Journal of Hematology, 2018, 93, 1267-1291.	2.0	283
118	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	13.7	907
119	How I treat the blast phase of Philadelphia chromosome–negative myeloproliferative neoplasms. Blood, 2018, 132, 2339-2350.	0.6	27
120	SRSF2 mutations in myelodysplasia/myeloproliferative neoplasms. Biomarker Research, 2018, 6, 29.	2.8	13
122	Immunophenotypic dysplasia and aberrant T-cell antigen expression in acute myeloid leukaemia with complex karyotype and <i>TP53</i> mutations. Journal of Clinical Pathology, 2018, 71, 1051-1059.	1.0	6
123	How I use molecular genetic tests to evaluate patients who have or may have myelodysplastic syndromes. Blood, 2018, 132, 1657-1663.	0.6	32
124	Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death and Disease, 2018, 9, 912.	2.7	64
125	Molecular pathophysiology of the myelodysplastic syndromes: insights for targeted therapy. Blood Advances, 2018, 2, 2787-2797.	2.5	20
126	When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Hematology American Society of Hematology Education Program, 2018, 2018, 35-44.	0.9	22
127	Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Advances, 2018, 2, 923-932.	2.5	114
128	When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Advances, 2018, 2, 3070-3080.	2.5	36
129	Randomized trial of 10 days of decitabine ± bortezomib in untreated older patients with AML: CALGB 11002 (Alliance). Blood Advances, 2018, 2, 3608-3617.	2.5	39

#	Article	IF	CITATIONS
130	Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Review of Clinical Pharmacology, 2018, 11, 549-559.	1.3	75
131	Myelodysplastic syndromes current treatment algorithm 2018. Blood Cancer Journal, 2018, 8, 47.	2.8	107
132	Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions: Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 495-500.	0.2	1
133	How I treat older patients with acute myeloid leukemia. Cancer, 2018, 124, 2472-2483.	2.0	9
134	Outcomes and predictors of survival in blast phase myeloproliferative neoplasms. Leukemia Research, 2018, 70, 49-55.	0.4	24
135	Gene mutations and clonal architecture in myelodysplastic syndromes and changes upon progression to acute myeloid leukaemia and under treatment. British Journal of Haematology, 2018, 182, 830-842.	1.2	16
136	Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends in Cancer, 2018, 4, 583-597.	3.8	53
137	Acute myeloid leukaemia. Lancet, The, 2018, 392, 593-606.	6.3	512
138	Bridging Strategies to Allogeneic Transplant for Older AML Patients. Cancers, 2018, 10, 232.	1.7	6
139	Physician uncertainty aversion impacts medical decision making for older patients with acute myeloid leukemia: results of a national survey. Haematologica, 2018, 103, 2040-2048.	1.7	31
140	Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML. Cancers, 2018, 10, 158.	1.7	15
141	Decitabine demonstrates antileukemic activity in B cell precursor acute lymphoblastic leukemia with MLL rearrangements. Journal of Hematology and Oncology, 2018, 11, 62.	6.9	18
142	Phase I trial of plerixafor combined with decitabine in newly diagnosed older patients with acute myeloid leukemia. Haematologica, 2018, 103, 1308-1316.	1.7	34
143	Precision therapy for acute myeloid leukemia. Journal of Hematology and Oncology, 2018, 11, 3.	6.9	95
144	PAN3–PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia. Experimental Hematology and Oncology, 2018, 7, 7.	2.0	8
145	The genetic and molecular pathogenesis of myelodysplastic syndromes. European Journal of Haematology, 2018, 101, 260-271.	1.1	58
146	<i>NPM1</i> mutation is not associated with prolonged complete remission in acute myeloid leukemia patients treated with hypomethylating agents. Haematologica, 2018, 103, e455-e457.	1.7	22
147	Epigenetic Regulation of CXCL12 Plays a Critical Role in Mediating Tumor Progression and the Immune Response In Osteosarcoma. Cancer Research, 2018, 78, 3938-3953.	0.4	71

#	Article	IF	CITATIONS
148	Prognostic Role of Gene Mutations in Chronic Myelomonocytic Leukemia Patients Treated With Hypomethylating Agents. EBioMedicine, 2018, 31, 174-181.	2.7	72
149	Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Research, 2018, 7, 1196.	0.8	47
150	Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Annals of Hematology, 2018, 97, 2025-2038.	0.8	32
151	Comparative analysis of azacitidine and intensive chemotherapy as front-line treatment of elderly patients with acute myeloid leukemia. Annals of Hematology, 2018, 97, 1767-1774.	0.8	15
152	Genetic and epigenetic determinants of AML pathogenesis. Seminars in Hematology, 2019, 56, 84-89.	1.8	65
153	The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes and Cancer, 2019, 58, 875-888.	1.5	79
154	Low-dose melphalan in elderly patients with relapsed or refractory acute myeloid leukemia: A well-tolerated and effective treatment after hypomethylating-agent failure. Leukemia Research, 2019, 85, 106192.	0.4	9
155	Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies. Cells, 2019, 8, 868.	1.8	17
156	Precision medicine for TP53-mutated acute myeloid leukemia. Expert Review of Precision Medicine and Drug Development, 2019, 4, 263-274.	0.4	2
157	Intensity of chemotherapy for the initial management of newly diagnosed acute myeloid leukemia in older patients. Future Oncology, 2019, 15, 1989-1995.	1.1	4
158	<p>Clinical efficacy of decitabine in combination with standard-dose cytarabine, aclarubicin hydrochloride, and granulocyte colony-stimulating factor in the treatment of young patients with newly diagnosed acute myeloid leukemia</p> . OncoTargets and Therapy, 2019, Volume 12, 5013-5023.	1.0	5
159	Molecular genetics in allogeneic blood stem cell transplantation for myelodysplastic syndromes. Expert Review of Hematology, 2019, 12, 821-831.	1.0	6
160	Using circulating tumor DNA to monitor myelodysplastic syndromes status. Hematological Oncology, 2019, 37, 531-533.	0.8	5
161	Genomic and epigenomic predictors of response to guadecitabine in relapsed/refractory acute myelogenous leukemia. Clinical Epigenetics, 2019, 11, 106.	1.8	21
162	Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions. Current Hematologic Malignancy Reports, 2019, 14, 386-394.	1.2	34
163	Pitfalls in molecular diagnostics. Seminars in Diagnostic Pathology, 2019, 36, 342-354.	1.0	10
164	How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia, 2019, 33, 2795-2804.	3.3	123
165	A prospective, multicenter study of low dose decitabine in adult patients with refractory immune thrombocytopenia. American Journal of Hematology, 2019, 94, 1374-1381.	2.0	39

#	Article	IF	Citations
166	The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Frontiers in Oncology, 2019, 9, 1162.	1.3	25
167	Hypomethylating agents for patients with myelodysplastic syndromes prior to hematopoietic stem cell transplantation: a systematic review and meta-analysis. Annals of Hematology, 2019, 98, 2523-2531.	0.8	10
168	Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells, 2019, 8, 967.	1.8	43
169	Venetoclax and hypomethylating agents in <i>TP53</i> â€mutated acute myeloid leukaemia. British Journal of Haematology, 2019, 187, e45-e48.	1.2	49
170	Novel Strategies in High-Risk AML. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S82-S85.	0.2	0
171	Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opinion on Investigational Drugs, 2019, 28, 835-849.	1.9	41
172	Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precision Oncology, 2019, 3, 1-11.	1.5	29
173	The leukemia strikes back: a review of pathogenesis and treatment of secondary AML. Annals of Hematology, 2019, 98, 541-559.	0.8	34
174	Genetics of MDS. Blood, 2019, 133, 1049-1059.	0.6	241
175	Treatment of MDS. Blood, 2019, 133, 1096-1107.	0.6	167
176	Deregulated Polycomb functions in myeloproliferative neoplasms. International Journal of Hematology, 2019, 110, 170-178.	0.7	11
177	Myelodysplastic/myeloproliferative neoplasm with eosinophilia as a manifestation of Li Fraumeni Syndrome. Leukemia and Lymphoma, 2019, 60, 3312-3315.	0.6	1
178	Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Critical Reviews in Oncology/Hematology, 2019, 140, 1-7.	2.0	26
179	Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms. Scientific Reports, 2019, 9, 8171.	1.6	10
180	Genome-scale drop-out screens to identify cancer cell vulnerabilities in AML. Current Opinion in Genetics and Development, 2019, 54, 83-87.	1.5	3
181	Healthcare expenditures of older patients with AML are similar between HMA and intensive induction chemotherapy. Leukemia and Lymphoma, 2019, 60, 2817-2820.	0.6	0
182	Risk Stratification and Prognosticators of Acute Myeloid Leukemia with Myelodysplasia-Related Changes in Patients Undergoing Allogeneic Stem Cell Transplantation: A Retrospective Study of the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 1730-1743.	2.0	10
183	Current status and new treatment approaches in TP53 mutated AML. Best Practice and Research in Clinical Haematology, 2019, 32, 134-144.	0.7	63

#	Article	IF	CITATIONS
184	Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Therapeutic Advances in Hematology, 2019, 10, 204062071984705.	1.1	29
185	Genetic abnormalities and pathophysiology of MDS. International Journal of Clinical Oncology, 2019, 24, 885-892.	1.0	70
186	NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. Phytomedicine, 2019, 64, 152925.	2.3	94
187	Clinical update on hypomethylating agents. International Journal of Hematology, 2019, 110, 161-169.	0.7	43
188	Distinct mutation spectrum, clinical outcome and therapeutic responses of typical complex/monosomy karyotype acute myeloid leukemia carrying <i>TP53</i> mutations. American Journal of Hematology, 2019, 94, 650-657.	2.0	30
189	The prognostic significance of chromosome 17 abnormalities in patients with myelodysplastic syndrome treated with 5â€azacytidine: Results from the Hellenic 5â€azacytidine registry. Cancer Medicine, 2019, 8, 2056-2063.	1.3	6
190	Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers, 2019, 11, 260.	1.7	28
191	Epigenetic Co-Deregulation of EZH2/TET1 is a Senescence-Countering, Actionable Vulnerability in Triple-Negative Breast Cancer. Theranostics, 2019, 9, 761-777.	4.6	42
192	Choosing induction chemotherapy in therapy-related acute myeloid leukemia. Best Practice and Research in Clinical Haematology, 2019, 32, 89-97.	0.7	3
193	Aplastic Anemia & MDS International Foundation (AA&MDSIF): Bone Marrow Failure Disease Scientific Symposium 2018. Leukemia Research, 2019, 80, 19-25.	0.4	1
194	LINC00162 confers sensitivity to 5-Aza-2′-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene, 2019, 38, 5281-5293.	2.6	12
195	Graft-versus-MDS effect after unrelated cord blood transplantation: a retrospective analysis of 752 patients registered at the Japanese Data Center for Hematopoietic Cell Transplantation. Blood Cancer Journal, 2019, 9, 31.	2.8	9
196	New drugs creating new challenges in acute myeloid leukemia. Genes Chromosomes and Cancer, 2019, 58, 903-914.	1.5	39
197	Treatment of myelodysplastic syndrome in the era of nextâ€generation sequencing. Journal of Internal Medicine, 2019, 286, 41-62.	2.7	13
198	Bone marrow PARP1 mRNA levels predict response to treatment with 5-azacytidine in patients with myelodysplastic syndrome. Annals of Hematology, 2019, 98, 1383-1392.	0.8	9
199	Importance of prognostic stratification via gene mutation analysis in elderly patients with acute myelogenous leukemia. International Journal of Laboratory Hematology, 2019, 41, 461-471.	0.7	7
200	Getting personal with myelodysplastic syndromes: is now the right time?. Expert Review of Hematology, 2019, 12, 215-224.	1.0	9
201	Intensive chemotherapy is more effective than hypomethylating agents for the treatment of younger patients with myelodysplastic syndrome and elevated bone marrow blasts. American Journal of Hematology, 2019, 94, E188-E190.	2.0	4

#	Article	IF	Citations
202	Personalizing therapy for older adults with acute myeloid leukemia: Role of geriatric assessment and genetic profiling. Cancer Treatment Reviews, 2019, 75, 52-61.	3.4	21
204	Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nature Genetics, 2019, 51, 694-704.	9.4	97
205	Decitabine Versus Intensive Chemotherapy for Elderly Patients With Newly Diagnosed Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 290-299.e3.	0.2	6
206	TP53 immunohistochemistry correlates with <i>TP53</i> mutation status and clearance in decitabine-treated patients with myeloid malignancies. Haematologica, 2019, 104, e345-e348.	1.7	21
207	Next Generation Sequencing in AML—On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation?. Cancers, 2019, 11, 252.	1.7	44
208	A phase II study of guadecitabine in higher-risk myelodysplastic syndrome and low blast count acute myeloid leukemia after azacitidine failure. Haematologica, 2019, 104, 1565-1571.	1.7	39
209	Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia, 2019, 33, 1620-1634.	3.3	55
210	TP53 and therapy-related myeloid neoplasms. Best Practice and Research in Clinical Haematology, 2019, 32, 98-103.	0.7	9
211	Randomized phase-II trial evaluating induction therapy with idarubicin and etoposide plus sequential or concurrent azacitidine and maintenance therapy with azacitidine. Leukemia, 2019, 33, 1923-1933.	3.3	8
213	Prognostic Significance of Complex Karyotypes in Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2019, 20, 15.	1.3	21
214	Why are hypomethylating agents or low-dose cytarabine and venetoclax so effective?. Current Opinion in Hematology, 2019, 26, 71-76.	1.2	8
215	Progress in the problem of relapsed or refractory acute myeloid leukemia. Current Opinion in Hematology, 2019, 26, 88-95.	1.2	17
216	Shifting paradigms in the treatment of older adults with AML. Seminars in Hematology, 2019, 56, 110-117.	1.8	17
217	Can we predict responsiveness to hypomethylating agents in AML?. Seminars in Hematology, 2019, 56, 118-124.	1.8	15
218	Clinicopathological aspects of therapy-related acute myeloid leukemia and myelodysplastic syndrome. Best Practice and Research in Clinical Haematology, 2019, 32, 3-12.	0.7	12
219	In MDS, is higher risk higher reward?. Hematology American Society of Hematology Education Program, 2019, 2019, 381-390.	0.9	7
220	Articles Title ch_5. , 2019, , .		0
221	Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS?. Blood Advances, 2019, 3, 3449-3453.	2.5	7

#	Article	IF	Citations
222	NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Advances, 2019, 3, 922-933.	2.5	84
223	Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS?. Blood Advances, 2019, 3, 3454-3460.	2.5	5
225	Advances in Genomic Profiling and Risk Stratification in Acute Myeloid Leukemia. Seminars in Oncology Nursing, 2019, 35, 150957.	0.7	6
226	Mutation-Driven Therapy in MDS. Current Hematologic Malignancy Reports, 2019, 14, 550-560.	1.2	4
227	p53 involvement in clonal hematopoiesis of indeterminate potential. Current Opinion in Hematology, 2019, 26, 235-240.	1.2	21
228	Shifting therapeutic paradigms in induction and consolidation for older adults with acute myeloid leukemia. Current Opinion in Hematology, 2019, 26, 51-57.	1.2	4
229	Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nature Communications, 2019, 10, 5649.	5.8	77
230	Clinical implications of molecular markers in acute myeloid leukemia. European Journal of Haematology, 2019, 102, 20-35.	1.1	44
231	10-day decitabine schedule in acute myeloid leukaemia: no extra bang for the buck. Lancet Haematology,the, 2019, 6, e6-e7.	2.2	1
232	Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematology,the, 2019, 6, e29-e37.	2.2	84
233	A phase II study of the efficacy and safety of an intensified schedule of azacytidine in intermediate-2 and high-risk patients with myelodysplastic syndromes: a study by the Groupe Francophone des Myelodysplasies (GFM). Haematologica, 2019, 104, e131-e133.	1.7	4
234	Exome analysis of treatmentâ€related <scp>AML</scp> after <scp>APL</scp> suggests secondary evolution. British Journal of Haematology, 2019, 185, 984-987.	1.2	1
235	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	3.3	195
236	Expedited Analysis and Reporting of Multiple Mutations that Modify Medical Management of Myeloid Malignancies. Journal of Molecular Diagnostics, 2019, 21, 13-15.	1.2	0
237	An update on treatment of higher risk myelodysplastic syndromes. Expert Review of Hematology, 2019, 12, 61-70.	1.0	1
238	Clinical implications of subclonal <i>TP53</i> mutations in acute myeloid leukemia. Haematologica, 2019, 104, 516-523.	1.7	65
239	How I treat MDS after hypomethylating agent failure. Blood, 2019, 133, 521-529.	0.6	61
240	Efficacy and toxicity of Decitabine in patients with acute myeloid leukemia (AML): A multicenter real-world experience. Leukemia Research, 2019, 76, 33-38.	0.4	31

#	Article	IF	CITATIONS
241	Management of primary refractory acute myeloid leukemia in the era of targeted therapies. Leukemia and Lymphoma, 2019, 60, 583-597.	0.6	10
242	Somatic mutations as markers of outcome after azacitidine and allogeneic stem cell transplantation in higher-risk myelodysplastic syndromes. Leukemia, 2019, 33, 785-790.	3.3	33
243	Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia, 2019, 33, 522-527.	3.3	7
244	Mutational profiling in myelofibrosis: implications for management. International Journal of Hematology, 2020, 111, 192-199.	0.7	9
245	Project Evaluation and Selection with Task Failures. Production and Operations Management, 2020, 29, 428-446.	2.1	11
246	Immunotherapeutic options for management of relapsed or refractory B-cell acute lymphoblastic leukemia: how to select newly approved agents?. Leukemia and Lymphoma, 2020, 61, 7-17.	0.6	6
247	Targeted molecular characterization shows differences between primary and secondary myelofibrosis. Genes Chromosomes and Cancer, 2020, 59, 30-39.	1.5	17
248	Multiâ€dimensional analysis identifies an immune signature predicting response to decitabine treatment in elderly patients with AML. British Journal of Haematology, 2020, 188, 674-684.	1.2	12
249	The golden age for patients in their golden years: The progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia. Blood Reviews, 2020, 40, 100639.	2.8	15
250	Epigenetic abnormalities of classical Hodgkin lymphoma and its effect on immune escape. Cell Biochemistry and Function, 2020, 38, 242-248.	1.4	3
251	How we manage adults with myelodysplastic syndrome. British Journal of Haematology, 2020, 189, 1016-1027.	1.2	60
252	The evolving role of next generation sequencing in myelodysplastic syndromes. British Journal of Haematology, 2020, 188, 224-239.	1.2	11
254	Comparison between 5-day decitabine and 7-day azacitidine for lower-risk myelodysplastic syndromes with poor prognostic features: a retrospective multicentre cohort study. Scientific Reports, 2020, 10, 39.	1.6	13
255	Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2020, 7, e238-e246.	2.2	73
256	Treatment Strategies for Therapy-related Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 147-155.	0.2	10
257	The impact of concomitant cytogenetic abnormalities on acute myeloid leukemia with monosomy 7 or deletion 7q after HLAâ€matched allogeneic stem cell transplantation. American Journal of Hematology, 2020, 95, 282-294.	2.0	7
258	The face of remission induction. British Journal of Haematology, 2020, 188, 101-115.	1.2	3
259	Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Molecular Diagnosis and Therapy, 2020, 24, 1-13.	1.6	21

#	Article	IF	CITATIONS
260	Targeting TP53 Mutations in Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2020, 34, 421-440.	0.9	15
261	Hypomethylating agent based combinations in higher risk myelodysplastic syndrome. Leukemia and Lymphoma, 2020, 61, 1012-1027.	0.6	2
262	Valproate and Retinoic Acid in Combination With Decitabine in Elderly Nonfit Patients With Acute Myeloid Leukemia: Results of a Multicenter, Randomized, 2 × 2, Phase II Trial. Journal of Clinical Oncology, 2020, 38, 257-270.	0.8	63
263	Response Kinetics and Clinical Benefits of Nonintensive AML Therapies in the Absence of Morphologic Response. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e66-e75.	0.2	10
264	Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia With Genomic Evidence of Residual Disease. Journal of Clinical Oncology, 2020, 38, 1273-1283.	0.8	281
265	Impact of TP53 mutations in acute myeloid leukemia patients treated with azacitidine. PLoS ONE, 2020, 15, e0238795.	1.1	12
266	TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Advances, 2020, 4, 5011-5024.	2.5	85
267	Expression profiling of DNA methyl transferase I (DNMT1) and efficacy of a DNA-hypomethylating agent (decitabine) in combination with chemotherapy in osteosarcoma. Journal of Bone Oncology, 2020, 25, 100321.	1.0	5
268	First-in-Human Phase I Study of Iadademstat (ORY-1001): A First-in-Class Lysine-Specific Histone Demethylase 1A Inhibitor, in Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2020, 38, 4260-4273.	0.8	59
269	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	2.2	201
270	A glimmer of hope for older people with acute myeloid leukaemia. Lancet Haematology,the, 2020, 7, e700-e701.	2.2	0
271	Educational Updates in Hematology Book: 25th Congress of the European Hematology Association, Virtual Edition 2020. HemaSphere, 2020, 4, .	1.2	2
272	Overexpression of annexin A5 might guide the gemtuzumab ozogamicin treatment choice in patients with pediatric acute myeloid leukemia. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092763.	1.4	5
273	Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2020, 21, 8505.	1.8	12
274	<p>Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data</p> . OncoTargets and Therapy, 2020, Volume 13, 12367-12382.	1.0	39
275	Patient stratification in myelodysplastic syndromes: how a puzzle may become a map. Hematology American Society of Hematology Education Program, 2020, 2020, 418-425.	0.9	6
276	Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes. Scientific Reports, 2020, 10, 19555.	1.6	7
277	American Society of Hematology 2020 guidelines for treating newly diagnosed acute myeloid leukemia in older adults. Blood Advances, 2020, 4, 3528-3549.	2.5	113

#	Article	IF	CITATIONS
278	Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. International Journal of Laboratory Hematology, 2020, 42, 671-684.	0.7	7
279	Epigenetic Therapies for Cancer. New England Journal of Medicine, 2020, 383, 650-663.	13.9	289
280	Regimenâ€intensity per countâ€recovery and hospitalization index: A new tool to assign regimen intensity for AML. Cancer Medicine, 2020, 9, 6515-6523.	1.3	4
281	Hypomethylating agent-based post-transplant strategies to maximize the outcome of high-risk acute myeloid leukemia after allogeneic stem cell transplantation. Expert Review of Hematology, 2020, 13, 959-969.	1.0	1
282	<i>TP53</i> mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood, 2020, 136, 2812-2823.	0.6	113
283	Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. American Journal of Hematology, 2020, 95, 1399-1420.	2.0	119
284	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	15.2	372
285	Mutation profile and prognostic relevance in elderly patients with de novo acute myeloid leukemia treated with decitabineâ€based chemotherapy. International Journal of Laboratory Hematology, 2020, 42, 849-857.	0.7	8
286	DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells, 2020, 9, 1850.	1.8	35
288	AICAR and Decitabine Enhance the Sensitivity of K562 Cells to Imatinib by Promoting Mitochondrial Activity. Current Medical Science, 2020, 40, 871-878.	0.7	2
289	Phase 2 study of ruxolitinib and decitabine in patients with myeloproliferative neoplasm in accelerated and blast phase. Blood Advances, 2020, 4, 5246-5256.	2.5	45
290	Chidamide, decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CDCAG) in patients with relapsed/refractory acute myeloid leukemia: a single-arm, phase 1/2 study. Clinical Epigenetics, 2020, 12, 132.	1.8	18
291	Characteristics and prognostic significance of genetic mutations in acute myeloid leukemia based on a targeted nextâ€generation sequencing technique. Cancer Medicine, 2020, 9, 8457-8467.	1.3	36
292	Targeting Epigenetic Aberrations in Esophageal Squamous Cell Carcinoma. Current Pharmacology Reports, 2020, 6, 415-428.	1.5	1
293	Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS. Blood Advances, 2020, 4, 4267-4277.	2.5	14
294	Predictive factors for response and survival in elderly acute myeloid leukemia patients treated with hypomethylating agents: a real-life experience. Annals of Hematology, 2020, 99, 2405-2416.	0.8	11
295	Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Frontiers in Oncology, 2020, 10, 599933.	1.3	15
296	Favorable prognostic phenotype in myelodysplastic syndrome with der(1;7)(q10;p10). EJHaem, 2020, 1, 558-562.	0.4	1

#	Article	IF	CITATIONS
297	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	2.5	105
298	Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers, 2020, 12, 3225.	1.7	52
299	Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia, 2021, 35, 1949-1963.	3.3	10
300	Clinical outcomes and characteristics of patients with <i>TP53</i> -mutated acute myeloid leukemia or myelodysplastic syndromes: a single center experience*. Leukemia and Lymphoma, 2020, 61, 2180-2190.	0.6	24
301	TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. International Journal of Molecular Sciences, 2020, 21, 3432.	1.8	25
302	Following in the footsteps of acute myeloid leukemia: are we witnessing the start of a therapeutic revolution for higher-risk myelodysplastic syndromes?. Leukemia and Lymphoma, 2020, 61, 2295-2312.	0.6	7
303	Hypomethylating agents super-responders: challenging the dogma of long-term remission for acute myeloid leukemia. Annals of Hematology, 2020, 99, 1411-1413.	0.8	1
304	Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nature Reviews Cancer, 2020, 20, 365-382.	12.8	87
305	Genetics of progression from MDS to secondary leukemia. Blood, 2020, 136, 50-60.	0.6	80
306	AML chemoresistance: The role of mutant TP53 subclonal expansion and therapy strategy. Experimental Hematology, 2020, 87, 13-19.	0.2	12
307	Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	5.8	117
308	Monosomal karyotype and chromosome 17p loss or TP53 mutations in decitabine-treated patients with acute myeloid leukemia. Annals of Hematology, 2020, 99, 1551-1560.	0.8	15
309	Implications of Clonal Hematopoiesis for Precision Oncology. JCO Precision Oncology, 2020, 4, 639-646.	1.5	16
310	Identifying effective drug combinations for patients with acute myeloid leukemia. Expert Review of Anticancer Therapy, 2020, 20, 591-601.	1.1	4
311	Clofarabine, cytarabine, and mitoxantrone in refractory/relapsed acute myeloid leukemia: High response rates and effective bridge to allogeneic hematopoietic stem cell transplantation. Cancer Medicine, 2020, 9, 3371-3382.	1.3	7
312	Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors. Chinese Medical Journal, 2020, , 699-715.	0.9	9
313	Low-intensity regimens <i>versus</i> standard-intensity induction strategies in acute myeloid leukemia. Therapeutic Advances in Hematology, 2020, 11, 204062072091301.	1.1	18
314	Role Of TP53 mutations in predicting the clinical efficacy of hypomethylating therapy in patients with myelodysplastic syndrome and related neoplasms: a systematic review and meta-analysis. Clinical and Experimental Medicine, 2020, 20, 361-371.	1.9	4

#	Article	IF	CITATIONS
315	Identification of challenges and a framework for implementation of the AMP/ASCO/CAP classification guidelines for reporting somatic variants. Practical Laboratory Medicine, 2020, 21, e00170.	0.6	6
316	TP53 mutations are associated with very complex karyotype and suggest poor prognosis in newly diagnosed myelodysplastic syndrome patients with monosomal karyotype. Asia-Pacific Journal of Clinical Oncology, 2020, 16, 172-179.	0.7	4
317	Higher-risk myelodysplastic syndromes with del(5q): does the del(5q) matter?. Expert Review of Hematology, 2020, 13, 233-239.	1.0	2
318	A Dysregulated DNA Methylation Landscape Linked to Gene Expression in MLL-Rearranged AML. Epigenetics, 2020, 15, 841-858.	1.3	11
319	A User's Guide to Novel Therapies for Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 277-288.	0.2	17
320	Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Current Opinion in Hematology, 2020, 27, 66-75.	1.2	6
321	Secondary Acute Myeloid Leukemia. Hematology/Oncology Clinics of North America, 2020, 34, 449-463.	0.9	17
322	Advances in non-intensive chemotherapy treatment options for adults diagnosed with acute myeloid leukemia. Leukemia Research, 2020, 91, 106339.	0.4	20
323	Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1α with echinomycin. Oncogene, 2020, 39, 3015-3027.	2.6	25
324	Clonal selection in therapyâ€related myelodysplastic syndromes and acute myeloid leukemia under azacitidine treatment. European Journal of Haematology, 2020, 104, 488-498.	1.1	6
325	Decitabine and all-trans retinoic acid synergistically exhibit cytotoxicity against elderly AML patients via miR-34a/MYCN axis. Biomedicine and Pharmacotherapy, 2020, 125, 109878.	2.5	13
326	Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 2020, 10, 506-525.	7.7	212
327	Updates on DNA methylation modifiers in acute myeloid leukemia. Annals of Hematology, 2020, 99, 693-701.	0.8	16
328	<i>NPM1</i> mutation with <i>DNMT3A</i> wild type defines a subgroup of MDS with particularly favourable outcomes after decitabine therapy. British Journal of Haematology, 2020, 189, 982-984.	1.2	7
329	How we treat older patients with acute myeloid leukaemia. British Journal of Haematology, 2020, 191, 682-691.	1.2	3
330	New perspectives in genetics and targeted therapy for blastic plasmacytoid dendritic cell neoplasm. Critical Reviews in Oncology/Hematology, 2020, 149, 102928.	2.0	16
331	Synergistic effects of PRIMA-1 ^{Met} (APR-246) and 5-azacitidine in <i>TP53</i> -mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica, 2020, 105, 1539-1551.	1.7	101
332	Molecular aberrations in myelodysplastic syndromes. Advances in Cell and Gene Therapy, 2020, 4, e83.	0.6	0

#	Article	IF	CITATIONS
333	Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond. Targeted Oncology, 2020, 15, 147-162.	1.7	27
334	Individualizing Treatment for Newly Diagnosed Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2020, 21, 34.	1.3	2
335	FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood, 2020, 135, 1472-1483.	0.6	52
336	The relationship between leukemia and <i>TP53</i> gene codon Arg72Pro polymorphism: analysis in a multi-ethnic population. Future Oncology, 2020, 16, 923-937.	1.1	5
337	Anthracycline-related cardiotoxicity in older patients with acute myeloid leukemia: a Young SIOG review paper. Blood Advances, 2020, 4, 762-775.	2.5	24
338	Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Advances, 2020, 4, 482-495.	2.5	86
339	Clinical developments in epigenetic-directed therapies in acute myeloid leukemia. Blood Advances, 2020, 4, 970-982.	2.5	16
340	Therapeutic strategies in low and high-risk MDS: What does the future have to offer?. Blood Reviews, 2021, 45, 100689.	2.8	21
341	Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Leukemia, 2021, 35, 1145-1155.	3.3	27
342	Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT. Bone Marrow Transplantation, 2021, 56, 334-346.	1.3	9
343	Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia, 2021, 35, 897-900.	3.3	12
344	Allogeneic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes and Prevention of Relapse. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 1-7.	0.2	9
345	Allogeneic stem cell transplant in patients with acute myeloid leukemia and karnofsky performance status score less than or equal to 80%: A study from the acute leukemia working party of the European Society for Blood and Marrow Transplantation (EBMT). Cancer Medicine, 2021, 10, 23-33.	1.3	7
346	Decitabine Induces Gene Derepression on Monosomic Chromosomes: <i>In Vitro</i> and <i>In Vivo</i> Effects in Adverse-Risk Cytogenetics AML. Cancer Research, 2021, 81, 834-846.	0.4	18
347	5-Azacytidine Transiently Restores Dysregulated Erythroid Differentiation Gene Expression in TET2-Deficient Erythroleukemia Cells. Molecular Cancer Research, 2021, 19, 451-464.	1.5	3
348	Targeting <i>TP53</i> Mutants in Myeloid Neoplasms: Are We There Yet?. , 2021, 18, .		Ο
350	Precision Medicine. , 2021, , 115-120.		0
351	Acute Myeloid Leukemia. , 2021, , 275-304.		Ο

#	Article	IF	CITATIONS
352	Venetoclax-containing regimens in acute myeloid leukemia. Therapeutic Advances in Hematology, 2021, 12, 204062072098664.	1.1	22
353	Advances in therapeutic options for newly diagnosed, high-risk AML patients. Therapeutic Advances in Hematology, 2021, 12, 204062072110011.	1.1	11
354	<i>TP53</i> mutated myeloid malignancies and their treatment strategy. Journal of Hematopoietic Cell Transplantation, 2021, 10, 7-15.	0.1	0
355	Decitabine treatment in 311 patients with acute myeloid leukemia: outcome and impact of <i>TP53</i> mutations – a registry based analysis. Leukemia and Lymphoma, 2021, 62, 1432-1440.	0.6	7
356	Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes. Blood Advances, 2021, 5, 1017-1028.	2.5	41
357	High <i>ROBO3</i> expression predicts poor survival in non-M3 acute myeloid leukemia. Experimental Biology and Medicine, 2021, 246, 1184-1197.	1.1	5
358	Acute myeloid leukemia: current progress and future directions. Blood Cancer Journal, 2021, 11, 41.	2.8	313
359	Decitabine Inhibits Bone Resorption in Periodontitis by Upregulating Anti-Inflammatory Cytokines and Suppressing Osteoclastogenesis. Biomedicines, 2021, 9, 199.	1.4	7
360	Venetoclax for the treatment of elderly or chemotherapy-ineligible patients with acute myeloid leukemia: a step in the right direction or a game changer?. Expert Review of Hematology, 2021, 14, 199-210.	1.0	5
361	TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge?. Frontiers in Oncology, 2020, 10, 610820.	1.3	38
362	Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer, 2021, 127, 1186-1207.	2.0	74
363	Risk-Adapted, Individualized Treatment Strategies of Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML). Cancers, 2021, 13, 1610.	1.7	17
364	High-dose regimens of hypomethylating agents promote transfusion independence in IPSS lower-risk myelodysplastic syndromes: a meta-analysis of prospective studies. Aging, 2021, 13, 11120-11134.	1.4	3
365	Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. New England Journal of Medicine, 2021, 384, 924-935.	13.9	170
366	Emerging agents and regimens for AML. Journal of Hematology and Oncology, 2021, 14, 49.	6.9	104
367	Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Current Hematologic Malignancy Reports, 2021, 16, 192-206.	1.2	11
368	Intensive versus less-intensive antileukemic therapy in older adults with acute myeloid leukemia: A systematic review. PLoS ONE, 2021, 16, e0249087.	1.1	1
369	Modeling and targeting of erythroleukemia by hematopoietic genome editing. Blood, 2021, 137, 1628-1640.	0.6	25

#	Article	IF	CITATIONS
370	Simultaneous therapy-related acute myeloid leukemia and relapse/refractory multiple myeloma: a therapeutic dilemma. Proceedings of Singapore Healthcare, 0, , 201010582110046.	0.2	0
371	What's new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood, 2021, 138, 749-757.	0.6	23
372	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	2.5	35
373	Clinical implications of copy number alteration detection using panel-based next-generation sequencing data in myelodysplastic syndrome. Leukemia Research, 2021, 103, 106540.	0.4	1
374	Meta-analysis of the benefit of hypomethylating agents before allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes. Clinical and Experimental Medicine, 2021, 21, 537-543.	1.9	4
375	Erythroleukemia: an Update. Current Oncology Reports, 2021, 23, 69.	1.8	6
376	The development and clinical use of oral hypomethylating agents in acute myeloid leukemia and myelodysplastic syndromes: dawn of the total oral therapy era. Expert Review of Anticancer Therapy, 2021, 21, 989-1002.	1.1	2
377	Efficacy of 10-day decitabine in acute myeloid leukemia. Leukemia Research, 2021, 103, 106524.	0.4	7
378	Low relapse risk in poor risk AML after conditioning with 10-day decitabine, fludarabine and 2 Gray TBI prior to allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2021, 56, 1964-1970.	1.3	6
379	Mutations in chronic myelomonocytic leukemia and their prognostic relevance. Clinical and Translational Oncology, 2021, 23, 1731-1742.	1.2	7
380	De novo acute myeloid leukemia: A populationâ€based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer, 2021, 127, 2049-2061.	2.0	79
381	Multisite 11-year experience of less-intensive vs intensive therapies in acute myeloid leukemia. Blood, 2021, 138, 387-400.	0.6	26
382	To bi or not to bi: Acute erythroid leukemias and hematopoietic lineage choice. Experimental Hematology, 2021, 97, 6-13.	0.2	1
383	Whole-genome sequencing for myeloid disease: one assay to stratify them all?. Nature Reviews Clinical Oncology, 2021, 18, 543-544.	12.5	4
384	Eprenetapopt (APR-246) and Azacitidine in <i>TP53</i> Mutant Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 1584-1594.	0.8	278
385	Venetoclax and decitabine in refractory TP53-mutated early T-cell precursor acute lymphoblastic leukemia. Annals of Hematology, 2022, 101, 697-699.	0.8	13
386	Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia, 2021, 35, 1873-1889.	3.3	104
387	Log reduction of leukemic cells and minimal residual disease by flow cytometry represent effective predictors of clinical outcome in elderly patients with acute myeloid leukemia. Cytometry Part B - Clinical Cytometry, 2021, 102, 26.	0.7	1

#	ARTICLE	IF	Citations
388	Haematologic malignancies with unfavourable gene mutations benefit from donor lymphocyte infusion with/without decitabine for prophylaxis of relapse after allogeneic HSCT: A pilot study. Cancer Medicine, 2021, 10, 3165-3176.	1.3	8
389	The Mutational Landscape of Acute Myeloid Leukaemia Predicts Responses and Outcomes in Elderly Patients from the PETHEMA-FLUGAZA Phase 3 Clinical Trial. Cancers, 2021, 13, 2458.	1.7	7
390	Clinical Characteristics and Optimal Therapy of Acute Myeloid Leukemia with Myelodysplasia-related-changes: A Retrospective Analysis in a Cohort of Chinese Patients. Turkish Journal of Haematology, 2021, 38, 188-194.	0.2	2
391	Genomic trajectory in leukemogenesis of myeloproliferative neoplasms: a case report. BMC Medical Genomics, 2021, 14, 137.	0.7	1
394	British Society for Haematology guidelines for the management of adult myelodysplastic syndromes. British Journal of Haematology, 2021, 194, 267-281.	1.2	14
395	The Prognostic Ability of RAS Pathway-Related Gene Mutations in Patients with Myeloid Neoplasms Treated with Hypomethylating Agents. Acta Haematologica, 2021, 144, 649-659.	0.7	1
396	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	2.0	80
397	Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals, 2021, 14, 641.	1.7	13
398	Current and emerging strategies for management of myelodysplastic syndromes. Blood Reviews, 2021, 48, 100791.	2.8	34
399	Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells, 2021, 10, 1962.	1.8	11
400	Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia. Hemato, 2021, 2, 515-544.	0.2	0
401	Blood and Marrow Transplant Clinical Trials Network State of the Science Symposium 2021: Looking Forward as the Network Celebrates its 20th Year. Transplantation and Cellular Therapy, 2021, 27, 885-907.	0.6	12
402	Spontaneous and inherited TP53 genetic alterations. Oncogene, 2021, 40, 5975-5983.	2.6	28
403	Development of <scp><i>TP53</i></scp> mutations over the course of therapy for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 1420-1428.	2.0	10
404	Case 26-2021: A 49-Year-Old Man with Relapsed Acute Myeloid Leukemia. New England Journal of Medicine, 2021, 385, 834-843.	13.9	0
405	SOHO State of the Art & Next Questions: Myelodysplastic Syndromes: A New Decade. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 1-16.	0.2	20
406	Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia?. Cancers, 2021, 13, 4121.	1.7	2
407	Clinico-genomic profiling and clonal dynamic modeling of <i>TP53</i> -aberrant myelodysplastic syndrome and acute myeloid leukemia. Leukemia and Lymphoma, 2021, 62, 3348-3360.	0.6	11

#	Article	IF	Citations
408	Does the conventional cytogenetic risk profile still matter for prediction of venetoclax based treatment outcomes in AML?. Leukemia and Lymphoma, 2021, 62, 3318-3319.	0.6	0
409	Acute Myeloid Leukemia: Historical Perspective and Progress in Research and Therapy Over 5 Decades. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 580-597.	0.2	28
410	Clinical Trials Assessing Hypomethylating Agents Combined with Other Therapies: Causes for Failure and Potential Solutions. Clinical Cancer Research, 2021, 27, 6653-6661.	3.2	12
411	Clinical Characteristics, Prognosis, and Treatment Strategies of TP53 Mutations in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 224-235.	0.2	1
412	Decitabine-Loaded Gold Nanocages for Photothermal Cancer Therapy via DNA Hypermethylation Reversal. ACS Applied Nano Materials, 2021, 4, 10556-10564.	2.4	7
413	Myelodysplastic syndromes: Biological and therapeutic consequences of the evolving molecular aberrations landscape. Neoplasia, 2021, 23, 1101-1109.	2.3	6
414	Clinical features of <i>DDX41</i> mutation-related diseases: a systematic review with individual patient data. Therapeutic Advances in Hematology, 2021, 12, 204062072110324.	1.1	15
415	Treatment of Relapsed and Refractory AML: Non-intensive Approach in Unfit Patients. Hematologic Malignancies, 2021, , 241-254.	0.2	0
416	Synergistic inhibitory effects of low‑dose decitabine in combination with bortezomib in the AML cell line Kasumi‑1. Experimental and Therapeutic Medicine, 2021, 21, 195.	0.8	2
417	The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Seminars in Hematology, 2021, 58, 56-65.	1.8	8
418	Treatment of Newly Diagnosed AML in Unfit Patients. Hematologic Malignancies, 2021, , 215-231.	0.2	0
419	Impact of a 40-Gene Targeted Panel Test on Physician Decision Making for Patients With Acute Myeloid Leukemia. JCO Precision Oncology, 2021, 5, 191-203.	1.5	4
420	Outcomes of newly diagnosed acute myeloid leukemia with myelodysplasia related changes and elderly acute myeloid leukemia following decitabine therapy in combination with priming regimen. Hematology, 2021, 26, 751-757.	0.7	0
421	New Treatment Options for Acute Myeloid Leukemia in 2019. Current Oncology Reports, 2019, 21, 16.	1.8	49
422	Current concepts and future directions for hemato-oncologic diagnostics. Critical Reviews in Oncology/Hematology, 2020, 151, 102977.	2.0	14
426	Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant. JCI Insight, 2018, 3, .	2.3	48
427	Does patient fitness play a role in determining first-line treatment of acute myeloid leukemia?. Hematology American Society of Hematology Education Program, 2020, 2020, 41-50.	0.9	7
428	Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biology, 2020, 18, e3000920.	2.6	13

#	Article	IF	CITATIONS
429	Decitabine in combination with low-dose cytarabine, aclarubicin and G-CSF tends to improve prognosis in elderly patients with high-risk AML. Aging, 2020, 12, 5792-5811.	1.4	18
430	The p53 protein plays a central role in the mechanism of action of epigentic drugs that alter the methylation of cytosine residues in DNA. Oncotarget, 2017, 8, 7228-7230.	0.8	15
431	Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. Oncotarget, 2017, 8, 81926-81935.	0.8	15
432	Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget, 2018, 9, 9714-9727.	0.8	56
433	Impact of mutational studies on the diagnosis and the outcome of high-risk myelodysplastic syndromes and secondary acute myeloid leukemia patients treated with 5-azacytidine. Oncotarget, 2018, 9, 19342-19355.	0.8	15
434	Treatment with epigenetic agents profoundly inhibits tumor growth in leiomyosarcoma. Oncotarget, 2018, 9, 19379-19395.	0.8	13
435	Prognostic Value of Next-Generation Sequencing Data in Patients with Myelodysplastic Syndrome. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2020, 13, 170-175.	0.1	2
436	Salvage Therapy after Allogeneic Hematopoietic Cell Transplantation: Targeted and Low-Intensity Treatment Options in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Clinical Hematology International, 2019, 1, 94-100.	0.7	5
437	Myelodysplastic syndromes: moving towards personalized management. Haematologica, 2020, 105, 1765-1779.	1.7	52
438	Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. International Journal of Molecular Sciences, 2021, 22, 74.	1.8	15
439	Prognostic significance of the tumor suppressor protein p53 gene in childhood acute lymphoblastic leukemia. Oncology Letters, 2020, 19, 549-556.	0.8	3
440	The Progress of Next Generation Sequencing in the Assessment of Myeloid Malignancies. Balkan Medical Journal, 2019, 36, 78-87.	0.3	3
441	Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 721-749.	2.3	314
443	Current and Emerging Therapies for Acute Myeloid Leukemia. Cancer Treatment and Research, 2021, 181, 57-73.	0.2	2
444	Current Management and New Developments in the Treatment of Myelodysplastic Syndrome. Cancer Treatment and Research, 2021, 181, 115-132.	0.2	2
445	How do molecular aberrations guide therapy in MDS?. Best Practice and Research in Clinical Haematology, 2021, 34, 101324.	0.7	0
446	It is time to shift the treatment paradigm in myelodysplastic syndromes: A focus on novel developments and current investigational approaches exploring combinatorial therapy in high-risk MDS. Best Practice and Research in Clinical Haematology, 2021, 34, 101325.	0.7	4
447	Concentration-Dependent Decitabine Effects on Primary NK Cells Viability, Phenotype, and Function in the Absence of Obvious NK Cells Proliferation–Original Article. Frontiers in Pharmacology, 2021, 12, 755662.	1.6	0

#	Article	IF	Citations
448	Gold Nanorods Exhibit Intrinsic Therapeutic Activity via Controlling <i>N</i> 6-Methyladenosine-Based Epitranscriptomics in Acute Myeloid Leukemia. ACS Nano, 2021, 15, 17689-17704.	7.3	36
449	p53 in Acute Myeloid Leukemia-Still a significant other. Leukemia and Lymphoma, 2021, , 1-3.	0.6	0
450	Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia. Biological Chemistry, 2021, 402, 1547-1564.	1.2	1
451	Advances in acute myeloid leukemia. BMJ, The, 2021, 375, n2026.	3.0	177
452	Evolving Therapeutic Approaches for Older Patients with Acute Myeloid Leukemia in 2021. Cancers, 2021, 13, 5075.	1.7	9
453	Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematology,the, 2021, 8, e922-e933.	2.2	27
454	TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. International Journal of Molecular Sciences, 2021, 22, 10782.	1.8	25
456	Remarkably different results between two studies from North America on genomic mutations and sensitivity to DNA demethylating agents for myelodysplastic syndromes. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2017. 29. 587-588.	0.7	0
458	Targeting TP53 Mutations in Myelodysplastic Syndromes. , 2018, 15, .		1
460	TP53 in Myelodysplastic Syndromes. Cancers, 2021, 13, 5392.	1.7	8
461	Recent Progress in Interferon Therapy for Myeloid Malignancies. Frontiers in Oncology, 2021, 11, 769628.	1.3	11
462	Current status of pretransplant intensive chemotherapy or hypomethylating agents for myelodysplastic syndrome. Best Practice and Research in Clinical Haematology, 2021, 34, 101332.	0.7	3
463	Some characteristics of patients with myelodysplastic syndrome. Medical Herald of the South of Russia, 2020, 11, 32-42.	0.2	0
465	Molecular Landscape of MDS. , 2020, , 73-90.		0
467	GEMTUZUMAB OZOGAMICIN IN THE TREATMENT OF CRITICAL PATIENTS WITH REFRACTORY ACUTE MYELOID LEUKEMIA (3 CASE REPORTS). Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2020, 13, 67-74.	0.1	1
468	Clinical efficacy of decitabine†containing induction chemotherapy in de�novo non†elderly acute myeloid leukemia. International Journal of Oncology, 2020, 56, 1521-1528.	1.4	1
469	Decitabine activates type I interferon signaling to inhibit p53â€deficient myeloid malignant cells. Clinical and Translational Medicine, 2021, 11, e593.	1.7	2
471	Management of Relapsed/Refractory Acute Myeloid Leukemia. Hematologic Malignancies, 2021, , 89-109.	0.2	0

#	Article	IF	CITATIONS
472	Older Patients With Acute Myeloid Leukemia: Treatment Challenges and Future Directions. Ochsner Journal, 2017, 17, 398-404.	0.5	29
473	Co-occurrence of RUNX1 and ASXL1 mutations underlie poor response and outcome for MDS patients treated with HMAs. American Journal of Translational Research (discontinued), 2019, 11, 3651-3658.	0.0	12
474	Recent advances in the cellular and molecular understanding of myelodysplastic syndromes: implications for new therapeutic approaches. Clinical Advances in Hematology and Oncology, 2018, 16, 56-66.	0.3	10
481	Use of Azacitidine or Decitabine for the Up-Front Setting in Acute Myeloid Leukaemia: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 5677.	1.7	8
482	Venetoclax in Acute Myeloid Leukemia: Molecular Basis, Evidences for Preclinical and Clinical Efficacy and Strategies to Target Resistance. Cancers, 2021, 13, 5608.	1.7	10
483	The Clinical Value of Decitabine Monotherapy in Patients with Acute Myeloid Leukemia. Advances in Therapy, 2022, 39, 1474-1488.	1.3	7
484	Platelet Doubling After First Decitabine Cycle Predicts Response and Survival of Myelodysplastic Syndrome Patients. Current Medical Science, 2022, 42, 77-84.	0.7	1
485	The Evolution of Research and Therapy With Hypomethylating Agents in Acute Myeloid Leukemia and Myelodysplastic Syndrome: New Directions for Old Drugs. Cancer Journal (Sudbury, Mass), 2022, 28, 29-36.	1.0	5
486	Evolution of Therapy for Older Patients With Acute Myeloid Leukemia. Cancer Journal (Sudbury, Mass) Tj ETQqO	0 0 rgBT /0 1.0	Overlock 10 T
486 487	Evolution of Therapy for Older Patients With Acute Myeloid Leukemia. Cancer Journal (Sudbury, Mass) Tj ETQqO <i>TP53</i> -mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918.	0 Q.rgBT /C 2.5	Dvgrlock 10 T 7
	<i>TP53</i> -mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of	1.0	2
487	<i>TP53</i> -mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918. Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22,	2.5	7
487 488	<i>TP53</i> mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918. Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476.	2.5	7 5
487 488 489	 <i>TP53</i>-mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918. Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. , 2022, 10, e003392. The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. 	0.2	7 5 34
487 488 489 490	 <i>TP53 < /i> -mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918.</i> Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. , 2022, 10, e003392. The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer Journal (Sudbury, Mass), 2022, 28, 78-84. <i>TP53 < /i> mutations confer resistance to hypomethylating agents and BCL-2 inhibition in myeloid</i> 	2.50.21.0	2 7 5 34 0
487 488 489 490 491	(i) TP53 mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Advances, 2022, 6, 1917-1918. Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. , 2022, 10, e003392. The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer Journal (Sudbury, Mass), 2022, 28, 78-84. (i) TP53 mutations confer resistance to hypomethylating agents and BCL-2 inhibition in myeloid neoplasms. Blood Advances, 2022, 6, 3201-3206.	 2.5 0.2 1.0 2.5 	2 7 5 34 0 8

Long-Term Follow-Up of Elderly Patients with Acute Myeloid Leukemia Treated with Decitabine: A Real-World Study of the Apulian Hematological Network. Cancers, 2022, 14, 826.

#	Article	IF	CITATIONS
496	Historical expectations with DNA methyltransferase inhibitor monotherapy in MDS: when is combination therapy truly "promising�. Blood Advances, 2022, 6, 2854-2866.	2.5	3
497	Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia. American Journal of Blood Research, 2021, 11, 472-497.	0.6	2
498	Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia. Science Translational Medicine, 2022, 14, eabm1375.	5.8	49
499	Translating recent advances in the pathogenesis of acute myeloid leukemia to the clinic. Genes and Development, 2022, 36, 259-277.	2.7	19
500	The prognostic impact of cigarette smoking on survival in acute myeloid leukemia with TP53 mutations and/or 17p deletions. Annals of Hematology, 2022, 101, 1251-1259.	0.8	1
501	Dynamic change in peripheral blood WT1 mRNA levels within three cycles of azacitidine predict treatment response in patients with high-risk myelodysplastic syndromes. Annals of Hematology, 2022, , 1.	0.8	1
502	Decitabine salvage for <i>TP53</i> -mutated, relapsed/refractory acute myeloid leukemia after cytotoxic induction therapy. Haematologica, 2022, 107, 1709-1713.	1.7	2
503	Refining AML Treatment: The Role of Genetics in Response and Resistance Evaluation to New Agents. Cancers, 2022, 14, 1689.	1.7	6
504	Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics, 2022, 38, 920-943.	2.9	13
505	Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematological Oncology, 2022, 40, 491-504.	0.8	0
506	Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nature Communications, 2021, 12, 7244.	5.8	29
507	Clinical efficacy and tumour microenvironment influence of decitabine plus R HOP in patients with newly diagnosed diffuse large B ell lymphoma: Phase 1/2 and biomarker study. Clinical and Translational Medicine, 2021, 11, e584.	1.7	8
508	Adult Tâ€cell leukemiaâ€lymphoma acquires resistance to <scp>DNA</scp> demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. International Journal of Cancer, 2022, 150, 1184-1197.	2.3	5
509	Clinical insights into hematologic malignancies and comparative analysis of molecular signatures of acute myeloid leukemia in different ethnicities using an artificial intelligence offering. Medicine (United States), 2021, 100, e27969.	0.4	2
510	The Current Understanding of and Treatment Paradigm for Newly-Diagnosed TP53-Mutated Acute Myeloid Leukemia. Hemato, 2021, 2, 748-763.	0.2	2
511	Targeting TP53-Mutated Acute Myeloid Leukemia: Research and Clinical Developments. OncoTargets and Therapy, 2022, Volume 15, 423-436.	1.0	14
512	Recurrent Transcriptional Responses in AML and MDS patients Treated with Decitabine. Experimental Hematology, 2022, , .	0.2	5
514	Comparative analysis of Decitabine intensified BUCY2 and BUCY2 conditioning regimen for high-risk MDS patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2022, , .	1.3	1

#	Article	IF	CITATIONS
522	The venetoclax/azacitidine combination targets the disease clone in Acute Myeloid Leukemia, being effective and safe in a patient with COVID. Mediterranean Journal of Hematology and Infectious Diseases, 2022, 14, e2022041.	0.5	2
523	Are We Moving the Needle for Patients with TP53-Mutated Acute Myeloid Leukemia?. Cancers, 2022, 14, 2434.	1.7	7
524	Selinexor synergizes with azacitidine to eliminate myelodysplastic syndrome cells through p53 nuclear accumulation. Investigational New Drugs, 2022, 40, 738-746.	1.2	1
525	Carbohydrate-based drugs launched during 2000â^22021. Acta Pharmaceutica Sinica B, 2022, 12, 3783-3821.	5.7	68
526	Oncology stewardship in acute myeloid leukemia. Annals of Hematology, 2022, 101, 1627-1644.	0.8	2
527	New Therapeutic Strategies for Adult Acute Myeloid Leukemia. Cancers, 2022, 14, 2806.	1.7	15
528	Convergent Clonal Evolution of Signaling Gene Mutations Is a Hallmark of Myelodysplastic Syndrome Progression. Blood Cancer Discovery, 2022, 3, 330-345.	2.6	10
529	Bone Marrow Fibrosis at Diagnosis and during the Course of Disease Is Associated with TP53 Mutations and Adverse Prognosis in Primary Myelodysplastic Syndrome. Cancers, 2022, 14, 2984.	1.7	5
530	How Genetics Can Drive Initial Therapy Choices for Older Patients with Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2022, 23, 1086-1103.	1.3	4
531	Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers, 2022, 14, 3047.	1.7	4
532	Azacitidine/Venetoclax Combination as First-Line Therapy in Elderly Patients with Acute Myeloid Leukemias: A First Step. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2022, 15, 282-288.	0.1	1
533	Activating STING1-dependent immune signaling in <i>TP53</i> mutant and wild-type acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
534	Targeting SAMHD1: To overcome multiple anti-cancer drugs resistance in hematological malignancies. Genes and Diseases, 2023, 10, 891-900.	1.5	1
535	Myelodysplastic Syndrome: Diagnosis and Screening. Diagnostics, 2022, 12, 1581.	1.3	4
536	Targeting stem cells in myelodysplastic syndromes and acute myeloid leukemia. Journal of Internal Medicine, 2022, 292, 262-277.	2.7	7
537	Allogeneic haematopoietic stem cell transplantation with decitabine-containing preconditioning regimen in TP53-mutant myelodysplastic syndromes: A case study. Frontiers in Oncology, 0, 12, .	1.3	0
539	Molecular dissection of a hyper-aggressive CBFB-MYH11/FLT3-ITD–positive acute myeloid leukemia. Journal of Translational Medicine, 2022, 20, .	1.8	1
540	Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition. Journal of Clinical Investigation, 2022, 132, .	3.9	20

#	Article	IF	CITATIONS
541	Hypomethylating agents for the treatment of myelodysplastic syndromes and acute myeloid leukemia: Past discoveries and future directions. American Journal of Hematology, 2022, 97, 1616-1626.	2.0	15
542	Venetoclax in combination with nucleoside analogs in acute myelogenous leukemia. Current Opinion in Oncology, 0, Publish Ahead of Print, .	1.1	3
543	Correlation of p53 immunohistochemistry with <scp>TP53</scp> mutational status and overall survival in newly diagnosed acute myeloid leukaemia. Histopathology, 2022, 81, 496-510.	1.6	8
544	Myeloid leukemoid reaction after initial azacitidine therapy for chronic myelomonocytic leukemia. International Journal of Hematology, 2022, 116, 961-965.	0.7	2
545	Hypomethylating agents combined with low-dose chemotherapy for elderly patients with acute myeloid leukaemia unfit for intensive chemotherapy: a real-world clinical experience. Journal of Chemotherapy, 0, , 1-8.	0.7	0
546	SOHO State of the Art and Next Questions: Treatment of Higher-Risk Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 869-877.	0.2	5
547	The interplay between DNA damage and epigenetics in cancer. , 2022, , 167-189.		0
548	A Promising Future for Precision Epigenetic Therapy for Follicular and Diffuse Large B-Cell Lymphoma?. Blood and Lymphatic Cancer: Targets and Therapy, 0, Volume 12, 99-106.	1.2	2
549	Low-Dose Decitabine versus Low-Dose Azacitidine in Lower-Risk MDS. , 2022, 1, .		10
550	Precision Medicine in Myeloid Malignancies: Hype or Hope?. Current Hematologic Malignancy Reports, 2022, 17, 217-227.	1.2	3
551	How Azanucleosides Affect Myeloid Cell Fate. Cells, 2022, 11, 2589.	1.8	3
552	Chasing leukemia differentiation through induction therapy, relapse and transplantation. Blood Reviews, 2023, 57, 101000.	2.8	2
553	Outcomes with allogeneic hematopoietic stem cell transplantation in TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis. Leukemia and Lymphoma, 2022, 63, 3409-3417.	0.6	10
554	Accelerated and blast phase myeloproliferative neoplasms. Best Practice and Research in Clinical Haematology, 2022, 35, 101379.	0.7	5
555	Low-dose decitabine modulates myeloid-derived suppressor cell fitness via LKB1 in immune thrombocytopenia. Blood, 2022, 140, 2818-2834.	0.6	7
556	A Focus on Intermediate-Risk Acute Myeloid Leukemia: Sub-Classification Updates and Therapeutic Challenges. Cancers, 2022, 14, 4166.	1.7	3
557	The research progress of targeted therapy in acute myeloid leukemia based on bibliometric analysis. Frontiers in Oncology, 0, 12, .	1.3	0
558	Genomic profiling for clinical decision making inÂmyeloid neoplasms and acute leukemia. Blood, 2022, 140, 2228-2247.	0.6	72

#	Article	IF	CITATIONS
559	How I Treat TP53-Mutated Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cancers, 2022, 14, 4519.	1.7	7
560	Patients with AML-MRC benefit from decitabine in combination with low-dose G-CSF, cytarabine and aclarubicin: A single center cohort study. Leukemia Research Reports, 2022, 18, 100354.	0.2	0
561	Rare Germline <i>ATM</i> Variants Influence the Development of Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2023, 41, 1116-1128.	0.8	4
562	<i>TP53</i> -Mutated Myelodysplastic Syndrome and Acute Myeloid Leukemia: Biology, Current Therapy, and Future Directions. Cancer Discovery, 2022, 12, 2516-2529.	7.7	45
563	Small molecule inhibitors targeting the cancers. MedComm, 2022, 3, .	3.1	25
564	SF3B1 Mutations in Hematological Malignancies. Cancers, 2022, 14, 4927.	1.7	6
566	C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse. Blood, 2023, 141, 766-786.	0.6	7
567	<i>TP53</i> -altered higher-risk myelodysplastic syndromes/neoplasms and acute myeloid leukemia: a distinct genetic entity with unique unmet needs. Leukemia and Lymphoma, 2023, 64, 540-550.	0.6	1
568	Molecular targets for the treatment of AML in the forthcoming 5th World Health Organization Classification of Haematolymphoid Tumours. Expert Review of Hematology, 2022, 15, 973-986.	1.0	1
569	TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. Hemato, 2022, 3, 742-757.	0.2	0
570	Therapeutic approaches for the management of higher risk myelodysplastic syndromes. Leukemia and Lymphoma, 2023, 64, 511-524.	0.6	2
571	Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines, 2022, 10, 3008.	1.4	0
572	Role of Bclâ€2 inhibition in myelodysplastic syndromes. International Journal of Cancer, 2023, 152, 1526-1535.	2.3	0
573	TP-0903 Is Active in Preclinical Models of Acute Myeloid Leukemia with TP53 Mutation/Deletion. Cancers, 2023, 15, 29.	1.7	3
574	Disparities in receiving diseaseâ€directed therapy, allogeneic stem cell transplantation in nonâ€Hispanic Black patients with <i>TP53</i> â€mutated acute myeloid leukemia. Cancer, 2023, 129, 934-945.	2.0	3
577	Pan-cancer landscape of AID-related mutations, composite mutations, and their potential role in the ICI response. Npj Precision Oncology, 2022, 6, .	2.3	2
578	Novel investigational approaches for high-risk genetic subsets of AML: <i>TP53</i> , <i>KMT2A</i> , <i>FLT3</i> . Hematology American Society of Hematology Education Program, 2022, 2022, 15-22.	0.9	2
579	Evidence-Based Minireview: Clinical utilization of panel-based molecular testing for patients with AML. Hematology American Society of Hematology Education Program, 2022, 2022, 30-33.	0.9	0

#	Article	IF	CITATIONS
580	ENABLE: treatment combination including decitabine and venetoclax in acute myeloid leukemia secondary to myeloproliferative neoplasms. Future Oncology, 0, , .	1.1	0
581	Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. European Journal of Immunology, 2023, 53, .	1.6	3
582	Cladribine―and decitabineâ€containing conditioning regimen has a low postâ€transplant relapse rate in patients with relapsed or refractory acute myeloid leukemia and highâ€risk myelodysplastic syndrome. International Journal of Cancer, 2023, 152, 2123-2133.	2.3	2
583	Expanding the toolbox of metabolically stable lipid prodrug strategies. Frontiers in Pharmacology, 0, 13, .	1.6	1
584	Novel high–risk acute myeloid leukemia subgroup with ERG amplification and Biallelic loss of TP53. Cancer Genetics, 2023, 272-273, 23-28.	0.2	2
585	Clinicopathologic and Molecular Analysis of Normal Karyotype Therapy-Related and De Novo Acute Myeloid Leukemia: A Multi-Institutional Study by the Bone Marrow Pathology Group. JCO Precision Oncology, 2023, , .	1.5	3
586	Poor pretransplantation minimal residual disease clearance as an independent prognostic risk factor for survival in myelodysplastic syndrome with excess blasts: A multicenter, retrospective cohort study. Cancer, 2023, 129, 2013-2022.	2.0	4
587	In vivo kinetics of early, non-random methylome and transcriptome changes induced by DNA-hypomethylating treatment in primary AML blasts. Leukemia, 2023, 37, 1018-1027.	3.3	1
588	<scp>TP53</scp> signal pathway confers potential therapy target in acute myeloid leukemia. European Journal of Haematology, 2023, 110, 480-489.	1.1	0
589	New drugs before, during, and after hematopoietic stem cell transplantation for patients with acute myeloid leukemia. Haematologica, 2023, 108, 321-341.	1.7	13
590	The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica, 2023, 108, 308-320.	1.7	22
591	Research progress on molecular biomarkers of acute myeloid leukemia. Frontiers in Oncology, 0, 13, .	1.3	3
592	A Bimetallic Metal–Organicâ€Frameworkâ€Based Biomimetic Nanoplatform Enhances Antiâ€Leukemia Immunity via Synchronizing DNA Demethylation and RNA Hypermethylation. Advanced Materials, 2023, 35, .	11.1	7
593	Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Reviews, 2023, 60, 101056.	2.8	2
594	TP53 in AML and MDS: The new (old) kid on the block. Blood Reviews, 2023, 60, 101055.	2.8	1
595	Survival of TP53-mutated acute myeloid leukemia patients receiving allogeneic stem cell transplantation after first induction or salvage therapy: results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND). Leukemia, 2023, 37, 799-806.	3.3	11
596	A Multicenter Phase 2 Clinical Trial of 10-Day Decitabine, Dose-Escalated Donor Lymphocyte Infusion, and Ruxolitinib for Relapsed Acute Myeloid Leukemia and Myelodysplastic Syndromes after Allogeneic Hematopoietic Cell Transplantation. Transplantation and Cellular Therapy, 2023, 29, 328.e1-328.e6.	0.6	2
597	Real-World Experience of Adults With Acute Myeloid Leukemia on Hypomethylating Agents With or Without Venetoclax at a Comprehensive Cancer Center. World Journal of Oncology, 2023, 14, 40-50.	0.6	3

#	Article	IF	Citations
598	Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	62
599	Molecular characterization and prognosis of mutant <scp>TP53</scp> acute myeloid leukemia and myelodysplastic syndrome with excess blasts. International Journal of Laboratory Hematology, 0, , .	0.7	0
600	Treatment outcomes for newly diagnosed, treatment-naÃ⁻ve TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis. Journal of Hematology and Oncology, 2023, 16, .	6.9	5
601	Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2023, 24, 5018.	1.8	7
602	Decreased transthyretin predicts a poor prognosis in primary myelodysplastic syndrome. Frontiers in Nutrition, 0, 10, .	1.6	0
603	Progress toward Better Treatment of Therapy-Related AML. Cancers, 2023, 15, 1658.	1.7	1
604	Clinical outcomes and characteristics of patients with <i>TP53</i> -mutated myelodysplastic syndromes. Hematology, 2023, 28, .	0.7	0
605	Acute Kidney Injury after Bone Marrow Transplantation in Patients with Lymphomas and Leukemias. Revista Brasileira De Cancerologia, 2022, 69, .	0.0	0
606	Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. Journal of Clinical Oncology, 2023, 41, 2827-2842.	0.8	29
607	Therapeutic Targeting of P53: A Comparative Analysis of APR-246 and COTI-2 in Human Tumor Primary Culture 3-D Explants. Genes, 2023, 14, 747.	1.0	0
608	Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms. Blood Advances, 2023, 7, 3624-3636.	2.5	9
609	Deep genomic characterization highlights complexities and prognostic markers of pediatric acute myeloid leukemia. Communications Biology, 2023, 6, .	2.0	0
610	Abnormal regulation of miR-29b-ID1 signaling is involved in the process of decitabine resistance in leukemia cells. Cell Cycle, 2023, 22, 1215-1231.	1.3	1
611	What's Next after Hypomethylating Agents Failure in Myeloid Neoplasms? A Rational Approach. Cancers, 2023, 15, 2248.	1.7	2
612	TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines, 2023, 11, 1152.	1.4	2
613	Myeloid NGS Analyses of Paired Samples from Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group. Cancers, 2023, 15, 2305.	1.7	2
614	Entospletinib with decitabine in acute myeloid leukemia with mutant TP53 or complex karyotype: A phase 2 substudy of the Beat AML Master Trial. Cancer, 0, , .	2.0	1
615	Murine double minute X plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Experimental Hematology, 2023, 122, 10-18.	0.2	1

#	Article	IF	CITATIONS
638	Management of Acute Myeloid Leukemia with Myelodysplasia-Related Changes and Therapy-Related Acute Myeloid Leukemia. , 2023, , 119-128.		0
639	Therapy-Related MDS/AML and the Role of Environmental Factors. , 2023, , 409-420.		0
640	Frontline Management of Elderly Acute Myeloid Leukemia Ineligible for Intensive Treatment. , 2023, , 111-118.		0
642	TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Annals of Hematology, 0, , .	0.8	2