CITATION REPORT List of articles citing

Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

DOI: 10.1038/ncomms10713 Nature Communications, 2016, 7, 10713.

Source: https://exaly.com/paper-pdf/64532514/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
203	Recent advances in understanding and managing cholestasis. 2016 , 5,		35
202	A Specially Designed Multi-Gene Panel Facilitates Genetic Diagnosis in Children with Intrahepatic Cholestasis: Simultaneous Test of Known Large Insertions/Deletions. 2016 , 11, e0164058		26
201	Nuclear receptors as pharmacological targets, where are we now?. 2016 , 73, 3777-80		3
200	Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. 2016 , 39, 1062-74		12
199	FrBzeitige Diagnostik ist entscheidend f⊞die Prognose. 2016 , 28, 34-41		
198	Bile acids and their receptors. 2017 , 56, 2-9		73
197	Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. 2017 , 7, 41806		23
196	Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha. 2017 , 7, 4218	82	13
195	Hepatobiliary Transport of Bile Acids. 2017 , 9-25		
194	The logic of transcriptional regulator recruitment architecture at -regulatory modules controlling liver functions. 2017 , 27, 985-996		13
193	EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. 2017 , 67, 145-172		512
192	Bile Acid-Induced Liver Injury in Cholestasis. 2017 , 143-172		3
191	Contemporary Evaluation of the Pediatric Liver Biopsy. 2017 , 46, 233-252		6
190	Targeting nuclear receptors for the treatment of fatty liver disease. 2017 , 179, 142-157		127
189	Co nowego w cholestazie lɛzlī . Cholestaza z prawidbwlaktywnolill gamma-glutamylotranspeptydazy. 2017 , 92, 366-372		
188	Model Systems for Studying the Role of Canalicular Efflux Transporters in Drug-Induced Cholestatic Liver Disease. 2017 , 106, 2295-2301		13
187	Defects in myosin VB are associated with a spectrum of previously undiagnosed low Eglutamyltransferase cholestasis. 2017 , 65, 1655-1669		83

186 Klinische Genetik der Gallenwegserkrankungen. **2017**, 12, 7-15

185	New therapeutic concepts in bile acid transport and signaling for management of cholestasis. 2017 , 65, 1393-1404	114
184	Early indications of ANIT-induced cholestatic liver injury: Alteration of hepatocyte polarization and bile acid homeostasis. 2017 , 110, 1-12	22
183	Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters. 2017 , 187, 2775-2787	16
182	An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. 2017 , 7, 11823	63
181	Approach to Hypertriglyceridemia in the Pediatric Population. 2017 , 38, 424-434	21
180	Cholestasis After Pediatric Liver Transplantation-Recurrence of a Progressive Familial Intrahepatic Cholestasis Phenotype as a Rare Differential Diagnosis: A Case Report. 2017 , 49, 1628-1633	3
179	Biliary bile acids in hepatobiliary injury - What is the link?. 2017 , 67, 619-631	87
178	Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. 2017 , 67, 1253-1264	68
177	[Liver biopsy in children and adolescents : Preliminary morphological examinations in diffuse liver disease]. 2017 , 38, 272-277	2
176	Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH). 2017 , 60, 9960-9973	112
175	MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. 2017 , 65, 164-173	84
174	Bilirubin Metabolism and Jaundice. 2017 , 103-134	1
173	Nutrient-sensing nuclear receptors PPAR⊞nd FXR control liver energy balance. 2017 , 127, 1193-1201	86
172	Comprehensive bile acid profiling in hereditary intrahepatic cholestasis: Genetic and clinical correlations. 2018 , 38, 1676-1685	11
171	Variants Associated with Infantile Cholestatic Syndromes Detected in Extrahepatic Biliary Atresia by Whole Exome Studies: A 20-Case Series from Thailand. 2018 , 7, 67-73	10
170	Clinical phenotype and molecular analysis of a homozygous ABCB11 mutation responsible for progressive infantile cholestasis. 2018 , 63, 569-577	10
169	A rare missense variant in associates with lower cholesterol levels. 2018 , 1, 14	5

168	Cryptogenic cholestasis in young and adults: ATP8B1, ABCB11, ABCB4, and TJP2 gene variants analysis by high-throughput sequencing. 2018 , 53, 945-958		33
167	Unexplained cholestasis in adults and adolescents: diagnostic benefit of genetic examination. 2018 , 53, 305-311		10
166	Review article: therapeutic bile acids and the risks for hepatotoxicity. 2018 , 47, 1623-1638		25
165	Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. 2018 , 36, 1657-1698		59
164	Genetic determinants of cholangiopathies: Molecular and systems genetics. 2018 , 1864, 1484-1490		16
163	Next generation sequencing in pediatric hepatology and liver transplantation. 2018 , 24, 282-293		45
162	Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. 2018 , 1864, 1308-1318		43
161	Long-term outcomes of six patients after partial internal biliary diversion for progressive familial intrahepatic cholestasis. 2018 , 53, 468-471		12
160	Hypothalamus-Pituitary-Adrenal Dysfunction in Cholestatic Liver Disease. 2018, 9, 660		11
159	[Biliary atresia and congenital cholestatic syndromes : Characteristics before, after and during transition]. 2018 , 59, 1146-1156		1
158	Molecular Mechanisms in Pediatric Cholestasis. 2018 , 47, 921-937		6
157	Progressive familial intrahepatic cholestasis: diagnosis, management, and treatment. 2018 , 10, 95-104		15
156	Jaundice revisited: recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. 2018 , 25, 75		51
155	Nuclear receptors and liver disease: Summary of the 2017 basic research symposium. 2018 , 2, 765-777		11
154	Bile Acid Metabolism in Liver Pathobiology. 2018 , 18, 71-87		149
153	Xenobiotic Nuclear Receptor Signaling Determines Molecular Pathogenesis of Progressive Familial Intrahepatic Cholestasis. 2018 , 159, 2435-2446		6
152	Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. <i>Nature Communications</i> , 2018 , 9, 2590	17.4	33
151	Long-term outcomes after cholecystocolostomy for progressive familial intrahepatic cholestasis. 2018 , 48, 1163-1171		2

150	Progressive Familial Intrahepatic Cholestasis. 2018 , 22, 657-669	80
149	Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering. 2018 , 19, 177	13
148	Network pharmacology combined with functional metabolomics discover bile acid metabolism as a promising target for mirabilite against colorectal cancer 2018 , 8, 30061-30070	35
147	New Insights in Genetic Cholestasis: From Molecular Mechanisms to Clinical Implications. 2018 , 2018, 2313675	41
146	Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. 2018 , 104, 890-899	113
145	Bile Formation and the Enterohepatic Circulation. 2018 , 931-956	8
144	Biliary transporter gene mutations in severe intrahepatic cholestasis of pregnancy: Diagnostic and management implications. 2019 , 34, 425-435	5
143	Farnesoid X receptor alpha (FXRH is a critical actor of the development and pathologies of the male reproductive system. 2019 , 76, 4849-4859	O
142	The challenges of primary biliary cholangitis: What is new and what needs to be done. 2019 , 105, 102328	45
141	Probiotic Lactobacillus rhamnosus GG prevents progesterone metabolite epiallaopregnanolone sulfate-induced hepatic bile acid accumulation and liver injury. 2019 , 520, 67-72	7
140	Novel compound heterozygote mutations of TJP2 in a Chinese child with progressive cholestatic liver disease. 2019 , 20, 18	16
139	Rheumatologie und Hepatologie: Diagnostik und Therapie von autoimmunen Lebererkrankungen. 2019 , 46,	
138	Targeting FXR in Cholestasis. 2019 , 256, 299-324	34
137	The Enterokine Fibroblast Growth Factor 15/19 in Bile Acid Metabolism. 2019 , 256, 73-93	8
136	Genetic Cholestatic Disorders. 2019 , 227-245	
135	Next-Generation Sequencing in Paediatric Hepatology. 2019 , 767-780	O
134	Familial intrahepatic cholestasis: New and wide perspectives. 2019 , 51, 922-933	29
133	Bile Acids as Metabolic Regulators and Nutrient Sensors. 2019 , 39, 175-200	92

132	Blood-Bile Barrier: Morphology, Regulation, and Pathophysiology. 2019 , 19, 69-87	15
131	Targeted metabolomics analysis of maternal-placental-fetal metabolism in pregnant swine reveals links in fetal bile acid homeostasis and sulfation capacity. 2019 , 317, G8-G16	7
130	Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. 2019 , 26, 1079-1112	10
129	Fetal androgen exposure is a determinant of adult male metabolic health. 2019 , 9, 20195	8
128	Effect of food on the pharmacokinetics and therapeutic efficacy of 4-phenylbutyrate in progressive familial intrahepatic cholestasis. 2019 , 9, 17075	4
127	Fine-Tuning of Sirtuin 1 Expression Is Essential to Protect the Liver From Cholestatic Liver Disease. 2019 , 69, 699-716	21
126	Developments in bile salt based therapies: A critical overview. 2019 , 161, 1-13	39
125	Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. 2019 , 3, 147-159	4
124	Panel-Based Next-Generation Sequencing for the Diagnosis of Cholestatic Genetic Liver Diseases: Clinical Utility and Challenges. 2019 , 205, 153-159.e6	26
123	Atypical Hepatic Mesenchymal Hamartoma: Histologic Appearance, Immunophenotype, and Molecular Findings. 2019 , 22, 365-369	1
122	Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. 2020 , 71, 2050-2066	62
121	Molecular findings in children with inherited intrahepatic cholestasis. 2020 , 87, 112-117	6
120	Tanshinone IIA prevents rifampicin-induced liver injury by regulating BSEP/NTCP expression via epigenetic activation of NRF2. 2020 , 40, 141-154	13
119	Cholestatic Liver Diseases: A Primer for Generalists and Subspecialists. 2020 , 95, 2263-2279	7
118	Neonatal liver disease. 2020 , 56, 1760-1768	
117	Targeted Next-Generation Sequencing in Diagnostic Approach to Monogenic Cholestatic Liver Disorders-Single-Center Experience. 2020 , 8, 414	6
116	Genetic variation in the farnesoid X-receptor predicts Crohn's disease severity in female patients. 2020 , 10, 11725	3
115	Fxr-alpha Skips Alternatively in Liver Metabolism. 2020 , 159, 1655-1657	1

114 Fine tuning the gut-liver-axis. **2020**, 94, 3595-3596

113	Coagulopathy in Malnourished Mice Is Sexually Dimorphic and Regulated by Nutrient-Sensing Nuclear Receptors. 2020 , 4, 1835-1850	2
112	Pediatric Cholestatic Liver Disease: Review of Bile Acid Metabolism and Discussion of Current and Emerging Therapies. 2020 , 7, 149	19
111	Variants in ABCB4 (MDR3) across the spectrum of cholestatic liver diseases in adults. 2020 , 73, 651-663	17
110	NR1H4-related Progressive Familial Intrahepatic Cholestasis 5: Further Evidence for Rapidly Progressive Liver Failure. 2020 , 70, e111-e113	7
109	Bile Acid Metabolism in Health and Disease. 2020 , 269-285	1
108	Proposal of a liver histology-based scoring system for bile salt export pump deficiency. 2020 , 50, 754-762	
107	Hepatic Adenosine Triphosphate-Binding Cassette Transport Proteins and Their Role in Physiology. 2020 , 313-326	1
106	SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. <i>Nature Communications</i> , 2020 , 11, 240	35
105	Pathophysiologic Basis for Alternative Therapies for Cholestasis. 2020 , 364-377	1
104	Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. 2020 , 682, 108281	2
103	Bile Acids as Signaling Molecules. 2020 , 299-312	2
102	Pediatric Cholestasis: Epidemiology, Genetics, Diagnosis, and Current Management. 2020 , 15, 115-119	3
101	Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. 2020 , 55, 588-614	22
100	Biallelic Mutations in the LSR Gene Cause a Novel Type of Infantile Intrahepatic Cholestasis. 2020 , 221, 251-254	6
99	Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. 2021 , 101, 683-731	31
98	Paediatric cholestatic liver disorders for the adult gastroenterologist: a practical guide 2021 , 12, 404-413	0
97	Childhood Liver Disease and Metabolic Disorders. 2021 , 288-322	

96	Novel mutation of the TJP2 gene in a Chinese child with progressive cholestatic liver disease coexistent with hearing impairment. 2021 , 20, 198-200	
95	Assessment of Adenosine Triphosphatase Phospholipid Transporting 8B1 (ATP8B1) Function in Patients With Cholestasis With ATP8B1 Deficiency by Using Peripheral Blood Monocyte-Derived Macrophages. 2021 , 5, 52-62	1
94	The zonula occludens protein family regulates the hepatic barrier system in the murine liver. 2021 , 1867, 165994	6
93	NTCP Deficiency Causes Gallbladder Abnormalities in Mice and Human Beings. 2021 , 11, 831-839	4
92	Structural basis of tropifexor as a potent and selective agonist of farnesoid X receptor. 2021 , 534, 1047-1052	4
91	Farnesoid X receptor (FXR): Structures and ligands. 2021 , 19, 2148-2159	14
90	Bile Acid Physiology and Alterations in the Enterohepatic Circulation. 2021 , 24-31.e2	O
89	Pediatric Cholestatic Liver Disease. 2021 , 769-785.e5	1
88	Burden of illness of progressive familial intrahepatic cholestasis in the US, UK, France, and Germany: study rationale and protocol of the PICTURE study. 2021 , 21, 247-253	1
87	Behandlung progressiv-familiEer intrahepatischer Cholestasen (PFIC). 2021 , 356-361	
86	Differential Diagnosis of Biliary Atresia. 2021 , 113-121	
85	Response Rate and Impact on Lipid Profiles of Obeticholic Acid Treatment for Patients with Primary Biliary Cholangitis: A Meta-Analysis. 2021 , 2021, 8829510	1
84	A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. 2021 , 10,	2
83	Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. 2021 , 118,	7
82	Fibroblast Growth Factor 19: Potential modulation of hepatic metabolism for the treatment of non-alcoholic fatty liver disease. 2021 , 41, 894-904	8
81	Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. 2021 , 412, 115388	5
80	Familial Hepatocellular Cholestasis. 2021 , 204-221	
79	A novel compound heterozygous mutation in ABCB4 gene in a pedigree with progressive familial intrahepatic cholestasis 3: a case report. 2021 , 9, 426	O

78	Performance of preclinical models in predicting drug-induced liver injury in humans: a systematic review. 2021 , 11, 6403	10
77	Mechanisms of Bile Formation and the Pathogenesis of Cholestasis. 2021 , 26-35	
76	A New Variant of an Old Itch: Novel Missense Variant in Presenting with Intractable Pruritus 2022 , 12, 701-704	
75	Activation of FXR modulates SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. 2021 , 186, 114497	3
74	A Diagnostic Quagmire: PFIC5 Presenting as a Rare Cause of Neonatal Cholestasis. 2021, 8, e00558	1
73	Progressive familial intrahepatic cholestasis - farnesoid X receptor deficiency due to mutation: A case report. 2021 , 9, 3631-3636	1
72	Progressive Familial Intrahepatic Cholestasis: A´Study in Children From a Liver Transplant Center in îndia 2022 , 12, 454-460	
71	Dialogs in the assessment of neonatal cholestatic liver disease. 2021 , 112, 102-115	O
70	Autophagy in liver diseases: A review. 2021 , 82, 100973	15
69	Genetic Disorders of Bile Acid Transport. 2021 , 18, 237-242	Ο
68	FXR in liver physiology: Multiple faces to regulate liver metabolism. 2021 , 1867, 166133	15
67	Deleterious Variants in ABCC12 are Detected in Idiopathic Chronic Cholestasis and Cause Intrahepatic Bile Duct Loss in Model Organisms. 2021 , 161, 287-300.e16	4
66	Intrahepatic Cholestasis, Refractory Epilepsy, Skeletal Dysplasia, Endocrine Failure, and Dysmorphic Features in a Child With a Monoallelic 2q24-32.2 Deletion Encompassing ABCB11. 2021 , 10935266211036084	0
65	NF- B Regulation of LRH-1 and ABCG5/8 Potentiates Phytosterol Role in the Pathogenesis of Parenteral Nutrition-Associated Cholestasis. 2021 , 74, 3284-3300	1
64	Increased serum delta neutrophil index levels are associated with intrahepatic cholestasis of pregnancy. 2021 , 47, 4189-4195	0
63	Intrahepatic cholestasis of pregnancy in conjunction with a frameshift deletion in FGFR4. 2021 , 46, 101800	1
62	Redox-Dependent Effects in the Physiopathological Role of Bile Acids. 2021 , 2021, 4847941	1
61	The spectrum of Progressive Familial Intrahepatic Cholestasis diseases: Update on pathophysiology and emerging treatments. 2021 , 64, 104317	4

60	Cholestasis in the Premature Infant. 2020 , 47, 341-354	4
59	BRD4 inhibition and FXR activation, individually beneficial in cholestasis, are antagonistic in combination. 2020 , 6,	5
58	Genetic disorders of nuclear receptors. 2017 , 127, 1181-1192	14
57	The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability. 2020 , 43, 459-468	5
56	FAMILIAL INTRAHEPATIC CHOLESTASIS IN CHILDREN: PROBLEMS AND PROSPECTS. 2019 , 22, 388-394	2
55	Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. 2020 , 22,	6
54	Molecular overview of progressive familial intrahepatic cholestasis. 2020 , 26, 7470-7484	12
53	Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. 2020 , 22, 2424-2432	2
52	Expanding etiology of progressive familial intrahepatic cholestasis. 2019 , 11, 450-463	32
51	Liver Transplantation in Progressive Familial Intrahepatic Cholestasis With Normal Gamma-Glutamyl Transferase: Evaluation of Post-Transplant Steatosis and Steatohepatitis. 2021 , In Press,	
50	Novel therapeutic targets for cholestatic and fatty liver disease. 2022 , 71, 194-209	7
49	Cholestases hBatocytaires gBEiques. 2018 , 111-118	
48	Constitutive Androstane Receptor contributes towards increased drug clearance in cholestasis.	
47	Mice Lacking FXR Are Susceptible to Liver Ischemia-Reperfusion Injury.	
46	Hereditīle Lebererkrankungen. 2020 , 63-116	
45	The Role of a NICU Hepatology Consult Service in Assessing Liver Dysfunction in the Premature Infant. 2021 , 2, e031	
44	Clinical Genetics of Cholangiopathies. 1-8	
43	[Clinical and genetic analysis of an infant with progressive familial intrahepatic cholestasis type II]. 2018 , 20, 758-764	

Familial Intrahepatic Cholestasis. **2022**, 807-818

41	Advances in genetic, epigenetic and environmental aspects of rare liver diseases 2021 , 65, 104411	
40	Grape Seed Proanthocyanidin Alleviates Intestinal Inflammation Through Gut Microbiota-Bile Acid Crosstalk in Mice 2021 , 8, 786682	2
39	Structural insight into the molecular mechanism of cilofexor binding to the farnesoid X receptor 2022 , 595, 1-6	2
38	A study of exons 14, 15, and 24 of the ABCB11 gene in Egyptian children with normal GGT cholestasis 2022 , 23, 15-15	
37	Transcriptional Control of by the Nuclear Receptor FXR 2022 , 23,	1
36	Inherited Disorders of Bilirubin Metabolism. 2022 , 1129-1148	
35	2022,	O
34	Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology 2022,	5
33	Cholestatic Liver Diseases of Genetic Etiology: Advances and Controversies 2022,	3
32	Extrahepatic manifestations of progressive familial intrahepatic cholestasis syndromes: presentation of a case series and literature review 2022 ,	О
31	DRUG TRANSPORT IN THE LIVER. 2022 , 257-282	
30	Discovery of farnesoid X receptor and its role in bile acid metabolism 2022 , 548, 111618	1
29	Newer variants of progressive familial intrahepatic cholestasis 2021 , 13, 2024-2038	O
28	FOXA2 prevents hyperbilirubinaemia in acute liver failure by maintaining apical MRP2 expression 2022 ,	О
27	Identification of two novel pathogenic variants of the NR1H4 gene in intrahepatic cholestasis of pregnancy patients 2022 , 15, 90	O
26	Iberogastʿ□ -Induced Acute Liver Injury ¼ Case Report. 2022 , 1, 601-603	О
25	Gene Therapy for Acquired and Genetic Cholestasis. 2022 , 10, 1238	1

24	The Role of Bile Acids in the Human Body and in the Development of Diseases. 2022, 27, 3401	1
23	Liver transplantation in an infant with cerebrotendinous xanthomatosis, cholestasis, and rapid evolution of liver failure.	
22	Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. 2022 , 166, 113208	0
21	Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. 2022 , 14, 3421	2
20	Progressive Familial Intrahepatic Cholestasis. 2022 , 2, 1-20	
19	Overview of Progressive Familial Intrahepatic Cholestasis. 2022 , 26, 371-390	O
18	The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. 2022 , 28,	0
17	Progressive Familial Intrahepatic Cholestasis. 2022 , 95-126	o
16	Hepatic Deletion of X-box Binding Protein 1 in Farnesoid X Receptor Null Mice Leads to Enhanced Liver Injury. 2022 , 100289	0
15	Bile Acids - A Peek Into Their History and Signaling.	1
14	Eggerthella lenta DSM 2243 Alleviates Bile Acid Stress Response in Clostridium ramosum and Anaerostipes caccae by Transformation of Bile Acids. 2022 , 10, 2025	0
13	Odevixibat: a promising new treatment for progressive familial intrahepatic cholestasis. 1-9	O
12	The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. 2022 , 23, 13967	1
11	Paeoniflorin alleviates 17 Ethinylestradiol-induced cholestasis via the farnesoid X receptor-mediated bile acid homeostasis signaling pathway in rats. 13,	o
10	Regulation of Chromatin Accessibility by the Farnesoid X Receptor Is Essential for Circadian and Bile Acid Homeostasis In Vivo. 2022 , 14, 6191	1
9	Bile acids and their receptors in regulation of gut health and diseases. 2022 , 101210	2
8	The Role of FXR-Signaling Variability in the Development and Course of Non-Alcoholic Fatty Liver Disease in Children. 2022 , 65, 105-111	0
7	Drug-induced liver injury: An overview and update. 2023,	O

CITATION REPORT

6	Stimulation of the farnesoid X receptor promotes M2 macrophage polarization. 14,	О
5	Potential therapeutic action of tauroursodeoxycholic acid against cholestatic liver injury via hepatic Fxr/Nrf2 and CHOP-DR5-caspase-8 pathway. 2023 , 137, 561-577	O
4	Children with Chronic Liver Disease. 2023 , 69-87	O
3	Bile Acids and Biliary Fibrosis. 2023 , 12, 792	O
2	Combining Panel-Based Next-Generation Sequencing and Exome Sequencing for Genetic Liver Diseases. 2023 , 113408	O
1	Developmental and Inherited Liver Disease. 2024 , 122-294	O