Catalyst: Nuclear Power in the 21 st Century

CheM 1, 659-662 DOI: 10.1016/j.chempr.2016.10.003

Citation Report

#	Article	IF	CITATIONS
1	Metal–organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Transactions, 2017, 46, 16381-16386.	3.3	104
2	Transuranic Computational Chemistry. Chemistry - A European Journal, 2018, 24, 2815-2825.	3.3	47
3	In Situ Growth of ZIF-8 on PAN Fibrous Filters for Highly Efficient U(VI) Removal. ACS Applied Materials & Interfaces, 2018, 10, 24164-24171.	8.0	175
4	Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103, 180-234.	32.8	382
5	Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction. Molecules, 2019, 24, 1821.	3.8	43
6	Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550, 117-127.	9.4	84
7	Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nature Communications, 2019, 10, 1646.	12.8	122
8	Exploring the Subtle Effect of Aliphatic Ring Size on Minor Actinideâ€Extraction Properties and Metal Ion Speciation in Bisâ€1,2,4â€Triazine Ligands. Chemistry - A European Journal, 2020, 26, 428-437.	3.3	24
9	Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1874-1934.	12.8	33
10	Polarised covalent thorium(<scp>iv</scp>)– and uranium(<scp>iv</scp>)–silicon bonds. Chemical Communications, 2020, 56, 12620-12623.	4.1	11
11	Correlating Electronic Structure and Magnetic Anisotropy in Actinide Complexes [An(COT) ₂], An ^{III/IV} = U, Np, and Pu. Inorganic Chemistry, 2020, 59, 6815-6825.	4.0	21
12	Oligonuclear Actinoid Complexes with Schiff Bases as Ligands—Older Achievements and Recent Progress. International Journal of Molecular Sciences, 2020, 21, 555.	4.1	31
13	Metal-organic frameworks as a versatile platform for radionuclide management. Coordination Chemistry Reviews, 2021, 427, 213473.	18.8	74
14	Ultrahigh capture of radioiodine with zinc oxide-decorated, nitrogen-doped hierarchical nanoporous carbon derived from sonicated ZIF-8-precursor. Journal of Materials Science, 2021, 56, 9106-9121.	3.7	9
15	Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. CheM, 2021, 7, 1666-1680.	11.7	22
16	Photocatalytic anti-biofouling coatings with dynamic surfaces of hybrid metal-organic framework nanofibrous mats for uranium (VI) separation from seawater. Chemical Engineering Journal, 2021, 420, 129691.	12.7	38
17	Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 2021, 1655, 462491.	3.7	23
18	Novel nanomaterials for environmental remediation of toxic metal ions and radionuclides. , 2022, , 1-47.		2

#	Article	IF	CITATIONS
19	Interface assembly of specific recognition gripper wrapping on activated collagen fiber for synergistic capture effect of iodine. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112216.	5.0	16
20	Selective and efficient removal of radioactive ions from water with well-dispersed metal oxide nanoparticles@N-doped carbon. Separation and Purification Technology, 2022, 285, 120366.	7.9	8
21	Covalent Organic Frameworks(COFs) for Sequestration of 99TCO4â^'. Chemical Research in Chinese Universities, 2022, 38, 290-295.	2.6	8
22	Selective entrapment of thorium using a three-dimensional covalent organic framework and its interaction mechanism study. Separation and Purification Technology, 2022, 296, 121413.	7.9	12
23	New route to amide-functionalized N-donor ligands enables improved selective solvent extraction of trivalent actinides. Chemical Communications, 2022, 58, 10667-10670.	4.1	2
24	Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chemical Society Reviews, 2023, 52, 97-162.	38.1	81
25	Defect Engineering in Two-Dimensional Layered PdTe ₂ for Enhanced Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 2601-2609.	11.2	10
26	Photo-Fenton catalytic anti-fouling membranes for efficient elimination of radionuclides and organic contaminants. Desalination, 2023, 553, 116461.	8.2	2
27	Zn, O Co-adsorption based on MOF-5 for efficient capture of radioactive iodine. Chemical Engineering Research and Design, 2023, 174, 770-777.	5.6	10
28	Advanced Photocatalytic Uranium Extraction Strategies: Progress, Challenges, and Prospects. Nanomaterials, 2023, 13, 2005.	4.1	4
29	Cyclobenzil hydrazones with high iodine capture capacities in solutions and on interfaces. Cell Reports Physical Science, 2023, 4, 101509.	5.6	1
31	Enhanced Versatility in Thorium Removal: Mesoporous Silica-Coated Magnetic Nanoparticles Functionalized by Phenanthroline Diamide as a Selective Adsorbent. Inorganic Chemistry, 2023, 62, 13103-13117.	4.0	3
32	Efficient and selective capture of thorium ions by a covalent organic framework. Nature Communications, 2023, 14, .	12.8	8
33	The capture performance of An-MOF for fission gases: Insight from DFT and AIMD calculations. Microporous and Mesoporous Materials, 2024, 363, 112838.	4.4	0
34	Engineered Sorbents for Selective Uranium Sequestration from Seawater. ACS ES&T Water, 2024, 4, 325-345.	4.6	0
35	Enrichment and Separation of Radionuclides by Organic Polymer Materials: A Review. ACS ES&T Engineering, 2024, 4, 250-268.	7.6	0
36	Recent advances in functionalized porous adsorbents for radioactive waste water decontamination: Current status, research gap and future outlook. Materials Today Sustainability, 2024, 25, 100703.	4.1	0

CITATION REPORT