Food drying enhancement by ultrasound $\hat{a} {\ensuremath{\mathfrak{e}}}^{"} A$ review

Trends in Food Science and Technology 56, 126-141 DOI: 10.1016/j.tifs.2016.08.003

Citation Report

#	Article	IF	CITATIONS
1	Thermosonication and optimization of stingless bee honey processing. Food Science and Technology International, 2017, 23, 608-622.	1.1	29
2	Ultrasound in wet biological materials subjected to drying. Journal of Food Engineering, 2017, 212, 271-282.	2.7	23
3	Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrasonics Sonochemistry, 2017, 39, 47-57.	3.8	75
4	Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science and Emerging Technologies, 2017, 43, 223-238.	2.7	75
5	Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Research International, 2017, 100, 19-30.	2.9	64
6	Influence of ultrasound on the microstructure of plant tissue. Innovative Food Science and Emerging Technologies, 2017, 43, 117-129.	2.7	55
7	Ultrasound Processing and Food Quality. , 2017, , 215-235.		6
8	Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves. International Journal of Molecular Sciences, 2017, 18, 71.	1.8	67
9	Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy, 2017, 7, 47.	1.3	282
10	Hybrid and Non-stationary Drying—Process Effectiveness and Products Quality. Lecture Notes on Multidisciplinary Industrial Engineering, 2018, , 319-337.	0.4	3
11	The effect of ultrasound on the properties and conformation of glucoamylase. International Journal of Biological Macromolecules, 2018, 113, 411-417.	3.6	17
12	Effect of the main process parameters on the mechanical strength of polyphenylsulfone (PPSU) in ultrasonic micro-moulding process. Ultrasonics Sonochemistry, 2018, 46, 46-58.	3.8	20
13	Ultrasonically assisted atmospheric freeze-drying of button mushroom. Drying kinetics and product quality. Drying Technology, 2018, 36, 1814-1823.	1.7	24
14	Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Critical Reviews in Food Science and Nutrition, 2018, 58, 1832-1863.	5.4	101
15	Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 2018, 98, 1660-1673.	1.7	66
16	Modeling of heat and mass transfer during ultrasound-assisted drying of a packed bed consisting of highly shrinkable material. Chemical Engineering Research and Design, 2018, 129, 25-33.	2.7	7
17	Hormones removal from municipal wastewater using ultrasound. AMB Express, 2018, 8, 91.	1.4	27
18	Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 2018, 7, 164.	1.9	245

#	Article	IF	CITATIONS
19	Effects of ultrasound pretreatments on the quality of fried sweet potato (<i>Ipomea batatas</i>) chips during microwaveâ€assisted vacuum frying. Journal of Food Process Engineering, 2018, 41, e12879.	1.5	24
20	Accelerated mild heating of dry-cured ham by applying power ultrasound in a liquid medium. Innovative Food Science and Emerging Technologies, 2018, 50, 94-101.	2.7	14
21	The Influence of Ultrasound and Cultivar Selection on the Biocompounds and Physicochemical Characteristics of Dried Blueberry (<i>Vaccinium corymbosum</i> L.) Snacks. Journal of Food Science, 2018, 83, 2305-2316.	1.5	8
22	Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, 2018, 2018, 1-29.	1.4	34
23	Synergistic effects of ultrasound and microwave on the pumpkin slices qualities during ultrasoundâ€assisted microwave vacuum frying. Journal of Food Process Engineering, 2018, 41, e12835.	1.5	23
24	Dehydration. , 2018, , 513-566.		14
25	Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience, 2018, 25, 111-117.	2.0	46
26	Ultrasound- and microwave-assisted convective drying of carrots – Process kinetics and product's quality analysis. Ultrasonics Sonochemistry, 2018, 48, 249-258.	3.8	78
27	Contact ultrasound strengthened far-infrared radiation drying on pear slices: Effects on drying characteristics, microstructure, and quality attributes. Drying Technology, 2019, 37, 745-758.	1.7	34
28	Time matters when ultrasonicating beef: The best time for tenderness is not the best for reducing microbial counts. Journal of Food Process Engineering, 2019, 42, e13210.	1.5	15
29	Effect of contact ultrasonic power on moisture migration during farâ€infrared radiation drying of kiwifruit. Journal of Food Process Engineering, 2019, 42, e13235.	1.5	5
30	Water state and sugars in cranberry fruits subjected to combined treatments: Cutting, blanching and sonication. Food Chemistry, 2019, 299, 125122.	4.2	20
31	Thermal Diffusivity, Moisture Diffusivity, and Color Change of <i>Codonopsis javanica</i> with the Support of the Ultrasound for Drying. Journal of Food Quality, 2019, 2019, 1-13.	1.4	10
32	Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science and Emerging Technologies, 2019, 58, 102233.	2.7	90
33	Recent developments in physical field-based drying techniques for fruits and vegetables. Drying Technology, 2019, 37, 1954-1973.	1.7	45
34	Comparison of drying methods on drying efficiency and physicochemical quality of okra (<i>Abelmoschus esculentus</i>) cultivated in China. Journal of Food Process Engineering, 2019, 42, e13163.	1.5	8
35	Research Progress on Power Ultrasound Technology. , 2019, , 149-187.		0
36	Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caeculea var, kamtschatica). Ultrasonics Sonochemistry, 2019, 56, 372-377	3.8	19

#	Article	IF	CITATIONS
37	Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. International Journal of Biological Macromolecules, 2019, 131, 273-281.	3.6	97
38	Drying characteristics, microstructure, glass transition temperature, and quality of ultrasoundâ€strengthened hot air drying on pear slices. Journal of Food Processing and Preservation, 2019, 43, e13899.	0.9	48
39	Nano-complexation of ε-poly-l-lysine with DNA: Improvement of antimicrobial activity under high phosphate conditions. International Journal of Biological Macromolecules, 2019, 127, 349-356.	3.6	8
40	Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper. Drying Technology, 2019, 37, 486-493.	1.7	30
41	Rough rice convective drying enhancement by intervention of airborne ultrasound – A response surface strategy for experimental design and optimization. Drying Technology, 2019, 37, 1097-1112.	1.7	15
42	Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality. Drying Technology, 2019, 37, 559-568.	1.7	33
43	Principles and recent applications of novel non-thermal processing technologies for the fish industry—a review. Critical Reviews in Food Science and Nutrition, 2019, 59, 728-742.	5.4	119
44	Deep bed rough rice air-drying assisted with airborne ultrasound set at 21†kHz frequency: A physicochemical investigation and optimization. Ultrasonics Sonochemistry, 2019, 53, 25-43.	3.8	13
45	Ultrasound-assisted vacuum drying of nectarine. Journal of Food Engineering, 2019, 246, 119-124.	2.7	62
46	Bound Water Removal Techniques. , 2019, , 93-118.		4
47	Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrasonics Sonochemistry, 2019, 53, 192-201.	3.8	73
48	Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Drying Technology, 2019, 37, 1793-1805.	1.7	29
49	Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology, 2020, 38, 93-107.	1.7	39
50	Co-influence of ultrasound and microwave in vacuum frying on the frying kinetics and nutrient retention properties of mushroom chips. Drying Technology, 2020, 38, 2102-2113.	1.7	8
51	Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices During Contact Ultrasound Intensified Heat Pump Drying. Food and Bioprocess Technology, 2020, 13, 430-441.	2.6	42
52	Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 2020, 63, 104950.	3.8	110
53	Review: Fundamentals, applications and potentials of ultrasound-assisted drying. Chemical Engineering Research and Design, 2020, 154, 21-46.	2.7	61
54	Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 2020, 105, 363-377.	7.8	189

#	Article	IF	Citations
55	Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science and Emerging Technologies, 2020, 66, 102507.	2.7	34
56	Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods, 2020, 9, 1468.	1.9	40
57	Optimization Method for the Evaluation of Convective Heat and Mass Transfer Effective Coefficients and Energy Sources in Drying Processes. Energies, 2020, 13, 6577.	1.6	5
58	Application of High-Power Ultrasound in the Food Industry. , 0, , .		14
59	Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food and Bioproducts Processing, 2020, 123, 42-59.	1.8	15
60	Novel Sensing Technologies During the Food Drying Process. Food Engineering Reviews, 2020, 12, 121-148.	3.1	19
61	Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Bioscience, 2020, 35, 100548.	2.0	46
62	Ultrasonic treatment of arsenic species: Transformation kinetics analysis. Microchemical Journal, 2020, 157, 105068.	2.3	2
63	Thermal and non-thermal processing effect on açai juice composition. Food Research International, 2020, 136, 109506.	2.9	31
64	Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry, 2020, 63, 104958.	3.8	18
65	Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science and Emerging Technologies, 2020, 63, 102313.	2.7	32
66	Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT - Food Science and Technology, 2020, 126, 109312.	2.5	51
67	Extraction of bioactive compounds from purple corn using emerging technologies: A review. Journal of Food Science, 2020, 85, 862-869.	1.5	37
68	Determination of the effect of high energy ultrasound application in tempering on flour quality of wheat. Ultrasonics Sonochemistry, 2020, 67, 105129.	3.8	10
69	The Use of Ultrasound for Drying, Degassing and Defoaming of Foods. , 2021, , 415-438.		11
70	Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Reviews International, 2021, 37, 447-468.	4.3	63
71	Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system. Renewable Energy, 2021, 165, 77-87.	4.3	18
72	Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa) – The influence of ultrasound on process kinetics and product quality. Ultrasonics Sonochemistry, 2021, 71, 105377.	3.8	36

#	Article	IF	CITATIONS
73	Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer. Drying Technology, 2021, 39, 245-258.	1.7	10
74	Direct Contact Ultrasound in Food Processing: Impact on Food Quality. Frontiers in Nutrition, 2021, 8, 633070.	1.6	20
75	Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes, 2021, 9, 132.	1.3	36
76	The Effect of Pre-Treatment (Blanching, Ultrasound and Freezing) on Quality of Freeze-Dried Red Beets. Foods, 2021, 10, 132.	1.9	22
77	Opportunities for Enhancing Winemaking Processes by Employing High Power Ultrasonics Technology: A Review. Current Journal of Applied Science and Technology, 0, , 47-64.	0.3	1
78	Effect of Ultrasound on Henna Leaves Drying and Extraction of Lawsone: Experimental and Modeling Study. Energies, 2021, 14, 1329.	1.6	4
79	Ultrasound-Assisted Vacuum Impregnation as a Strategy for the Management of Potato By-Products. Sustainability, 2021, 13, 3437.	1.6	6
80	Effect of ultrasound on cell viability and storage of dehydrated jackfruit (Artocarpus heterophyllus) Tj ETQq1 1 0	.784314 r 2.5	gB <u>T</u> /Overla <mark>c</mark> i
81	Application of infrared radiation in the drying of food products. Trends in Food Science and Technology, 2021, 110, 765-777.	7.8	69
82	Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrasonics Sonochemistry, 2021, 72, 105410.	3.8	79
83	The Impact of Processing Methods on the Quality of Honey: A Review. Malaysian Journal of Applied Sciences, 2021, 6, 99-110.	0.2	2
84	Drying of wolfberry fruit juice using low-intensity pulsed ultrasound. LWT - Food Science and Technology, 2021, 141, 110953.	2.5	14
85	Effects of ultrasound pretreatment on the drying kinetics, water status and distribution in scallop adductors during heat pump drying. Journal of the Science of Food and Agriculture, 2021, 101, 6239-6247.	1.7	22
86	Hybrid drying of food and bioproducts: a review. Drying Technology, 2021, 39, 1554-1576.	1.7	42
87	Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 2021, 3, 100024.	2.4	20
88	Electro-based technologies in food drying - A comprehensive review. LWT - Food Science and Technology, 2021, 145, 111315.	2.5	31
89	Ultrasonic Dehydration of Food Products with Moisture Removal without Phase Transition. Food Processing: Techniques and Technology, 2021, 51, 363-373.	0.3	4
90	Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. LWT - Food Science and Technology, 2021, 147, 111549.	2.5	37

ARTICLE IF CITATIONS # Whey allergens: Influence of nonthermal processing treatments and their detection methods. 5.9 14 91 Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4480-4510. Recent advances in portable devices for fruit firmness assessment. Critical Reviews in Food Science 5.4 and Nutrition, 2023, 63, 1143-1154. Enhancement of Convection Heat Transfer in Air Using Ultrasound. Applied Sciences (Switzerland), 93 1.3 5 2021, 11, 8846. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Critical 94 Reviews in Food Science and Nutrition, 2023, 63, 2141-2177. Numerical design and analysis of a langevin power ultrasonic transducer for acoustic cavitation 95 2.0 15 generation. Sensors and Actuators A: Physical, 2020, 311, 112035. The Effect of Hybrid Drying (Convective-Microwave-Ultrasound) on the Bioactive Properties of Osmo-Treated Sour Cherries. Journal of Horticultural Research, 2018, 26, 23-36. 0.4 An Update on Applications of Power Ultrasound in Drying Food: A Review. Journal of Food 97 0.2 6 Engineering and Technology, 2019, 8, 29-38. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 2022, 152, 110744. 2.9 39 99 Influence of the temperature and ultrasound application in drying kinetics of apple skin., 0, , . 0 Understanding the effects of ultrasound processing on texture and rheological properties of food. 1.1 Journal of Texture Studies, 2022, 53, 775-799. Equipment and recent advances in ultrasound technology., 2022, , 35-61. 102 2 Sensory Studies on Snacks and Dips Elaborated with Lionfish Surimi. Journal of Culinary Science and Technology, 2023, 21, 659-676. Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and 104 3.8 31 bioactivity of foods. Ultrasonics Sonochemistry, 2021, 80, 105835. Application of NIR spectroscopy and multivariate analysis for Non-destructive evaluation of apple moisture content during ultrasonic drying. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120733. 107 Ultrasonic and microwave-assisted sorption processes., 2022, , 3-42. 1 The use of emerging dehydration technologies in developing sustainable food supply chain., 2022, 393-409. Ultrasound-assisted convective drying of white mushrooms (Agaricus bisporus). Chemical 109 1.8 8 Engineering and Processing: Process Intensification, 2022, 172, 108803. A modeling strategy for hot drying of rough rice assisted by ultrasonic wave. Food and Bioproducts 1.8 Processing, 2022, 132, 114-129.

#	Article	IF	CITATIONS
111	Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences (Switzerland), 2022, 12, 1703.	1.3	25
112	Non-destructive measurement and real-time monitoring of apple hardness during ultrasonic contact drying via portable NIR spectroscopy and machine learning. Infrared Physics and Technology, 2022, 122, 104077.	1.3	15
113	Use of herbal extract for body-care formulations. , 2022, , 263-282.		0
114	Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic) Tj ETQq1 1 0.7843 Technologies in Food Processing. Applied Sciences (Switzerland), 2022, 12, 2202.	814 rgBT / 1.3	Overlock 10 49
115	Postharvest Quality Evaluation of Pineapple during Drying. ACS Food Science & Technology, 2022, 2, 592-603.	1.3	2
116	Novel drying and pretreatment methods for control of pesticide residues in fruits and vegetables: A review. Drying Technology, 2023, 41, 151-171.	1.7	4
117	Improving tomato juice concentration process through a novel ultrasound-thermal concentrator under vacuum condition: A bioactive compound investigation and optimization. Innovative Food Science and Emerging Technologies, 2022, 77, 102983.	2.7	7
118	Drying of Food Waste for Potential Use as Animal Feed. Sustainability, 2022, 14, 5849.	1.6	5
119	Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review – Part I. F1000Research, 0, 11, 562.	0.8	2
120	Dewatering of cellulose nanofibrils using ultrasound. Cellulose, 2022, 29, 5575-5591.	2.4	7
121	Dehydration. , 2022, , 415-454.		1
122	Properties of foods and principles of processing. , 2022, , 3-95.		0
123	Recent advances in ultrasound oupled drying for improving the quality of fruits and vegetables: a review. International Journal of Food Science and Technology, 2022, 57, 5722-5731.	1.3	5
124	Advances in Multigrain Snack Bar Technology and Consumer Expectations: A Review. Food Reviews International, 2023, 39, 93-118.	4.3	2
125	Cold Plasma Pretreatment Prior to Ultrasound-assisted Air Drying of Cumin Seeds. Food and Bioprocess Technology, 2022, 15, 2065-2083.	2.6	9
126	Effects of contact ultrasound & <scp>farâ€infrared</scp> radiation strengthening drying on water migration and quality characteristics of taro slices. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
128	Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering, 2022, 9, 364.	1.6	10
129	Thermal performance enhancement in hot air and solar drying of pineapple slices with ultrasonic vibration. Case Studies in Thermal Engineering, 2022, 37, 102296	2.8	4

#	Article	IF	Citations
130	Impact of ultrasonication applications on color profile of foods. Ultrasonics Sonochemistry, 2022, 89, 106109.	3.8	38
131	Innovative Processing: From Raw Material, Post Harvesting, Processing, and Applications. Food Engineering Series, 2022, , 23-49.	0.3	0
132	Drum type ultrasonic dryers. AIP Conference Proceedings, 2022, , .	0.3	0
133	Acoustic and Thermal Analysis of Food. , 0, , .		0
134	How food structure influences the physical, sensorial, and nutritional quality of food products. , 2023, , 113-138.		1
135	Conventional and intermittent drying modeling of agricultural products: A review. Journal of Food Process Engineering, 2023, 46, .	1.5	5
136	Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method. Heat and Mass Transfer, 2023, 59, 1073-1091.	1.2	5
137	Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. Journal of Food Measurement and Characterization, 2023, 17, 1033-1045.	1.6	5
138	Effect of ultrasonic vibration on pineapple drying. AIP Conference Proceedings, 2022, , .	0.3	0
139	Impact of Green Extraction Technologies on Plant Protein Content and Quality. , 2023, , 291-306.		0
140	Transformation of Seafood Side-Streams and Residuals into Valuable Products. Foods, 2023, 12, 422.	1.9	13
142	Sonication-microwave synergistic extraction of proteins from plant sources and its effect on protein. , 2023, , 291-344.		0
143	Synergistic effects of sonication and microwave on safety and quality of foods. , 2023, , 363-378.		1
144	Synergism of ultrasound and microwave for food processing, preservation, and extraction. , 2023, , 61-104.		1
145	Cold plasma as a pre-treatment for processing improvement in food: A review. Food Research International, 2023, 167, 112663.	2.9	11
146	Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Research International, 2023, 168, 112784.	2.9	10
147	Effect of ultrasound on mass transfer during vacuum impregnation of low-porous food materials on the example of potato (Solanum Tuberosum L.). Chemical Engineering and Processing: Process Intensification, 2023, 188, 109375.	1.8	3
148	Experimental Investigation of Enhancement of Natural Convective Heat Transfer in Air Using Ultrasound. Applied Sciences (Switzerland), 2023, 13, 2516.	1.3	0

#	Article	IF	CITATIONS
149	Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches. RSC Advances, 2023, 13, 6808-6826.	1.7	1
150	Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods, 2023, 12, 1212.	1.9	6
151	Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. Food and Bioprocess Technology, 2023, 16, 2455-2470.	2.6	3
152	Acoustic Properties. , 2023, , 539-549.		0
165	Use of Ultrasound in Physical and Chemical Mineral Processing Operations. Advances in Material Research and Technology, 2024, , 25-54.	0.3	0