Probabilistic assessment of near-field tsunami hazards: momentum flux, arrival time, and duration applied to S

Coastal Engineering 117, 79-96 DOI: 10.1016/j.coastaleng.2016.07.011

Citation Report

#	Article	IF	CITATIONS
1	Comparison of inundation depth and momentum flux based fragilities for probabilistic tsunami damage assessment and uncertainty analysis. Coastal Engineering, 2017, 122, 10-26.	1.7	61
2	Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies. Natural Hazards, 2017, 88, 1347-1372.	1.6	69
3	Tsunami inundation variability from stochastic rupture scenarios: Application to multiple inversions of the 2011 Tohoku, Japan earthquake. Coastal Engineering, 2017, 127, 88-105.	1.7	14
4	Probabilistic Seismic and Tsunami Hazard Analysis Conditioned on a Megathrust Rupture of the Cascadia Subduction Zone. Frontiers in Built Environment, 2017, 3, .	1.2	27
5	Probabilistic Tsunami Hazard Analysis of the Pacific Coast of Mexico: Case Study Based on the 1995 Colima Earthquake Tsunami. Frontiers in Built Environment, 2017, 3, .	1.2	28
6	Influence of Flow Velocity on Tsunami Loss Estimation. Geosciences (Switzerland), 2017, 7, 114.	1.0	14
7	Development of Physics-Based Tsunami Fragility Functions Considering Structural Member Failures. Journal of Structural Engineering, 2018, 144, .	1.7	42
8	Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation. Computers and Geosciences, 2018, 112, 83-100.	2.0	15
9	Development of structural debris flow fragility curves (debris flow buildings resistance) using momentum flux rate as a hazard parameter. Engineering Geology, 2018, 239, 144-157.	2.9	29
10	Development and application of a tsunami fragility curve of the 2015Âtsunami in Coquimbo, Chile. Natural Hazards and Earth System Sciences, 2018, 18, 2143-2160.	1.5	25
11	Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community. Natural Hazards, 2018, 94, 1117-1139.	1.6	19
12	Quantitative Assessment of Epistemic Uncertainties in Tsunami Hazard Effects on Building Risk Assessments. Geosciences (Switzerland), 2018, 8, 17.	1.0	14
13	Integrated Engineering-Economic Model for the Assessment of Regional Economic Vulnerability to Tsunamis. Natural Hazards Review, 2018, 19, 04018018.	0.8	5
14	Effects of advection on predicting construction debris for vulnerability assessment under multi-hazard earthquake and tsunami. Coastal Engineering, 2019, 153, 103541.	1.7	14
15	Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada. Natural Hazards, 2019, 98, 267-291.	1.6	20
16	Probabilistic seismic and tsunami damage analysis (PSTDA) of the Cascadia Subduction Zone applied to Seaside, Oregon. International Journal of Disaster Risk Reduction, 2019, 35, 101076.	1.8	42
17	Tsunami hazard and risk assessment for multiple buildings by considering the spatial correlation of wave height using copulas. Natural Hazards and Earth System Sciences, 2019, 19, 2619-2634.	1.5	3
18	An agent-based vertical evacuation model for a near-field tsunami: Choice behavior, logical shelter locations, and life safety. International Journal of Disaster Risk Reduction, 2019, 34, 467-479.	1.8	65

CITATION REPORT

#	Article	IF	CITATIONS
19	Time-dependent probabilistic tsunami hazard analysis using stochastic rupture sources. Stochastic Environmental Research and Risk Assessment, 2019, 33, 341-358.	1.9	15
20	A deterministic approach for assessing tsunami-induced building damage through quantification of hydrodynamic forces. Coastal Engineering, 2019, 144, 1-14.	1.7	17
21	Probabilistic tsunami hazard assessment and its application to southeast coast of Hainan Island from Manila Trench. Coastal Engineering, 2020, 155, 103596.	1.7	14
22	Uncertainty of probabilistic tsunami hazard assessment of Zihuatanejo (Mexico) due to the representation of tsunami variability. Coastal Engineering Journal, 2020, 62, 413-428.	0.7	10
23	Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario. Natural Hazards, 2020, 104, 753-793.	1.6	11
24	An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios. Coastal Engineering Journal, 2020, 62, 473-488.	0.7	8
25	Rapid prediction of alongshore run-up distribution from near-field tsunamis. Natural Hazards, 2020, 104, 1157-1180.	1.6	9
26	Probabilistic tsunami hazard assessment with simulation-based response surfaces. Coastal Engineering, 2020, 160, 103719.	1.7	11
27	Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile. Natural Hazards, 2020, 103, 367-406.	1.6	1
28	Microzoning Tsunami Hazard by Combining Flow Depths and Arrival Times. Frontiers in Earth Science, 2021, 8, .	0.8	12
29	Non‣tationary Probabilistic Tsunami Hazard Assessments Incorporating Climateâ€Changeâ€Driven Sea Level Rise. Earth's Future, 2021, 9, e2021EF002007.	2.4	16
30	Probabilistic quantification of tsunami current hazard using statistical emulation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210180.	1.0	7
31	A Comparison between Agent-Based and GIS-Based Tsunami Evacuation Simulations: A Case Study for Tofino, BC. Canadian Journal of Civil Engineering, 0, , .	0.7	0
32	Regional Probabilistic Tsunami Hazard Analysis for the Mexican Subduction Zone From Stochastic Slip Models. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020781.	1.4	2
33	Timeâ€Dependent Probabilistic Tsunami Inundation Assessment Using Mode Decomposition to Assess Uncertainty for an Earthquake Scenario. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017250.	1.0	13
34	Technique of local probabilistic tsunami zonation for near-field seismic sources applied to the Bechevinskaya Cove (the Kamchatka Peninsula). Natural Hazards, 0, , 1.	1.6	1
35	Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon. Natural Hazards, 2021, 109, 1821-1847.	1.6	12
36	Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes. Advances in Natural and Technological Hazards Research, 2018, , 469-485.	1.1	22

#	Article	IF	Citations
37	Probabilistic hazard analysis of impulse waves generated by multiple subaerial landslides and its application to Wu Gorge in Three Gorges Reservoir, China. Engineering Geology, 2020, 276, 105773.	2.9	9
38	Construction of Logic Trees and Hazard Curves for Probabilistic Tsunami Hazard Analysis. Journal of Korean Society of Coastal and Ocean Engineers, 2019, 31, 62-72.	0.1	5
39	Probabilistic Tsunami Hazard Assessment for the Southeast Coast of China: Consideration of Both Regional and Local Potential Sources. Pure and Applied Geophysics, 2021, 178, 5061.	0.8	4
41	å⊷æµ·æµ·å•,ç¾å®³ç"ç©¶èį›å±•åŠå±•望. SCIENTIA SINICA Terrae, 2022, 52, 803-831.	0.1	3
42	Tsunami hazard assessment in the South China Sea: A review of recent progress and research gaps. Science China Earth Sciences, 2022, 65, 783-809.	2.3	11
43	Local residents' immediate responses to the 2018 Indonesia earthquake and tsunami. Earthquake Spectra, 2022, 38, 2835-2865.	1.6	7
44	Giant tsunami monitoring, early warning and hazard assessment. Nature Reviews Earth & Environment, 2022, 3, 557-572.	12.2	14
45	Virtual Testbeds for Community Resilience Analysis: State-of-the-Art Review, Consensus Study, and Recommendations. Natural Hazards Review, 2022, 23, .	0.8	7
46	Stochastic source modeling and tsunami simulations of cascadia subduction earthquakes for Canadian Pacific coast. Coastal Engineering Journal, 2022, 64, 575-596.	0.7	3
47	Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis. Sustainability, 2022, 14, 13540.	1.6	2
48	Non‣tationary Probabilistic Tsunami Hazard Assessments Compounding Tides and Sea Level Rise. Earth's Future, 2022, 10, .	2.4	3
49	Assessing probability of building damages due to tsunami hazards coupled with characteristics of buildings in Banda Aceh, Indonesia: A way to increase understanding of tsunami risks. International Journal of Disaster Risk Reduction, 2023, 90, 103652.	1.8	3
50	Efficient probabilistic prediction of tsunami inundation considering random tsunami sources and the failure probability of seawalls. Stochastic Environmental Research and Risk Assessment, 2023, 37, 2053-2068.	1.9	0
51	Multi-hazard Risk Assessment of South Korean Nuclear Power Plants. Journal of Earthquake and Tsunami, 0, , .	0.7	0

CITATION REPORT