One-shot calculation of temperature-dependent optical band-gap renormalization

Physical Review B 94, DOI: 10.1103/physrevb.94.075125

Citation Report

#	Article	IF	CITATIONS
1	Unexpected Cation Dynamics in the Low-Temperature Phase of Methylammonium Lead Iodide: The Need for Improved Models. Journal of Physical Chemistry Letters, 2016, 7, 4701-4709.	2.1	53
2	Cs ₂ InAgCl ₆ : A New Lead-Free Halide Double Perovskite with Direct Band Gap. Journal of Physical Chemistry Letters, 2017, 8, 772-778.	2.1	752
3	Electron-phonon interactions from first principles. Reviews of Modern Physics, 2017, 89, .	16.4	947
4	Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nature Communications, 2017, 8, 13.	5.8	148
5	Perspective: Theory and simulation of hybrid halide perovskites. Journal of Chemical Physics, 2017, 146, 220901.	1.2	111
6	First-principles electron transport with phonon coupling: Large scale at low cost. Physical Review B, 2017, 96, .	1.1	41
7	Optical Properties of Zn2Mo3O8: Combination of Theoretical and Experimental Study. Journal of Physical Chemistry C, 2017, 121, 24766-24773.	1.5	15
8	Resonant indirect optical absorption in germanium. Physical Review B, 2017, 96, .	1.1	14
9	Anomalous anisotropic exciton temperature dependence in rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>TiO </mml:mi> <mml:mn>2 Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	nn ъ.ı /mml	:msub>
10	New approaches for first-principles modelling of inelastic transport in nanoscale semiconductor devices with thousands of atoms. , 2017, , .		0
11	Stochastic sampling of quadrature grids for the evaluation of vibrational expectation values. Physical Review B, 2018, 97, .	1.1	1
12	Electron–phonon coupling from finite differences. Journal of Physics Condensed Matter, 2018, 30, 083001.	0.7	58
13	First-principles study of direct and indirect optical absorption in BaSnO3. Applied Physics Letters, 2018, 112, 062106.	1.5	14
14	Phonon-assisted optical absorption in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>BaSnO</mml:mi><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> from first principles. Physical Review B, 2018, 97, .</mml:math 	1.1	26
15	Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs ₂ BB′X ₆ : B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. Journal of Physical Chemistry C, 2018, 122, 158-170.	1.5	114
16	Electron–phonon coupling in semiconductors within the GW approximation. New Journal of Physics, 2018, 20, 123008.	1.2	68
17	Effects of electron-phonon coupling on absorption spectrum: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>K</mml:mi> edge of hexagonal boron nitride. Physical Review B, 2018, 98, .</mml:math 	1.1	26
18	Phonon-assisted optical absorption in germanium. Physical Review B, 2018, 98, .	1.1	16

	СІТАТІО	CITATION REPORT	
#	Article	IF	CITATIONS
19	Optical absorption driven by dynamical symmetry breaking in indium oxide. Physical Review B, 2018, 98, .	1.1	13
20	<i>Ab initio</i> investigation on the experimental observation of metallic hydrogen. Physical Review B, 2018, 98, .	1.1	12
21	Validity and Application of the TCR Method to MOL contactS. , 2018, , .		2
22	Structural impact on the eigenenergy renormalization for carbon and silicon allotropes and boron nitride polymorphs. Physical Review B, 2018, 97, .	1.1	9
23	Phonon-assisted damping of plasmons in three- and two-dimensional metals. Physical Review B, 2018, 97, .	1.1	9
24	Efficient First-Principles Calculation of Phonon-Assisted Photocurrent in Large-Scale Solar-Cell Devices. Physical Review Applied, 2018, 10, .	1.5	49
25	Efficient and accurate calculation of band gaps of halide perovskites with the Tran-Blaha modified Becke-Johnson potential. Physical Review B, 2019, 99, .	1.1	61
26	Exciton-Phonon Coupling in the Ultraviolet Absorption and Emission Spectra of Bulk Hexagonal Boron Nitride. Physical Review Letters, 2019, 122, 187401.	2.9	54
27	Assessing the Role of Intermolecular Interactions in a Perylene-Based Nanowire Using First-Principles Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2019, 10, 2842-2848.	2.1	6
28	Performance of Monolayer Blue Phosphorene Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Interfaces, 2019, 11, 20956-20964.	4.0	39
29	Theory of phonon-assisted luminescence in solids: Application to hexagonal boron nitride. Physical Review B, 2019, 99, .	1.1	46
30	Phonon-assisted processes in the ultraviolet-transient optical response of graphene. Npj 2D Materials and Applications, 2019, 3, .	3.9	13
31	<i>Ab initio</i> dielectric response function of diamond and other relevant high pressure phases of carbon. Journal of Physics Condensed Matter, 2020, 32, 095401.	0.7	17
32	First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 2020, 83, 036501.	8.1	176
33	Experimental determination of the bare energy gap of GaAs without the zero-point renormalization. Journal of Physics Condensed Matter, 2020, 32, 10LT01.	0.7	2
34	Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures. Physical Review B, 2020, 102, .	1.1	30
35	<pre><mm:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>F</mml:mi>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi></mml:math>centers in alkali halides: A theoretical study applying self-consistent dielectric-dependent hybrid density for the provided theoretical study applying self-consistent dielectric-dependent hybrid density </mm:math></pre>	1.1	6
36	Electronic energy gap closure and metal-insulator transition in dense liquid hydrogen. Physical Review B, 2020, 102, .	1.1	13

#	Article	IF	CITATIONS
37	Temperature dependence of the optical properties of silicon nanocrystals. Physical Review B, 2020, 101,	1.1	12
38	Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure. Physical Review Letters, 2020, 124, 116401.	2.9	24
39	Phonon-induced renormalization of electron wave functions. Physical Review B, 2020, 101, .	1.1	24
40	Electron-phonon interactions using the projector augmented-wave method and Wannier functions. Physical Review B, 2020, 101, .	1.1	10
41	Temperature-Dependent Band Renormalization in CoSb ₃ Skutterudites Due to Sb-Ring-Related Vibrations. Chemistry of Materials, 2021, 33, 1046-1052.	3.2	16
42	High mobility and enhanced photoelectric performance of two-dimensional ternary compounds NaCuX (X = S, Se, and Te). Physical Chemistry Chemical Physics, 2021, 23, 2475-2482.	1.3	22
43	Ultra-low thermal conductivity and high thermoelectric performance of monolayer BiP ₃ : a first principles study. Physical Chemistry Chemical Physics, 2021, 23, 19834-19840.	1.3	2
44	Exciton–Phonon Interactions in Monolayer Germanium Selenide from First Principles. Journal of Physical Chemistry Letters, 2021, 12, 3802-3808.	2.1	9
45	The Significance of Polarons and Dynamic Disorder in Halide Perovskites. ACS Energy Letters, 2021, 6, 2162-2173.	8.8	74
46	Accurate GW 0 band gaps and their phonon-induced renormalization in solids. Chinese Physics B, 0, , .	0.7	1
47	Quantum vibronic effects on the electronic properties of solid and molecular carbon. Physical Review Materials, 2021, 5, .	0.9	12
48	A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations. Indian Journal of Physics, 2022, 96, 2359-2368.	0.9	7
49	Quasiparticle Band Structure and Phonon-Induced Band Gap Renormalization of the Lead-Free Halide Double Perovskite Cs ₂ InAgCl ₆ . Journal of Physical Chemistry C, 2021, 125, 21689-21700.	1.5	13
50	Phonon-assisted excitonic absorption in diamond. Physical Review B, 2021, 104, .	1.1	9
51	Electronic structure and optical properties of quantum crystals from first principles calculations in the Born–Oppenheimer approximation. Journal of Chemical Physics, 2020, 153, 234117.	1.2	6
52	A coupled cluster framework for electrons and phonons. Journal of Chemical Physics, 2020, 153, 224112.	1.2	17
53	Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization. Journal of Physics Condensed Matter, 2020, 32, 475503.	0.7	23
54	Comprehensive modeling of the band gap and absorption spectrum of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiVO</mml:mi><mml:mn>4Physical Review Materials, 2017, 1, .</mml:mn></mml:msub></mml:math 	າ l:mø.໑ <td>ml:##sub></td>	ml:##sub>

CITATION REPORT

ARTICLE IF CITATIONS # Boron phosphide as a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type 55 0.9 11 transparent conductor: Optical absorption and transport through electron-phonon coupling. Physical Review Materials, 2020, 4, Anharmonicity measure for materials. Physical Review Materials, 2020, 4, . Theory of the special displacement method for electronic structure calculations at finite 57 1.3 57 temperature. Physical Review Research, 2020, 2, . Accurate optical spectra through time-dependent density functional theory based on 29 screening-dependent hybrid functionals. Physical Review Research, 2020, 2, . Validity and Application of the TCR Method to MOL contactS., 2018,,. 59 1 Quantum Confinement of Electron–Phonon Coupling in Graphene Quantum Dots. Journal of Physical 2.1 Chemistry Letters, 2021, 12, 9940-9946. Quantifying Temperature Dependence of Electronic Band Gaps and Optical Properties in 61 SnO₂ and SnO via First-Principles Simulations. Journal of Physical Chemistry C, 2021, 125, 1.5 9 22231-22238. Differentiating contributions of electrons and phonons to the thermoreflectance spectra of gold. Physical Review Materials, 2021, 5, . 63 Electron–phonon coupling in CsPbBr3. AIP Advances, 2020, 10, . 0.6 11 Multiphonon diffuse scattering in solids from first principles: Application to layered crystals and 64 1.1 two-dimensional materials. Physical Review B, 2021, 104, . Efficient First-Principles Methodology for the Calculation of the All-Phonon Inelastic Scattering in 2.9 65 18 Solids. Physical Review Letters, 2021, 127, 207401. Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors 1.2 with predictive atomistic calculations. Journal of Materials Research, 2021, 36, 4616-4637. Bandgap renormalization and indirect optical absorption in MgSiN2 at finite temperature. Journal of 67 1.1 1 Applied Physics, 2021, 130, 225703. Theory of exciton-phonon coupling. Physical Review B, 2022, 105, . 1.1 Wannier Function Perturbation Theory: Localized Representation and Interpolation of Wave Function 69 2.8 6 Perturbation. Physical Review X, 2021, 11, . Modulating electronic properties of dinitrosoarene polymers. Journal of Materials Chemistry C, 2022, 10, 5433-5446. CeTaN₃ and CeNbN₃: Prospective Nitride Perovskites with Optimal 71 3.213 Photovoltaic Band Gaps. Chemistry of Materials, 2022, 34, 2107-2122. Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. Jacs Au, 2022, 2, 136-149.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
73	Optical representation of thermal nuclear fluctuation effect on band-gap renormalization. Physical Review B, 2021, 104, .	1.1	0
74	Influence of phonon-assisted tunneling on photovoltaic properties of BaSi2 and BaGe2â€^ <i>p–n</i> homojunction solar cell devices. Journal of Applied Physics, 2022, 131, .	1.1	1
75	Coupled Bogoliubov equationsÂfor electrons and phonons. Physical Review B, 2022, 105, .	1.1	1
76	Temperature-dependence of the band gap in the all-inorganic perovskite CsPbI ₃ from room to high temperatures. Physical Chemistry Chemical Physics, 2022, 24, 16003-16010.	1.3	17
77	Nonperturbative Green's function method to determine the electronic spectral function due to electron-phonon interactions: Application to a graphene model from weak to strong coupling. Physical Review B, 2022, 105, .	1.1	1
78	<i>Ab initio</i> self-consistent many-body theory of polarons at all couplings. Physical Review B, 2022, 106, .	1.1	15
79	Electron–phonon interaction effect on the photovoltaic parameters of indirect (direct) bandgap AlSb (GaSb) p–n junction solar cell devices: a density functional theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 24181-24191.	1.3	1
80	Understanding the structure-band gap relationship in SrZrS ₃ at elevated temperatures: a detailed <i>NPT</i> MD study. Journal of Materials Chemistry C, 2022, 10, 12032-12042.	2.7	5
81	Zero-point renormalization of the band gap of semiconductors and insulators using the projector augmented wave method. Physical Review B, 2022, 106, .	1.1	13
82	Computational Protocol to Evaluate Electron–Phonon Interactions Within Density Matrix Perturbation Theory. Journal of Chemical Theory and Computation, 2022, 18, 6031-6042.	2.3	6
83	Nonuniform grids for Brillouin zone integration and interpolation. Physical Review B, 2022, 106, .	1.1	4
84	Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption. Journal of the American Chemical Society, 2022, 144, 19872-19883.	6.6	22
85	Polaronic optical transitions in hematite (α-Fe2O3) revealed by first-principles electron–phonon coupling. Journal of Chemical Physics, 2022, 157, .	1.2	5
86	Accurate and efficient band-gap predictions for metal halide perovskites at finite temperature. Npj Computational Materials, 2022, 8, .	3.5	15
87	<i>Ab initio</i> theory of free-carrier absorption in semiconductors. Physical Review B, 2022, 106, .	1.1	7
88	Density functional theory simulation and modeling of the electrical and mechanical properties of Al2O3-CAO-CNT(3,3) nanomaterial. Computational Materials Science, 2023, 218, 111939.	1.4	Ο
89	The ability of <scp>BC₃</scp> to remove <scp>Cs</scp> from nuclear wastewater. International Journal of Quantum Chemistry, 2023, 123, .	1.0	4
90	Superior thermoelectric properties of bulk and monolayer fullerene networks. Journal of Materials Chemistry A, 2023, 11, 3949-3960.	5.2	14

CITATION REPORT

#	ARTICLE	IF	CITATIONS
91	Electron–phonon effects and temperature-dependence of the electronic structure of monoclinic <i>β</i> -Ga2O3. APL Materials, 2023, 11, .	2.2	5
92	A theoretical approach on estimating temperature-dependent optical properties of two typical molten alkali chloride salts (KCl and NaCl). International Journal of Thermal Sciences, 2023, 187, 108153.	2.6	5
93	Subâ€5 nm 2D Semiconductorâ€Based Monolayer Fieldâ€Effect Transistor: Status and Prospects. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	1
94	Quantum transport of sub-5 nm InSe and In ₂ SSe monolayers and their heterostructure transistors. Nanoscale, 2023, 15, 3496-3503.	2.8	3
95	Topological and nodal superconductor kagome magnesium triboride. Physical Review Materials, 2023, 7, .	0.9	3
96	The electron–phonon renormalization in the electronic structure calculation: Fundamentals, current status, and challenges. Journal of Chemical Physics, 2023, 158, 130901.	1.2	0
97	Phonon-Induced Localization of Excitons in Molecular Crystals from First Principles. Physical Review Letters, 2023, 130, .	2.9	9
98	Electron–Phonon Interaction Contribution to the Total Energy of Group IV Semiconductor Polymorphs: Evaluation and Implications. ACS Omega, 2023, 8, 11251-11260.	1.6	1
99	Phonon-assisted optical absorption of SiC polytypes from first principles. Physical Review B, 2023, 107, .	1.1	4
100	Weak electron-phonon renormalization effect caused by the counteraction of the different phonon vibration modes in FeS ₂ . Physica Scripta, 2023, 98, 065902.	1.2	1
101	Partial Order-Disorder Transition Driving Closure of Band Gap: Example of Thermoelectric Clathrates. Physical Review Letters, 2023, 130, .	2.9	1