Estimation of the Available Rooftop Area for Installing (PV) System by Analyzing the Building Shadow Using H

Energy Procedia 88, 408-413 DOI: 10.1016/j.egypro.2016.06.013

Citation Report

CITATION	DEDODT

#	ARTICLE	IF	CITATIONS
1	Development of an integrated multi-objective optimization model for determining the optimal solar incentive design. International Journal of Energy Research, 2017, 41, 1749-1766.	4.5	12
2	A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Conversion and Management, 2017, 153, 257-277.	9.2	41
3	Estimation of grid feed in electricity from roof integrated Si-amorph PV system based on orientation, tilt and available roof surface area. , 2017, , .		16
4	Prospects of PV application in unregulated building rooftops in developing countries: A perspective from Saudi Arabia. Energy and Buildings, 2018, 171, 76-87.	6.7	71
5	An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand. Renewable Energy, 2018, 123, 781-792.	8.9	46
6	An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images. Energies, 2018, 11, 3172.	3.1	44
7	E-City Web Platform: A Tool for Energy Efficiency at Urban Level. Energies, 2018, 11, 1857.	3.1	20
8	Chemical engineering for a solar economy (2017 P. V. Danckwerts Lecture). Chemical Engineering Science, 2019, 210, 115215.	3.8	6
9	Sustainable co-production of food and solar power to relax land-use constraints. Nature Sustainability, 2019, 2, 972-980.	23.7	45
10	Techno-econo-environmental feasibility of retrofitting urban transportation system with optimal solar panels for climate change mitigation – A case study. Journal of Cleaner Production, 2020, 251, 119639.	9.3	16
11	Economic and technical assessment of rooftop solar photovoltaic potential in Brownsville, Texas, U.S.A. Computers, Environment and Urban Systems, 2020, 80, 101450.	7.1	26
12	Approximate rooftop solar PV potential of Indian cities for high-level renewable power scenario planning. Sustainable Energy Technologies and Assessments, 2020, 42, 100850.	2.7	17
13	A preliminary exploration of the cooling effect of tree shade in urban landscapes. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102161.	2.8	15
14	DEM Based Study on Shielded Astronomical Solar Radiation and Possible Sunshine Duration under Terrain Influences on Mars by Using Spectral Methods. ISPRS International Journal of Geo-Information, 2021, 10, 56.	2.9	4
15	Comparison of Different References When Assessing PV HC in Distribution Networks. Clean Technologies, 2021, 3, 123-137.	4.2	4
16	Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia. Energies, 2021, 14, 3805.	3.1	14
17	The Urban Rooftop Photovoltaic Potential Determination. Sustainability, 2021, 13, 7447.	3.2	7
18	Sustainability of compact cities: A review of Inter-Building Effect on building energy and solar energy use. Sustainable Cities and Society, 2021, 72, 103035.	10.4	77

#	Article	IF	CITATIONS
19	Determination of the urban rooftop photovoltaic potential: A state of the art. Energy Reports, 2021, 7, 176-185.	5.1	24
20	Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method. Energy, 2022, 242, 122971.	8.8	7
21	Potential Determination of Urban Rooftop Photovoltaics. , 2021, , .		1
22	Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sensing, 2022, 14, 2796.	4.0	8
23	Sustainability and efficient use of building-integrated photovoltaic curtain wall array (BI-PVCWA) systems in building complex scenarios. Energy and Buildings, 2022, 276, 112477.	6.7	3
24	Driving carbon zero initiative and green scenes by rooftop SPV. AIP Conference Proceedings, 2022, , .	0.4	0
25	ANALYSIS OF THE GEOGRAPHICAL RESOURCE OF SOLAR ENERGY IN THE TERRITORY OF THE AGRICULTURAL OBJECT. Vestnik of Kazan State Agrarin University, 2023, 18, 76-83.	1.4	0
26	Application of Geographic Information System in Assessing Rooftop Photovoltaic Potential. , 0, 69, 361-367.		0
27	Increasing the Power in Photovoltaic Systems using a Floating PV System compared with a Rooftop PV System by Limiting the Temperature Loss. , 2023, , .		0