Engineered T cells: the promise and challenges of cance

Nature Reviews Cancer 16, 566-581 DOI: 10.1038/nrc.2016.97

Citation Report

#	Article	IF	CITATIONS
2	Preclinical rationale for combining radiation therapy and immunotherapy beyond checkpoint inhibitors (i.e., CART). Translational Lung Cancer Research, 2007, 6, 159-168.	2.8	32
3	Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Frontiers in Cell and Developmental Biology, 2016, 4, 130.	3.7	22
4	Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Frontiers in Immunology, 2016, 7, 531.	4.8	74
6	NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. Journal of Cell Biology, 2016, 215, 875-889.	5.2	87
7	Engineering HIV-Specific Immunity with Chimeric Antigen Receptors. AIDS Patient Care and STDs, 2016, 30, 556-561.	2.5	14
8	Immuno-oncology: Allying forces of radio- and immuno-therapy to enhance cancer cell killing. Critical Reviews in Oncology/Hematology, 2016, 108, 97-108.	4.4	25
9	In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nature Biomedical Engineering, 2017, 1, .	22.5	390
10	The revival of cancer vaccines — The eminent need to activate humoral immunity. Human Vaccines and Immunotherapeutics, 2017, 13, 1112-1114.	3.3	16
11	Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017, 168, 707-723.	28.9	3,483
12	The CD47â€6IRPα signaling axis as an innate immune checkpoint in cancer. Immunological Reviews, 2017, 276, 145-164.	6.0	410
13	The best spot to park a CAR. Nature Biotechnology, 2017, 35, 341-341.	17.5	0
14	Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation, 2017, 101, 2277-2287.	1.0	37
15	T cell receptor βâ€chain repertoire analysis reveals the association between neoantigens and tumourâ€infiltrating lymphocytes in multifocal papillary thyroid carcinoma. International Journal of Cancer, 2017, 141, 377-382.	5.1	13
16	Antigen Discovery and Therapeutic Targeting in Hematologic Malignancies. Cancer Journal (Sudbury,) Tj ETQq1 1	0,784314	rgBT /Overl
17	Single Cell Analysis. Series in Bioengineering, 2017, , .	0.6	1
18	Sensing Bad: Are Co-stimulatory CAR-Expressing γδT Cells Safer?. Molecular Therapy, 2017, 25, 1064-1066.	8.2	2
19	Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs. Molecular Therapy - Methods and Clinical Development, 2017, 6, 1-7.	4.1	23
20	Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein and Cell, 2017, 8, 896-925.	11.0	59

#	Article	IF	CITATIONS
21	Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 2017, 102, 601-615.	3.3	39
22	Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Advanced Drug Delivery Reviews, 2017, 114, 222-239.	13.7	52
23	Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. Journal of Infectious Diseases, 2017, 215, S160-S171.	4.0	24
24	The Individual and Population Genetics of Antibody Immunity. Trends in Immunology, 2017, 38, 459-470.	6.8	134
25	Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews, 2017, 114, 79-101.	13.7	233
26	Engineering challenges for brain tumor immunotherapy. Advanced Drug Delivery Reviews, 2017, 114, 19-32.	13.7	62
27	The frequency of neoantigens per somatic mutation rather than overall mutational load or number of predicted neoantigens per se is a prognostic factor in ovarian clear cell carcinoma. Oncolmmunology, 2017, 6, e1338996.	4.6	22
28	3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials, 2017, 140, 58-68.	11.4	32
29	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	21.0	220
30	Hemophilia A inhibitor treatment: the promise of engineered T-cell therapy. Translational Research, 2017, 187, 44-52.	5.0	16
31	Beyond checkpoint inhibition – Immunotherapeutical strategies in combination with radiation. Clinical and Translational Radiation Oncology, 2017, 2, 29-35.	1.7	27
32	T-cell target antigens across major gynecologic cancers. Gynecologic Oncology, 2017, 145, 426-435.	1.4	24
33	Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nature Reviews Cancer, 2017, 17, 286-301.	28.4	742
34	How do i participate in Tâ€cell immunotherapy?. Transfusion, 2017, 57, 1115-1121.	1.6	3
35	Creating a Homeodomain with High Stability and DNA Binding Affinity by Sequence Averaging. Journal of the American Chemical Society, 2017, 139, 5051-5060.	13.7	24
36	Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells. Molecular Therapy - Methods and Clinical Development, 2017, 4, 192-203.	4.1	53
37	Chimeric antigen receptor T cells: a novel therapy for solid tumors. Journal of Hematology and Oncology, 2017, 10, 78.	17.0	232
38	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	2.2	72

	CITATION	Report	
#	Article	IF	CITATIONS
39	Driving gene-engineered T cell immunotherapy of cancer. Cell Research, 2017, 27, 38-58.	12.0	232
40	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	13.8	141
41	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6494-6519.	2.0	11
42	Rewiring human cellular input–output using modular extracellular sensors. Nature Chemical Biology, 2017, 13, 202-209.	8.0	124
43	c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals. Blood, 2017, 130, 2739-2749.	1.4	8
44	Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resistance Updates, 2017, 33-35, 23-35.	14.4	16
45	Synthetic biology – Engineering cell-based biomedical devices. Current Opinion in Biomedical Engineering, 2017, 4, 50-56.	3.4	7
46	NK Cells and γÎT Cells for Relapse Protection after Allogeneic Hematopoietic Cell Transplantation (HCT). Current Stem Cell Reports, 2017, 3, 301-311.	1.6	13
47	CARs on a highway with roadblocks. OncoImmunology, 2017, 6, e1388486.	4.6	7
48	Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System. Human Gene Therapy, 2017, 28, 1105-1115.	2.7	20
49	Inducible Enhancement of T Cell Function and Anti-tumor Activity after Adoptive Transfer. Molecular Therapy, 2017, 25, 1995-1996.	8.2	1
50	Combination Cancer Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells as Drug Carriers. Molecular Therapy, 2017, 25, 2607-2619.	8.2	72
51	Multiplexing Engineered Receptors for Multiparametric Evaluation of Environmental Ligands. ACS Synthetic Biology, 2017, 6, 2042-2055.	3.8	30
52	Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncolmmunology, 2017, 6, e1371896.	4.6	36
53	Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy. ACS Nano, 2017, 11, 10724-10732.	14.6	150
54	Bacterial outer membrane vesicles suppress tumor by interferon-Î ³ -mediated antitumor response. Nature Communications, 2017, 8, 626.	12.8	329
55	Application of chimeric antigen receptor-engineered T cells in ovarian cancer therapy. Immunotherapy, 2017, 9, 851-861.	2.0	8
56	Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy. Immunotherapy, 2017, 9, 837-849.	2.0	1

#	Article	IF	CITATIONS
57	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	28.9	212
58	Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors. Cell Reports, 2017, 20, 2639-2653.	6.4	64
59	Culturing CTLs under Hypoxic Conditions Enhances Their Cytolysis and Improves Their Anti-tumor Function. Cell Reports, 2017, 20, 2547-2555.	6.4	118
60	Acute myeloid leukemia with mutated nucleophosmin 1: an immunogenic acute myeloid leukemia subtype and potential candidate for immune checkpoint inhibition. Haematologica, 2017, 102, e499-e501.	3.5	26
61	Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nature Communications, 2017, 8, 389.	12.8	133
62	Advances in cancer stem cell targeting: How to strike the evil at its root. Advanced Drug Delivery Reviews, 2017, 120, 89-107.	13.7	58
63	Treating breast cancer with cell-based approaches: an overview. Expert Opinion on Biological Therapy, 2017, 17, 1255-1264.	3.1	4
64	Reprogramming cellular functions with engineered membrane proteins. Current Opinion in Biotechnology, 2017, 47, 92-101.	6.6	19
65	A Comparative Study of Clinical Intervention and Interventional Photothermal Therapy for Pancreatic Cancer. Advanced Materials, 2017, 29, 1700448.	21.0	86
66	Reconstructing the immune system with lentiviral vectors. Virus Genes, 2017, 53, 723-732.	1.6	20
67	Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2. Structure, 2017, 25, 1163-1174.	3.3	253
68	New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Translational Research, 2017, 187, 83-92.	5.0	13
69	Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 2017, 9, 1183-1197.	6.9	397
70	Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncolmmunology, 2017, 6, e1363139.	4.6	60
71	A Novel Vaccine Targeting Glypican-3 as a Treatment for Hepatocellular Carcinoma. Molecular Therapy, 2017, 25, 2299-2308.	8.2	21
73	Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open, 2017, 7, e017075.	1.9	43
74	Young donor white blood cell immunotherapy induces extensive tumor necrosis in advanced-stage solid tumors. Heliyon, 2017, 3, e00438.	3.2	9
75	Heating up cancer vaccines. Science Immunology, 2017, 2, .	11.9	2

#	Article	IF	CITATIONS
76	Tuning up T-cell receptors. Nature Biotechnology, 2017, 35, 1145-1146.	17.5	1
77	Harnessing designed nanoparticles: Current strategies and future perspectives in cancer immunotherapy. Nano Today, 2017, 17, 23-37.	11.9	69
78	Accelerating Patients' Access to Advanced Therapies in the EU. Molecular Therapy - Methods and Clinical Development, 2017, 7, 15-19.	4.1	19
79	Fight fire with fire: Gene therapy strategies to cure HIV. Expert Review of Anti-Infective Therapy, 2017, 15, 747-758.	4.4	13
80	Manufacturing Cell Therapies Using Engineered Biomaterials. Trends in Biotechnology, 2017, 35, 971-982.	9.3	35
81	Targeting EGFRvIII for glioblastoma multiforme. Cancer Letters, 2017, 403, 224-230.	7.2	48
82	Ionic CD3â^'Lck interaction regulates the initiation of T-cell receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5891-E5899.	7.1	70
83	Chimeric antigen receptor T-cells for B-cell malignancies. Translational Research, 2017, 187, 59-82.	5.0	22
84	Molecular imaging biomarkers for cell-based immunotherapies. Journal of Translational Medicine, 2017, 15, 140.	4.4	11
85	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	22.7	306
86	Genome Editing Techniques and Their Therapeutic Applications. Clinical Pharmacology and Therapeutics, 2017, 101, 42-51.	4.7	18
87	Presence of an Immune System Increases Antiâ€Tumor Effect of Ag Nanoparticle Treated Mice. Advanced Healthcare Materials, 2017, 6, 1601099.	7.6	22
88	Application of Nanocomposites in Cancer Immunotherapy. Nano LIFE, 2017, 07, 1750008.	0.9	2
89	Informatics for cancer immunotherapy. Annals of Oncology, 2017, 28, xii56-xii73.	1.2	19
90	New insight into cancer immunotherapy. Allergologia Et Immunopathologia, 2017, 45, 50-55.	1.7	3
91	The revolution of lung cancer treatment: from vaccines, to immune checkpoint inhibitors, to chimeric antigen receptor T therapy. Biotarget, 0, 1, 7-7.	0.5	11
92	DGK-α: A Checkpoint in Cancer-Mediated Immuno-Inhibition and Target for Immunotherapy. Frontiers in Cell and Developmental Biology, 2017, 5, 16.	3.7	27
93	Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment. International Journal of Molecular Sciences, 2017, 18, 1201.	4.1	14

#	Article	IF	CITATIONS
94	Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel. Frontiers in Immunology, 2017, 8, 267.	4.8	61
95	Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Frontiers in Immunology, 2017, 8, 533.	4.8	232
96	Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Frontiers in Immunology, 2017, 8, 1228.	4.8	165
97	Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Frontiers in Immunology, 2017, 8, 1617.	4.8	43
98	Harnessing the Power of Invariant Natural Killer T Cells in Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1829.	4.8	49
99	Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics, 2017, 7, 3504-3516.	10.0	54
100	Amatuximab and novel agents targeting mesothelin for solid tumors. OncoTargets and Therapy, 2017, Volume 10, 5337-5353.	2.0	28
101	Antibody-Recruiting Small Molecules: Synthetic Constructs as Immunotherapeutics. Annual Reports in Medicinal Chemistry, 2017, 50, 481-518.	0.9	3
102	Prospects for combined use of oncolytic viruses and CAR T-cells. , 2017, 5, 90.		84
103	Immune Cells As Targets and Tools For Cancer Therapy. Immunotherapy (Los Angeles, Calif), 2017, 03, .	0.1	0
103 104	Immune Cells As Targets and Tools For Cancer Therapy. Immunotherapy (Los Angeles, Calif), 2017, 03, . Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787.	0.1	0
	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8,		
104	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787.	1.8	75
104 105	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787. Driving T-cell immunotherapy to solid tumors. Nature Biotechnology, 2018, 36, 215-219. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature	1.8 17.5	75 117
104 105 106	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787. Driving T-cell immunotherapy to solid tumors. Nature Biotechnology, 2018, 36, 215-219. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature Reviews Clinical Oncology, 2018, 15, 325-340.	1.8 17.5 27.6	75 117 1,192
104 105 106 107	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787. Driving T-cell immunotherapy to solid tumors. Nature Biotechnology, 2018, 36, 215-219. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature Reviews Clinical Oncology, 2018, 15, 325-340. Powered and controlled T-cell production. Nature Biomedical Engineering, 2018, 2, 148-150. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis.	1.8 17.5 27.6 22.5	75 117 1,192 5
104 105 106 107 108	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787. Driving T-cell immunotherapy to solid tumors. Nature Biotechnology, 2018, 36, 215-219. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature Reviews Clinical Oncology, 2018, 15, 325-340. Powered and controlled T-cell production. Nature Biomedical Engineering, 2018, 2, 148-150. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncolmmunology, 2018, 7, e1442167. T-cell Immunotherapies and the Role of Nonclinical Assessment: The Balance between Efficacy and	1.8 17.5 27.6 22.5 4.6	75 117 1,192 5 67

#	Article	IF	CITATIONS
112	Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. Journal of Hematology and Oncology, 2018, 11, 22.	17.0	176
113	Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clinical Immunology, 2018, 190, 22-31.	3.2	27
114	The Pharmacology of T Cell Therapies. Molecular Therapy - Methods and Clinical Development, 2018, 8, 210-221.	4.1	78
115	CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma. Oral Oncology, 2018, 78, 145-150.	1.5	39
116	TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor <i>CD274</i> (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncolmmunology, 2018, 7, e1442999.	4.6	53
117	Mitochondrial Morphological and Functional Reprogramming Following CD137 (4-1BB) Costimulation. Cancer Immunology Research, 2018, 6, 798-811.	3.4	62
118	Oncolytic viruses as engineering platforms for combination immunotherapy. Nature Reviews Cancer, 2018, 18, 419-432.	28.4	288
119	Celyad's novel CAR T-cell therapy for solid malignancies. Current Research in Translational Medicine, 2018, 66, 53-56.	1.8	21
120	The Cish SH2 domain is essential for PLC-γ1 regulation in TCR stimulated CD8+ T cells. Scientific Reports, 2018, 8, 5336.	3.3	32
121	Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo. Nature Communications, 2018, 9, 1325.	12.8	16
122	Current state of immunotherapy for glioblastoma. Nature Reviews Clinical Oncology, 2018, 15, 422-442.	27.6	873
123	Chimeric antigen receptor T cell therapy for non-Hodgkin lymphoma. Current Research in Translational Medicine, 2018, 66, 43-49.	1.8	45
124	PDâ€l Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	21.0	196
125	Continuous production process of retroviral vector for adoptive T- cell therapy. Biochemical Engineering Journal, 2018, 132, 145-151.	3.6	1
126	A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 2018, 53, 164-181.	6.6	262
127	Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncolmmunology, 2018, 7, e1433982.	4.6	38
128	Polyvalent Display of Biomolecules on Live Cells. Angewandte Chemie, 2018, 130, 6916-6920.	2.0	11
129	Cancer immunotherapy beyond immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 8.	17.0	174

#	Article	IF	CITATIONS
130	Adaptive immune cells are necessary for the enhanced therapeutic effect of sorafenib-loaded nanoparticles. Biomaterials Science, 2018, 6, 893-900.	5.4	19
131	Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. OncoImmunology, 2018, 7, e1434464.	4.6	69
132	Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. Journal of Immunology, 2018, 200, 2489-2501.	0.8	28
133	Polyvalent Display of Biomolecules on Live Cells. Angewandte Chemie - International Edition, 2018, 57, 6800-6804.	13.8	54
134	Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8, 4-13.	12.0	65
135	Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 992-997.	7.1	181
136	Enhanced Immunotherapy Based on Photodynamic Therapy for Both Primary and Lung Metastasis Tumor Eradication. ACS Nano, 2018, 12, 1978-1989.	14.6	250
138	Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. Journal of Immunotherapy, 2018, 41, 53-63.	2.4	4
139	Multifunctional Microwell Arrays for Single Cell Level Functional Analysis of Lymphocytes. Bioconjugate Chemistry, 2018, 29, 672-679.	3.6	18
140	A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity. Journal of the Chinese Medical Association, 2018, 81, 316-323.	1.4	3
141	Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1506.	6.1	33
142	Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nature Biotechnology, 2018, 36, 160-169.	17.5	271
143	Blockade of BAFF Receptor BR3 on T Cells Enhances Their Activation and Cytotoxicity. Journal of Immunotherapy, 2018, 41, 213-223.	2.4	7
144	CAR-T Cells Surface-Engineered with Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction. Cancer Immunology Research, 2018, 6, 812-824.	3.4	100
145	Shock wave-induced permeabilization of mammalian cells. Physics of Life Reviews, 2018, 26-27, 1-38.	2.8	24
146	Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide. Journal of Hematology and Oncology, 2018, 11, 44.	17.0	32
147	miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. Journal of Hematology and Oncology, 2018, 11, 58.	17.0	98
148	Correlates of immune and clinical activity of novel cancer vaccines. Seminars in Immunology, 2018, 39, 119-136.	5.6	54

#	Article	IF	CITATIONS
149	PD-L1–Independent Mechanisms Control the Resistance of Melanoma to CD4+ T Cell Adoptive Immunotherapy. Journal of Immunology, 2018, 200, 3304-3311.	0.8	6
150	Excessive activated T-cell proliferation after anti-CD19 CAR T-cell therapy. Gene Therapy, 2018, 25, 198-204.	4.5	8
151	Paramunity-inducing Factors (PINDs) in dendritic cell (DC) cultures lead to impaired antileukemic functionality of DC-stimulated T-cells. Cellular Immunology, 2018, 328, 33-48.	3.0	2
152	Efficient Non-Viral T-Cell Engineering by <i>Sleeping Beauty</i> Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Human Gene Therapy, 2018, 29, 569-584.	2.7	35
153	Engineering Reversible Cell–Cell Interactions with Lipid Anchored Prosthetic Receptors. Bioconjugate Chemistry, 2018, 29, 1291-1301.	3.6	19
154	In Vitro Modeling of Tumor–Immune System Interaction. ACS Biomaterials Science and Engineering, 2018, 4, 314-323.	5.2	21
155	How immunotherapies are targeting the glioblastoma immune environment. Journal of Clinical Neuroscience, 2018, 47, 20-27.	1.5	8
156	STCRDab: the structural T-cell receptor database. Nucleic Acids Research, 2018, 46, D406-D412.	14.5	69
157	PD-1 pathway and its clinical application: A 20 year journey after discovery of the complete human PD - 1 gene. Gene, 2018, 638, 20-25.	2.2	87
158	Deubiquitinases A20 and CYLD modulate costimulatory signaling via CD137 (4–1BB). Oncolmmunology, 2018, 7, e1368605.	4.6	7
159	Treating hematological malignancies with cell therapy: where are we now?. Expert Opinion on Biological Therapy, 2018, 18, 65-75.	3.1	17
160	Primary T cells for mRNA-mediated immunotoxin delivery. Gene Therapy, 2018, 25, 47-53.	4.5	5
161	Targets for immunotherapy of liver cancer. Journal of Hepatology, 2018, 68, 157-166.	3.7	129
162	Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology, 2018, 18, 168-182.	22.7	736
163	Cellular Bioparticulates with Therapeutics for Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 702-708.	3.6	17
164	Metallic nanoparticles for cancer immunotherapy. Materials Today, 2018, 21, 673-685.	14.2	164
166	Cellular Therapy. Current Cancer Research, 2018, , 133-184.	0.2	0
167	CAR T-Cell Therapies in Glioblastoma: A First Look. Clinical Cancer Research, 2018, 24, 535-540.	7.0	103

#	Article	IF	CITATIONS
168	In-vitro blockade of the CD4 receptor co-signal in antigen-specific T-cell stimulation cultures induces the outgrowth of potent CD4 independent T-cell effectors. Journal of Immunological Methods, 2018, 454, 80-85.	1.4	1
169	Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor. Cancer Immunology, Immunotherapy, 2018, 67, 393-401.	4.2	15
170	CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8+ T Cell–Relevant Genes. Cancer Immunology Research, 2018, 6, 69-78.	3.4	34
171	A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget, 2018, 9, 17608-17619.	1.8	55
173	Publications Are Not the Finish Line: Focusing on Societal Rather Than Publication Impact. Frontiers in Medicine, 2018, 5, 314.	2.6	7
174	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	14.9	112
175	Vaccines Developed for Cancer Immunotherapy. , 2018, , .		0
177	Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Science China Life Sciences, 2018, 61, 1320-1332.	4.9	11
178	Immunotherapy for non-small cell lung cancers: biomarkers for predicting responses and strategies to overcome resistance. BMC Cancer, 2018, 18, 1082.	2.6	42
179	PD-1/PD-L1 pathway and angiogenesis dual recognizable nanoparticles for enhancing chemotherapy of malignant cancer. Drug Delivery, 2018, 25, 1746-1755.	5.7	25
180	How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nature Biomedical Engineering, 2018, 2, 797-809.	22.5	99
181	Mesothelin‑targeted second generation CAR‑T cells inhibit growth of mesothelin‑expressing tumors in⁄2vivo. Experimental and Therapeutic Medicine, 2019, 17, 739-747.	1.8	21
182	Overcoming Target Driven Fratricide for T Cell Therapy. Frontiers in Immunology, 2018, 9, 2940.	4.8	26
183	CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 2018, 9, 2740.	4.8	58
184	Flow cytometric assays for identity, safety and potency of cellular therapies. Cytometry Part B - Clinical Cytometry, 2018, 94, 725-735.	1.5	13
185	Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Frontiers in Immunology, 2018, 9, 2373.	4.8	54
186	Chimeric antigen receptor modified Tâ€cells for cancer treatment. Chronic Diseases and Translational Medicine, 2018, 4, 225-243.	1.2	10
187	Therapeutic Approaches Targeting PAX3-FOXO1 and Its Regulatory and Transcriptional Pathways in Rhabdomyosarcoma. Molecules, 2018, 23, 2798.	3.8	45

#	Article	IF	CITATIONS
188	Non-Viral Transfection of Human T Lymphocytes. Processes, 2018, 6, 188.	2.8	18
189	Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology, 2018, 3, 179-185.	3.7	23
190	Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3, 217-228.	3.7	20
191	Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. , 2018, 6, 105.		75
193	Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid and Interface Science, 2018, 38, 135-157.	7.4	35
194	Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight, 2018, 3, .	5.0	150
196	<scp>NKT</scp> cells — New players in <scp>CAR</scp> cell immunotherapy?. European Journal of Haematology, 2018, 101, 750-757.	2.2	33
197	Trial watch: Peptide-based vaccines in anticancer therapy. Oncolmmunology, 2018, 7, e1511506.	4.6	121
198	Computational Model of Chimeric Antigen Receptors Explains Site-Specific Phosphorylation Kinetics. Biophysical Journal, 2018, 115, 1116-1129.	0.5	35
199	Effects of CSF1R-targeted chimeric antigen receptor-modified NK92MI & T cells on tumor-associated macrophages. Immunotherapy, 2018, 10, 935-949.	2.0	30
200	Chimeric antigen receptor T-cell therapy hits the market. Immunotherapy, 2018, 10, 911-912.	2.0	2
201	Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists. Blood Advances, 2018, 2, 210-223.	5.2	87
202	Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Advances, 2018, 2, 165-176.	5.2	42
203	Sequential allogeneic and autologous CAR-T–cell therapy to treat an immune-compromised leukemic patient. Blood Advances, 2018, 2, 1691-1695.	5.2	31
204	Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5467-E5476.	7.1	60
205	The role of the common gamma-chain family cytokines in γδT cell-based anti-cancer immunotherapy. Cytokine and Growth Factor Reviews, 2018, 41, 54-64.	7.2	16
206	Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in Immunology, 2018, 39, 624-631.	6.8	153
207	The current status of immunotherapy for cervical cancer. Reports of Practical Oncology and Radiotherapy, 2018, 23, 580-588.	0.6	39

#	Article	IF	CITATIONS
209	Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nature Reviews Molecular Cell Biology, 2018, 19, 507-525.	37.0	205
210	Chimeric Antigen Receptor T-Cells (CAR T-Cells) for Cancer Immunotherapy – Moving Target for Industry?. Pharmaceutical Research, 2018, 35, 152.	3.5	77
211	The potential of nanoparticle vaccines as a treatment for cancer. Molecular Immunology, 2018, 98, 2-7.	2.2	27
212	Artificial 3D Culture Systems for T Cell Expansion. ACS Omega, 2018, 3, 5273-5280.	3.5	28
213	Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Seminars in Cancer Biology, 2018, 53, 90-109.	9.6	62
214	Generation and application of human inducedâ€stem cell memory T cells for adoptive immunotherapy. Cancer Science, 2018, 109, 2130-2140.	3.9	33
215	Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunological Reviews, 2018, 284, 132-147.	6.0	33
216	Growth Factor Signaling Pathways and Targeted Therapy. , 2018, , 305-322.		0
217	Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell, 2018, 23, 181-192.e5.	11.1	634
218	Chimeric antigen receptors that trigger phagocytosis. ELife, 2018, 7, .	6.0	210
219	Cytokine release syndrome. , 2018, 6, 56.		1,055
220	BioBitsâ,,¢ Explorer: A modular synthetic biology education kit. Science Advances, 2018, 4, eaat5105.		
		10.3	113
221	Immunotherapy for Gastric Cancer: Time for a Personalized Approach?. International Journal of Molecular Sciences, 2018, 19, 1602.	10.3 4.1	113 48
221 222	Immunotherapy for Gastric Cancer: Time for a Personalized Approach?. International Journal of		
	Immunotherapy for Gastric Cancer: Time for a Personalized Approach?. International Journal of Molecular Sciences, 2018, 19, 1602. The Effect of Immunosuppressive Drugs on MDSCs in Transplantation. Journal of Immunology	4.1	48
222	Immunotherapy for Gastric Cancer: Time for a Personalized Approach?. International Journal of Molecular Sciences, 2018, 19, 1602. The Effect of Immunosuppressive Drugs on MDSCs in Transplantation. Journal of Immunology Research, 2018, 2018, 1-16. Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional	4.1 2.2	48 18
222 223	Immunotherapy for Gastric Cancer: Time for a Personalized Approach?. International Journal of Molecular Sciences, 2018, 19, 1602. The Effect of Immunosuppressive Drugs on MDSCs in Transplantation. Journal of Immunology Research, 2018, 2018, 1-16. Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional Materials, 2018, 28, 1802540. CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology,	4.1 2.2 14.9	48 18 92

#	Article	IF	CITATIONS
227	Construction of an anti‑programmed death‑ligand 1 chimeric antigen receptor and determination of its antitumor function with transduced cells. Oncology Letters, 2018, 16, 157-166.	1.8	9
228	CAR T cells for infection, autoimmunity and allotransplantation. Nature Reviews Immunology, 2018, 18, 605-616.	22.7	173
229	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	47.7	490
230	The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nature Communications, 2018, 9, 3049.	12.8	82
231	Embryonic Fibroblasts Promote Antitumor Cytotoxic Effects of CD8+ T Cells. Frontiers in Immunology, 2018, 9, 685.	4.8	3
232	The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer. Frontiers in Immunology, 2018, 9, 746.	4.8	31
233	Expansion and Antitumor Cytotoxicity of T-Cells Are Augmented by Substrate-Bound CCL21 and Intercellular Adhesion Molecule 1. Frontiers in Immunology, 2018, 9, 1303.	4.8	18
234	Influence of various medium environment to in vitro human T cell culture. In Vitro Cellular and Developmental Biology - Animal, 2018, 54, 559-566.	1.5	24
235	Versatile CAR T-cells for cancer immunotherapy. Wspolczesna Onkologia, 2018, 2018, 73-80.	1.4	13
236	IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Research, 2018, 78, 5243-5258.	0.9	119
237	The research significance of concomitant use of CAR-CD138-NK and CAR-CD19-NK to target multiple myelomas. European Journal of Inflammation, 2018, 16, 205873921878896.	0.5	7
238	Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800490.	7.6	84
239	HDACi Delivery Reprograms Tumor-Infiltrating Myeloid Cells to Eliminate Antigen-Loss Variants. Cell Reports, 2018, 24, 642-654.	6.4	19
240	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	3.4	189
241	Safety Strategies of Genetically Engineered T Cells in Cancer Immunotherapy. Current Pharmaceutical Design, 2018, 24, 78-83.	1.9	7
242	CIMT 2018: Pushing frontiers in cancer immunotherapy — Report on the 16th Annual Meeting of the Association for Cancer Immunotherapy. Human Vaccines and Immunotherapeutics, 2018, 14, 2864-2873.	3.3	1
243	"Therapeutic applications of the â€~NPGP' family of viral 2As― Reviews in Medical Virology, 2018, 28, e2001.	8.3	13
244	A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood, 2018, 132, 1911-1921.	1.4	44

#	Article	IF	CITATIONS
245	Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy. Journal of Hematology and Oncology, 2018, 11, 102.	17.0	63
246	Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Frontiers in Immunology, 2018, 9, 1717.	4.8	51
247	A method for expansion of T cells from cynomolgus monkey (Macaca fascicularis). In Vitro Cellular and Developmental Biology - Animal, 2018, 54, 549-554.	1.5	0
248	CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30+ and CD30â ^{~,} Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions. Cancer Immunology Research, 2018, 6, 1274-1287.	3.4	53
249	Engineering Platforms for T Cell Modulation. International Review of Cell and Molecular Biology, 2018, 341, 277-362.	3.2	8
250	Imaging T Cell Dynamics and Function Using PET and Human Nuclear Reporter Genes. Methods in Molecular Biology, 2018, 1790, 165-180.	0.9	4
251	PET Imaging of T Cells: Target Identification and Feasibility Assessment. ChemMedChem, 2018, 13, 1566-1579.	3.2	1
252	Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nature Chemical Biology, 2018, 14, 112-117.	8.0	52
253	Driving cars to the clinic for solid tumors. Gene Therapy, 2018, 25, 165-175.	4.5	67
254	The promise and challenges of immune agonist antibody development in cancer. Nature Reviews Drug Discovery, 2018, 17, 509-527.	46.4	270
255	Chimeric antigen receptor Tâ€ʿcell therapy—aÂhematological success story. Memo - Magazine of European Medical Oncology, 2018, 11, 116-121.	0.5	6
256	Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5859-E5866.	7.1	162
257	Hematopoietic Stem Cell Collections and Cellular Therapies. , 2018, , 151-167.		0
258	Cancer immunotherapy: Adoptive cell therapies, cytokine-related toxicities, and the kidneys. Journal of Onco-Nephrology, 2019, 3, 131-143.	0.6	0
259	Conjugated CAR T cell one step beyond conventional CAR T cell for a promising cancer immunotherapy. Cellular Immunology, 2019, 345, 103963.	3.0	9
260	Morphological lymphocytic reaction, patient prognosis and PD-1 expression after surgical resection for oesophageal cancer. British Journal of Surgery, 2019, 106, 1352-1361.	0.3	13
262	Induced pluripotent stem cells as a novel cancer vaccine. Expert Opinion on Biological Therapy, 2019, 19, 1191-1197.	3.1	10
263	Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Molecular Cancer, 2019, 18, 125.	19.2	201

#	Article	IF	CITATIONS
264	Systematic Immunotherapy Target Discovery Using Genome-Scale InÂVivo CRISPR Screens in CD8ÂT Cells. Cell, 2019, 178, 1189-1204.e23.	28.9	189
265	The Role of Checkpoint Inhibitors and Cytokines in Adoptive Cell-Based Cancer Immunotherapy with Genetically Modified T Cells. Biochemistry (Moscow), 2019, 84, 695-710.	1.5	5
266	Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death and Disease, 2019, 10, 540.	6.3	339
267	Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clinical Cancer Research, 2019, 25, 5890-5900.	7.0	31
268	CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 2019, 290, 60-84.	6.0	151
269	Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale, 2019, 11, 16476-16487.	5.6	31
270	A strategy to protect off-the-shelf cell therapy products using virus-specific T-cells engineered to eliminate alloreactive T-cells. Journal of Translational Medicine, 2019, 17, 240.	4.4	18
271	The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 1574.	4.8	45
272	Gene editing: Towards the third generation of adoptive T-cell transfer therapies. Immuno-Oncology Technology, 2019, 1, 19-26.	0.3	7
273	Immunotherapy in Ovarian Cancer. Surgical Oncology Clinics of North America, 2019, 28, 447-464.	1.5	27
274	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanced Functional Materials, 2019, 29, 1903441.	14.9	41
275	Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Human Gene Therapy, 2019, 30, 1477-1493.	2.7	24
276	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chemical Society Reviews, 2019, 48, 5506-5526.	38.1	209
277	Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies. International Journal of Molecular Sciences, 2019, 20, 5010.	4.1	35
278	Advances in Engineering Cells for Cancer Immunotherapy. Theranostics, 2019, 9, 7889-7905.	10.0	44
279	Recent Advances in CAR-T Cell Therapy for Non-Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 751-757.	0.4	19
280	CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Frontiers in Immunology, 2019, 10, 2711.	4.8	76
281	Development of molecular and pharmacological switches for chimeric antigen receptor T cells. Experimental Hematology and Oncology, 2019, 8, 27.	5.0	7

#	Article	IF	CITATIONS
282	Beta-Adrenergic Signaling in Tumor Immunology and Immunotherapy. Critical Reviews in Immunology, 2019, 39, 93-103.	0.5	16
284	Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes and Development, 2019, 33, 1657-1672.	5.9	25
285	Interplay between dendritic cells and cancer cells. International Review of Cell and Molecular Biology, 2019, 348, 179-215.	3.2	37
286	Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. International Journal of Pharmaceutics, 2019, 570, 118636.	5.2	24
287	Genetically engineered T cells for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2019, 4, 35.	17.1	153
288	Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. Crystals, 2019, 9, 411.	2.2	28
289	In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials, 2019, 224, 119490.	11.4	59
290	Harnessing T-cell activity against prostate cancer: A therapeutic microparticulate oral cancer vaccine. Vaccine, 2019, 37, 6085-6092.	3.8	14
291	Adoptive cell transfer therapy for hepatocellular carcinoma. Frontiers of Medicine, 2019, 13, 3-11.	3.4	45
292	Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Frontiers in Immunology, 2019, 10, 218.	4.8	43
293	Cold Tumors: A Therapeutic Challenge for Immunotherapy. Frontiers in Immunology, 2019, 10, 168.	4.8	733
294	Chimeric antigen receptor T cell targeting B cell maturation antigen immunotherapy is promising for multiple myeloma. Annals of Hematology, 2019, 98, 813-822.	1.8	26
295	Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering, 2019, 5, 122-131.	6.7	37
296	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	6.1	56
297	Critical Care Management of Chimeric Antigen Receptor T Cell–related Toxicity. Be Aware and Prepared. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 20-23.	5.6	34
298	Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomaterials Science, 2019, 7, 1345-1357.	5.4	58
299	Carbonic Anhydrase as Drug Target. , 2019, , .		8
300	Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today, 2019, 27, 28-47.	11.9	34

#	Article	IF	Citations
301	Cell sorting actuated by a microfluidic inertial vortex. Lab on A Chip, 2019, 19, 2456-2465.	6.0	25
302	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	11.2	255
303	Chimeric antigen receptor preparation from hybridoma to T-cell expression. Antibody Therapeutics, 2019, 2, 56-63.	1.9	5
304	In Situ Modification of the Tumor Cell Surface with Immunomodulating Nanoparticles for Effective Suppression of Tumor Growth in Mice. Advanced Materials, 2019, 31, e1902542.	21.0	58
305	The road map of cancer precision medicine with the innovation of advanced cancer detection technology and personalized immunotherapy. Japanese Journal of Clinical Oncology, 2019, 49, 596-603.	1.3	10
306	Novel Therapies in Paediatric NHL. , 2019, , 315-335.		0
307	T cell immunotherapy enhanced by designer biomaterials. Biomaterials, 2019, 217, 119265.	11.4	40
308	Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Advances, 2019, 3, 1230-1243.	5.2	43
309	Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomaterialia, 2019, 94, 82-96.	8.3	40
310	Turning the Tide Against Regulatory T Cells. Frontiers in Oncology, 2019, 9, 279.	2.8	47
311	Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity?. Cancer Research, 2019, 79, 2447-2456.	0.9	41
312	Glial injury in neurotoxicity after pediatric CD19â€directed chimeric antigen receptor T cell therapy. Annals of Neurology, 2019, 86, 42-54.	5.3	124
313	Current Status of Immunotherapies for Treating Pancreatic Cancer. Current Oncology Reports, 2019, 21, 60.	4.0	38
314	CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Therapeutic Advances in Hematology, 2019, 10, 204062071984158.	2.5	160
315	Advances in drug delivery for post-surgical cancer treatment. Biomaterials, 2019, 219, 119182.	11.4	129
316	Mechanisms of resistance to CAR T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 372-385.	27.6	518
317	Biomimetic Glyconanoparticle Vaccine for Cancer Immunotherapy. ACS Nano, 2019, 13, 2936-2947.	14.6	42
318	The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Scientific Reports, 2019, 9, 3417.	3.3	74

#	Article	IF	CITATIONS
319	In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. Journal of Visualized Experiments, 2019, , .	0.3	19
320	Methods to manufacture regulatory T cells for cell therapy. Clinical and Experimental Immunology, 2019, 197, 52-63.	2.6	76
321	Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: Combination and opportunity. International Immunopharmacology, 2019, 70, 498-503.	3.8	21
322	Cancer Vaccines: Steering T Cells Down the Right Path to Eradicate Tumors. Cancer Discovery, 2019, 9, 476-481.	9.4	48
323	Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS Applied Materials & Interfaces, 2019, 11, 12357-12366.	8.0	35
324	SETD2 mutations confer chemoresistance in acute myeloid leukemia partly through altered cell cycle checkpoints. Leukemia, 2019, 33, 2585-2598.	7.2	29
325	Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 2019, 18, 553-566.	46.4	287
326	Understanding the Dynamics of T-Cell Activation in Health and Disease Through the Lens of Computational Modeling. JCO Clinical Cancer Informatics, 2019, 3, 1-8.	2.1	27
327	From synthetic biology to human therapy: engineered mammalian cells. Current Opinion in Biotechnology, 2019, 58, 108-116.	6.6	34
328	Computational Redesign of PD-1 Interface for PD-L1 Ligand Selectivity. Structure, 2019, 27, 829-836.e3.	3.3	13
329	Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1801320.	7.6	43
330	Emerging Nanoâ€∤Microapproaches for Cancer Immunotherapy. Advanced Science, 2019, 6, 1801847.	11.2	136
331	T cell engineered with a novel nanobodyâ€based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life, 2019, 71, 1259-1267.	3.4	45
332	Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. Journal of Hematology and Oncology, 2019, 12, 18.	17.0	79
333	Clinical care of chimeric antigen receptor T-cell patients and managing immune-related adverse effects in the ambulatory and hospitalized setting: a review. Future Oncology, 2019, 15, 4235-4246.	2.4	5
334	Long-term in vivo microscopy of CAR T cell dynamics during eradication of CNS lymphoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24275-24284.	7.1	67
335	Nursing management for adult recipients of CAR T-19 therapy. Nurs Crit Care (Ambler), 2019, 14, 31-36.	0.2	1
336	Delivery strategies of cancer immunotherapy: recent advances and future perspectives. Journal of Hematology and Oncology, 2019, 12, 126.	17.0	96

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
337	Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. , 2019, 7, 330.		18
338	Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9, 7981-8000.	10.0	106
339	Orthogonal regulation of DNA nanostructure self-assembly and disassembly using antibodies. Nature Communications, 2019, 10, 5509.	12.8	63
340	Development of a Human Photoacoustic Imaging Reporter Gene Using the Clinical Dye Indocyanine Green. Radiology Imaging Cancer, 2019, 1, e190035.	1.6	15
341	CAR T Cell Therapy for Hematological Malignancies. Current Medical Science, 2019, 39, 874-882.	1.8	22
342	CARâ€₹ Cell Therapy in Diffuse Large B Cell Lymphoma: Hype and Hope. HemaSphere, 2019, 3, e185.	2.7	33
343	Longitudinal Visualization of Viable Cancer Cell Intratumoral Distribution in Mouse Models Using Oatp1a1-Enhanced Magnetic Resonance Imaging. Investigative Radiology, 2019, 54, 302-311.	6.2	28
344	Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics, 2019, 9, 126-151.	10.0	128
345	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Advanced Functional Materials, 2019, 29, 1806087.	14.9	21
346	Leveraging TCR Affinity in Adoptive Immunotherapy against Shared Tumor/Self-Antigens. Cancer Immunology Research, 2019, 7, 40-49.	3.4	17
347	Biomimetic Nanoparticle Vaccines for Cancer Therapy. Advanced Biology, 2019, 3, e1800219.	3.0	84
348	NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunology Research, 2019, 7, 363-375.	3.4	180
349	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196.	46.4	1,562
350	T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy, 2019, 21, 341-357.	0.7	10
351	HTiP: High-Throughput Immunomodulator Phenotypic Screening Platform to Reveal IAP Antagonists as Anti-cancer Immune Enhancers. Cell Chemical Biology, 2019, 26, 331-339.e3.	5.2	33
352	CRISPR–Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell International, 2019, 19, 12.	4.1	46
353	Cancer diagnosis and immunotherapy in the age of CRISPR. Genes Chromosomes and Cancer, 2019, 58, 233-243.	2.8	4
354	Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. ChemBioChem, 2019, 20, 451-461.	2.6	92

#	Article	IF	CITATIONS
356	<i>miRâ€155</i> expression in antitumor immunity: The higher the better?. Genes Chromosomes and Cancer, 2019, 58, 208-218.	2.8	29
357	Computational Methods for Identification of T Cell Neoepitopes in Tumors. Methods in Molecular Biology, 2019, 1878, 157-172.	0.9	16
358	Predictive and therapeutic biomarkers in chimeric antigen receptor Tâ€cell therapy: A clinical perspective. Journal of Cellular Physiology, 2019, 234, 5827-5841.	4.1	21
359	Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clinical Cancer Research, 2019, 25, 1036-1049.	7.0	41
360	Multivalent Ligand Binding to Cell Membrane Antigens: Defining the Interplay of Affinity, Valency, and Expression Density. Journal of the American Chemical Society, 2019, 141, 251-261.	13.7	59
361	Cell-based immunotherapy approaches for multiple myeloma. British Journal of Cancer, 2019, 120, 38-44.	6.4	30
362	CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor–Engineered T Cells. Cancer Research, 2019, 79, 663-675.	0.9	62
363	The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials, 2019, 198, 180-193.	11.4	110
364	Genetic and phenotypic difference in CD8 ⁺ T cell exhaustion between chronic hepatitis B infection and hepatocellular carcinoma. Journal of Medical Genetics, 2019, 56, 18-21.	3.2	26
365	Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Advanced Drug Delivery Reviews, 2019, 141, 3-22.	13.7	44
366	Biomimetic Nanotechnology toward Personalized Vaccines. Advanced Materials, 2020, 32, e1901255.	21.0	200
367	Advances of functional nanomaterials for cancer immunotherapeutic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1574.	6.1	10
368	Single peptides and combination modalities for triple negative breast cancer. Journal of Cellular Physiology, 2020, 235, 4089-4108.	4.1	8
369	Tumor microenvironment responsive drug delivery systems. Asian Journal of Pharmaceutical Sciences, 2020, 15, 416-448.	9.1	114
370	Smart Injectable Hydrogels for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 1902785.	14.9	182
371	Emerging CAR T cell therapies: clinical landscape and patent technological routes. Human Vaccines and Immunotherapeutics, 2020, 16, 1424-1433.	3.3	10
372	Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjugate Chemistry, 2020, 31, 303-314.	3.6	95
373	Engineering Molecular Machines for the Control of Cellular Functions for Diagnostics and Therapeutics. Advanced Functional Materials, 2020, 30, 1904345.	14.9	2

#	Article	IF	CITATIONS
374	Long-term surviving cancer patients as a source of therapeutic TCR. Cancer Immunology, Immunotherapy, 2020, 69, 859-865.	4.2	16
376	Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319, 246-261.	9.9	78
377	Important aspects of T ell collection by apheresis for manufacturing chimeric antigen receptor T cells. Advances in Cell and Gene Therapy, 2020, 3, e75.	0.9	6
378	Synthetic 3D scaffolds for cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 1-8.	6.6	6
379	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€ŧumour immunity and <scp>CAR</scp> Tâ€cell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	7.8	79
380	Sheddable Prodrug Vesicles Combating Adaptive Immune Resistance for Improved Photodynamic Immunotherapy of Cancer. Nano Letters, 2020, 20, 353-362.	9.1	162
381	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.9	2
382	Activating Macrophageâ€Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 2020, 32, e2004853.	21.0	146
383	CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials, 2020, 259, 120313.	11.4	43
384	A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Molecular Therapy, 2020, 28, 2564-2576.	8.2	14
385	Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Frontiers in Immunology, 2020, 11, 577869.	4.8	147
386	Biomineralized Bacterial Outer Membrane Vesicles Potentiate Safe and Efficient Tumor Microenvironment Reprogramming for Anticancer Therapy. Advanced Materials, 2020, 32, e2002085.	21.0	118
387	A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chemical Biology, 2020, 15, 2299-2310.	3.4	27
388	Immunotherapy with CAR-T cells in paediatric haematology-oncology. Anales De PediatrÃa (English) Tj ETQq1 1 C).784314 r 0.2	gBT /Overloc
389	Engineering Next-Generation CAR-T Cells for Better Toxicity Management. International Journal of Molecular Sciences, 2020, 21, 8620.	4.1	38
390	A prognostic risk model based on immuneâ€related genes predicts overall survival of patients with hepatocellular carcinoma. Health Science Reports, 2020, 3, e202.	1.5	2
391	Strategies to Enhance the Efficacy of T-Cell Therapy for Central Nervous System Tumors. Frontiers in Immunology, 2020, 11, 599253.	4.8	11
392	PMNâ€MDSCsâ€induced accumulation of CD8+CD39+ T cells predicts the efficacy of chemotherapy in esophageal squamous cell carcinoma. Clinical and Translational Medicine, 2020, 10, e232.	4.0	5

#	Article	IF	CITATIONS
393	Mechanical Immunoengineering of T cells for Therapeutic Applications. Accounts of Chemical Research, 2020, 53, 2777-2790.	15.6	24
394	Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines, 2020, 8, 733.	4.4	10
395	Chimeric antigen receptor T-cell therapy beyond cancer: current practice and future prospects. Immunotherapy, 2020, 12, 1021-1034.	2.0	3
396	Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδT and NK Cells. Cells, 2020, 9, 1757.	4.1	53
397	Interactive Effects of PD-L1 Expression in Tumor and Immune Cells on Prognosis of Esophageal Squamous Cell Carcinoma: A One-Center Retrospective Cohort Study. OncoTargets and Therapy, 2020, Volume 13, 6565-6572.	2.0	4
398	The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduction and Targeted Therapy, 2020, 5, 134.	17.1	84
399	Advances in local and systemic drug delivery systems for post-surgical cancer treatment. Journal of Materials Chemistry B, 2020, 8, 8507-8518.	5.8	30
400	Inflammatory Cells in Diffuse Large B Cell Lymphoma. Journal of Clinical Medicine, 2020, 9, 2418.	2.4	29
401	Characterization of CAR T cell expansion and cytotoxic potential during Ex Vivo manufacturing using image-based cytometry. Journal of Immunological Methods, 2020, 484-485, 112830.	1.4	6
402	A brief review concerning Chimeric Antigen Receptors T cell therapy. Journal of Cancer, 2020, 11, 5424-5431.	2.5	4
403	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 42-62.	13.7	43
404	Redirecting Vesicular Transport to Improve Nonviral Delivery of Molecular Cargo. Advanced Biology, 2020, 4, e2000059.	3.0	5
405	Brief Overview of Chimeric Antigen Receptor–Mediated Immunotherapy for Glioblastoma Multiforme. , 2020, , 507-513.		0
406	Biomaterials as Local Niches for Immunomodulation. Accounts of Chemical Research, 2020, 53, 1749-1760.	15.6	73
407	Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Advanced Science, 2020, 7, 2001447.	11.2	30
408	Identification of Targets to Redirect CAR T Cells in Glioblastoma and Colorectal Cancer: An Arduous Venture. Frontiers in Immunology, 2020, 11, 565631.	4.8	24
409	Advances in non and minimal-invasive transcutaneous delivery of immunotherapy for cancer treatment. Biomedicine and Pharmacotherapy, 2020, 131, 110753.	5.6	4
410	Persistent STAT5 activation reprograms the epigenetic landscape in CD4 ⁺ T cells to drive polyfunctionality and antitumor immunity. Science Immunology, 2020, 5, .	11.9	40

#	Article	IF	CITATIONS
411	Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. ACS Applied Materials & Interfaces, 2020, 12, 43456-43465.	8.0	49
412	Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science Translational Medicine, 2020, 12, .	12.4	140
413	Tuberculosis–Cancer Parallels in Immune Response Regulation. International Journal of Molecular Sciences, 2020, 21, 6136.	4.1	9
414	Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies. Journal of Allergy and Clinical Immunology, 2020, 146, 940-948.	2.9	78
415	Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. Journal of Clinical Medicine, 2020, 9, 2967.	2.4	23
416	Current Perspectives on Therapies, Including Drug Delivery Systems, for Managing Glioblastoma Multiforme. ACS Chemical Neuroscience, 2020, 11, 2962-2977.	3.5	15
417	The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Communication and Signaling, 2020, 18, 134.	6.5	28
419	Engineering CAR T Cells to Target the HIV Reservoir. Frontiers in Cellular and Infection Microbiology, 2020, 10, 410.	3.9	29
420	Arming Anti-EGFRvIII CAR-T With TGFβ Trap Improves Antitumor Efficacy in Glioma Mouse Models. Frontiers in Oncology, 2020, 10, 1117.	2.8	19
421	The update of chimeric antigen receptor-T cells therapy in glioblastoma. Journal of the Chinese Medical Association, 2020, 83, 442-445.	1.4	5
422	Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2ÂT Cell Responses against Human Solid Tumor Xenografts. Molecular Therapy - Oncolytics, 2020, 17, 421-430.	4.4	32
423	Advances in CAR T Therapy for Hematologic Malignancies. Pharmacotherapy, 2020, 40, 741-755.	2.6	11
424	High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioactive Materials, 2020, 5, 624-635.	15.6	34
425	Enhancing the Efficacy of CAR T Cells in the Tumor Microenvironment of Pancreatic Cancer. Cancers, 2020, 12, 1389.	3.7	25
426	Influence of Innate Immunity on Cancer Cell Stemness. International Journal of Molecular Sciences, 2020, 21, 3352.	4.1	20
427	Mimetic Heat Shock Protein Mediated Immune Process to Enhance Cancer Immunotherapy. Nano Letters, 2020, 20, 4454-4463.	9.1	58
428	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	4.1	15
429	Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transplantation, 2020, 55, 1706-1715.	2.4	66

#	Article	IF	Citations
430	Engineered biomaterials for cancer immunotherapy. MedComm, 2020, 1, 35-46.	7.2	52
431	Chimeric Antigen Receptor T Cell Therapy Comes to Clinical Practice. Current Oncology, 2020, 27, 115-123.	2.2	26
432	Scaffoldâ€Mediated Static Transduction of T Cells for CARâ€∓ Cell Therapy. Advanced Healthcare Materials, 2020, 9, e2000275.	7.6	15
433	Genetically modified immune cells targeting tumor antigens. , 2020, 214, 107603.		17
434	Experimental treatment of colorectal cancer in mice with human T cells electroporated with NKG2D RNA CAR. Immunotherapy, 2020, 12, 733-748.	2.0	10
435	Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Advanced Drug Delivery Reviews, 2020, 156, 65-79.	13.7	15
436	The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Frontiers in Immunology, 2020, 11, 888.	4.8	45
437	HBV induced hepatocellular carcinoma and related potential immunotherapy. Pharmacological Research, 2020, 159, 104992.	7.1	57
438	Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm, 2020, 1, 47-68.	7.2	93
439	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	150
440	Next-generation stem cells — ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery, 2020, 19, 463-479.	46.4	161
441	Modeling immune cell behavior across scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1484.	6.6	24
442	Glycoengineering of Natural Killer Cells with CD22 Ligands for Enhanced Anticancer Immunotherapy. ACS Central Science, 2020, 6, 382-389.	11.3	49
443	Adaptive Nanoparticle Platforms for High Throughput Expansion and Detection of Antigen-Specific T cells. Nano Letters, 2020, 20, 6289-6298.	9.1	16
444	Pre-existing inflammatory immune microenvironment predicts the clinical response of vulvar high-grade squamous intraepithelial lesions to therapeutic HPV16 vaccination. , 2020, 8, e000563.		23
445	Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Science Advances, 2020, 6, eaba8564.	10.3	66
446	RORα Regulates Cholesterol Metabolism of CD8+ T Cells for Anticancer Immunity. Cancers, 2020, 12, 1733.	3.7	25
447	CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 579-591.	3.1	37

#	Article	IF	Citations
448	Bidirectional Crosstalk Between Cancer Stem Cells and Immune Cell Subsets. Frontiers in Immunology, 2020, 11, 140.	4.8	69
450	Advanced biomaterials for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 911-927.	6.1	62
451	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
452	STAT3 Inhibits CD103+ cDC1 Vaccine Efficacy in Murine Breast Cancer. Cancers, 2020, 12, 128.	3.7	14
453	Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjugate Chemistry, 2020, 31, 404-415.	3.6	31
454	Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Letters, 2020, 20, 1578-1589.	9.1	299
455	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	3.1	16
456	<p>Self-Assembled Nanoparticles Prepared from Low-Molecular-Weight PEI and Low-Generation PAMAM for EGFRvIII-Chimeric Antigen Receptor Gene Loading and T-Cell Transient Modification</p> . International Journal of Nanomedicine, 2020, Volume 15, 483-495.	6.7	32
457	Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clinical and Translational Oncology, 2020, 22, 1923-1937.	2.4	14
458	Blood components from pluripotent stem cells. , 2020, , 765-784.		0
459	Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjugate Chemistry, 2020, 31, 1268-1278.	3.6	66
460	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	5.4	22
461	Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103 ⁺ conventional dendritic cells. , 2020, 8, e000474.		57
462	Organoid Models of Glioblastoma to Study Brain Tumor Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 220.	3.7	38
463	Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells, 2020, 9, 998.	4.1	64
464	Preclinical Studies of the Off-Target Reactivity of AFP158-Specific TCR Engineered T Cells. Frontiers in Immunology, 2020, 11, 607.	4.8	17
465	Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell, 2020, 181, 728-744.e21.	28.9	131
466	Dissecting the Tumor–Immune Landscape in Chimeric Antigen Receptor T-cell Therapy: Key Challenges and Opportunities for a Systems Immunology Approach. Clinical Cancer Research, 2020, 26, 3505-3513.	7.0	18

#	Article	IF	CITATIONS
467	Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma. Journal of Materials Chemistry B, 2020, 8, 4648-4659.	5.8	56
468	Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135, 713-723.	1.4	123
469	Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Science Bulletin, 2020, 65, 1489-1504.	9.0	53
470	T-cell–engaging Therapy for Solid Tumors. Clinical Cancer Research, 2021, 27, 1595-1603.	7.0	21
471	Phthalocyanine-based photosensitizers combined with anti-PD-L1 for highly efficient photodynamic immunotherapy. Dyes and Pigments, 2021, 185, 108907.	3.7	15
472	Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochemical Engineering Journal, 2021, 167, 107868.	3.6	26
473	Regulatory T Cell Therapy Following Liver Transplantation. Liver Transplantation, 2021, 27, 264-280.	2.4	18
474	The toxicity of cell therapy: Mechanism, manifestations, and challenges. Journal of Applied Toxicology, 2021, 41, 659-667.	2.8	7
475	Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nature Biomedical Engineering, 2021, 5, 441-454.	22.5	57
476	Chimeric antigen receptor (CAR) natural killer (NK) ell therapy: leveraging the power of innate immunity. British Journal of Haematology, 2021, 193, 216-230.	2.5	61
477	Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS Applied Bio Materials, 2021, 4, 277-294.	4.6	6
478	Engineering precision therapies: lessons and motivations from the clinic. Synthetic Biology, 2021, 6, ysaa024.	2.2	5
479	CAR-T cell engineering with CCR6 exhibits superior anti-solid tumor efficacy. Science Bulletin, 2021, 66, 755-756.	9.0	3
480	Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist, 2021, 26, 231-241.	3.7	29
481	Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 2021, 264, 120410.	11.4	65
482	Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnology Progress, 2021, 37, e3070.	2.6	14
483	Chimeric Antigen Receptor beyond CAR-T Cells. Cancers, 2021, 13, 404.	3.7	29
484	Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective, Cancer Control, 2021, 28, 107327482110387	1.8	8

#	ARTICLE Tumor regression and immunity in combination therapy with anti-CEA chimeric antigen receptor T	IF	CITATIONS
485	cells and anti-CEA-IL2 immunocytokine. Oncolmmunology, 2021, 10, 1899469.	4.6	28
486	The Future of Transplantation: Hope, Investigative Discipline, and Fairness. Organ and Tissue Transplantation, 2021, , 733-740.	0.0	0
487	Cell and gene therapies—Emerging technologies and drug delivery systems for treating brain cancer. , 2021, , 431-446.		0
488	Copper Sulfide Nanoparticleâ€Redirected Macrophages for Adoptive Transfer Therapy of Melanoma. Advanced Functional Materials, 2021, 31, 2008022.	14.9	21
489	Understanding the Role of Plasticity in Glioblastoma. , 2021, , .		0
490	CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunology, Immunotherapy, 2021, 70, 2059-2071.	4.2	31
491	Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncolmmunology, 2021, 10, 1960728.	4.6	20
492	Targeting Glioblastoma: The Current State of Different Therapeutic Approaches. Current Neuropharmacology, 2021, 19, 1701-1715.	2.9	12
493	Hypothesis: Immunotherapy by Selective Convalescent Blood Engineering to Stifle Diseases like COVID-19. International Journal of Medical Sciences, 2021, 18, 3389-3394.	2.5	0
494	Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russian Journal of Bioorganic Chemistry, 2021, 47, 71-98.	1.0	5
495	Nanotechnology-enabled Chemodynamic Therapy and Immunotherapy. Current Cancer Drug Targets, 2021, 21, 545-557.	1.6	20
496	Cellular therapy for the treatment of solid tumors. Transfusion and Apheresis Science, 2021, 60, 103056.	1.0	10
499	Cell-derived vesicles for delivery of cancer immunotherapy. Exploration of Medicine, 0, , .	1.5	0
500	Cell-derived vesicles for delivery of cancer immunotherapy. Exploration of Medicine, 0, , .	1.5	1
501	Oxygen-independent free radical generation mediated by core-shell magnetic nanocomposites synergizes with immune checkpoint blockade for effective primary and metastatic tumor treatment. Nano Today, 2021, 36, 101024.	11.9	13
502	Regulatory Cell Therapy in Organ Transplantation: Achievements and Open Questions. Frontiers in Immunology, 2021, 12, 641596.	4.8	9
503	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	16.3	63
505	Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I). Brain Sciences, 2021, 11, 386.	2.3	14

#	Article	IF	CITATIONS
506	Cell Therapies in Bladder Cancer Management. International Journal of Molecular Sciences, 2021, 22, 2818.	4.1	8
507	Nanoengineered CARâ€T Biohybrids for Solid Tumor Immunotherapy with Microenvironment Photothermalâ€Remodeling Strategy. Small, 2021, 17, e2007494.	10.0	44
508	COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ, 2021, 9, e11145.	2.0	33
509	Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2002214.	7.6	19
510	Targeting the Tumor Microenvironment for Improving Therapeutic Effectiveness in Cancer Immunotherapy: Focusing on Immune Checkpoint Inhibitors and Combination Therapies. Cancers, 2021, 13, 1188.	3.7	27
511	CAR T-Cell Production Using Nonviral Approaches. Journal of Immunology Research, 2021, 2021, 1-9.	2.2	31
512	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	3.3	14
513	Shaping Functional Avidity of CAR T Cells: Affinity, Avidity, and Antigen Density That Regulate Response. Molecular Cancer Therapeutics, 2021, 20, 872-884.	4.1	26
514	High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Research, 2021, 14, 3913-3920.	10.4	11
515	Nanomedicineâ€Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Advanced Functional Materials, 2021, 31, 2011171.	14.9	84
516	Extremely High-Throughput Parallel Microfluidic Vortex-Actuated Cell Sorting. Micromachines, 2021, 12, 389.	2.9	6
517	Pharmacologic Control of CAR T Cells. International Journal of Molecular Sciences, 2021, 22, 4320.	4.1	9
518	Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells, 2021, 10, 927.	4.1	8
519	Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight. Current Molecular Medicine, 2021, 21, 221-236.	1.3	6
520	The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down-regulation of MMP-2/-9 mRNA expression. Turkish Journal of Biochemistry, 2021, 46, 549-555.	0.5	7
521	Singleâ€Domain Multiferroic Arrayâ€Addressable Terfenolâ€D (SMArT) Micromagnets for Programmable Single ell Capture and Release. Advanced Materials, 2021, 33, e2006651.	21.0	20
522	Reactions Related to CAR-T Cell Therapy. Frontiers in Immunology, 2021, 12, 663201.	4.8	54
523	Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy. Synthesis Lectures on Biomedical Engineering, 2021, 16, i-84.	0.1	0

#	Article	IF	CITATIONS
524	Chimeric CTLA4-CD28-CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86–Positive B Cell Malignancies. Frontiers in Immunology, 2021, 12, 642528.	4.8	10
525	Immune Landscape of Thyroid Cancers: New Insights. Frontiers in Endocrinology, 2020, 11, 637826.	3.5	30
526	Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nature Biomedical Engineering, 2021, 5, 1038-1047.	22.5	164
527	Bispecific antibodies come to the aid of cancer immunotherapy. Molecular Oncology, 2021, 15, 1759-1763.	4.6	3
528	Generation of highly proliferative, rejuvenated cytotoxic TÂcell clones through pluripotency reprogramming for adoptive immunotherapy. Molecular Therapy, 2021, 29, 3027-3041.	8.2	19
529	A Novel off-the-Shelf Trastuzumab-Armed NK Cell Therapy (ACE1702) Using Antibody-Cell-Conjugation Technology. Cancers, 2021, 13, 2724.	3.7	19
530	Recent Advances in Engineered Materials for Immunotherapyâ€Involved Combination Cancer Therapy. Advanced Materials, 2021, 33, e2007630.	21.0	112
531	TP53-Mutated Circulating Tumor DNA for Disease Monitoring in Lymphoma Patients after CAR T Cell Therapy. Diagnostics, 2021, 11, 844.	2.6	2
532	Developing a Novel Anticancer Gold(III) Agent to Integrate Chemotherapy and Immunotherapy. Journal of Medicinal Chemistry, 2021, 64, 6777-6791.	6.4	23
533	Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers, 2021, 13, 2535.	3.7	47
534	Immunotherapy for Breast Cancer Treatment. Iranian Biomedical Journal, 2021, 25, 140-156.	0.7	2
535	Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell International, 2021, 21, 262.	4.1	31
536	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	4.3	8
537	JAK/STAT-Dependent Chimeric Antigen Receptor (CAR) Expression: A Design Benefiting From a Dual AND/OR Gate Aiming to Increase Specificity, Reduce Tumor Escape and Affect Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 638639.	4.8	7
538	Melanoma reactive TCR-modified T cells generated without activation retain a less differentiated phenotype and mediate a superior in vivo response. Scientific Reports, 2021, 11, 13327.	3.3	8
539	Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sensors, 2021, 6, 2442-2448.	7.8	32
540	Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Translational Oncology, 2021, 14, 101070.	3.7	17
541	Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Medicine, 2021, 10, 5019-5030.	2.8	13

#	Article	IF	CITATIONS
542	Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-Micro Letters, 2021, 13, 142.	27.0	16
543	New targets for CAR T therapy in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2021, 34, 101277.	1.7	9
544	Biphasic response of T cell activation to substrate stiffness. Biomaterials, 2021, 273, 120797.	11.4	20
545	Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Reports, 2021, 35, 109207.	6.4	91
546	NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 6665.	4.1	11
547	CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomedicine and Pharmacotherapy, 2021, 139, 111605.	5.6	92
548	Case Report: Successful Chimeric Antigen Receptor T Cell Therapy in Haploidentical-Allogeneic Stem Cell Transplant Patients With Post-Transplant Lymphoproliferative Disorder. Frontiers in Oncology, 2021, 11, 709370.	2.8	11
549	Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2100650.	7.6	27
550	Oncolytic Viruses for Malignant Glioma: On the Verge of Success?. Viruses, 2021, 13, 1294.	3.3	28
551	Lipophilic recombinant-protein insertion endows lymphocytes with enhanced targeting-infiltration ability in EGFR positive cancer. Cellular Immunology, 2021, 365, 104376.	3.0	0
552	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	11.7	33
553	Immunotherapies in Non-Hodgkin's Lymphoma. Cancers, 2021, 13, 3625.	3.7	5
554	Advances in Adoptive Cellular Therapy (ACT). , 0, , .		0
555	Immunotherapy in Glioblastoma: A Clinical Perspective. Cancers, 2021, 13, 3721.	3.7	16
556	Polymeric microneedleâ€mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian Journal of Pharmaceutical Sciences, 2022, 17, 70-86.	9.1	38
557	Recent Advances in Microfluidic Platforms for Programming Cellâ€Based Living Materials. Advanced Materials, 2021, 33, e2005944.	21.0	26
558	CAR Macrophages for SARS-CoV-2 Immunotherapy. Frontiers in Immunology, 2021, 12, 669103.	4.8	21
559	Overview of implantable and injectable biomaterials in immunotherapy. GSC Biological and Pharmaceutical Sciences, 2021, 16, 195-201.	0.3	Ο

	CITATION R	EPORT	
#	Article	IF	CITATIONS
560	Biological basis for novel mesothelioma therapies. British Journal of Cancer, 2021, 125, 1039-1055.	6.4	14
561	Immunometabolism: A â€~Hot' Switch for â€~Cold' Pediatric Solid Tumors. Trends in Cancer, 2021, 7, 75	1-77247.	8
562	Increased tumor-infiltrating lymphocyte density is associated with favorable outcomes in a comparative study of canine histiocytic sarcoma. Cancer Immunology, Immunotherapy, 2022, 71, 807-818.	4.2	8
563	Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 8415.	4.1	30
564	The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomedical Reports, 2021, 15, 86.	2.0	1
565	DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clinical Epigenetics, 2021, 13, 166.	4.1	85
566	Genome Editing in Medicine: Tools and Challenges. Acta Medica Lituanica, 2021, 28, 8.	0.3	2
567	Kidney Transplant T Cell–Mediated Rejection Occurring After Anti-CD19 CAR T-Cell Therapy for Refractory Aggressive Burkitt-like Lymphoma With 11q Aberration: A Case Report. American Journal of Kidney Diseases, 2022, 79, 760-764.	1.9	15
568	Recent advances in cancer immunotherapy. Discover Oncology, 2021, 12, 27.	2.1	14
569	Advances in CAR design. Best Practice and Research in Clinical Haematology, 2021, 34, 101304.	1.7	4
570	Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs, 2021, 35, 529-545.	4.6	17
572	SAGE1: a Potential Target Antigen for Lung Cancer T-Cell Immunotherapy. Molecular Cancer Therapeutics, 2021, 20, 2302-2313.	4.1	6
573	Chimeric antigen receptor T-cell therapy for breast cancer. Future Oncology, 2021, 17, 2961-2979.	2.4	0
574	ACNPD: The Database for Elucidating the Relationships Between Natural Products, Compounds, Molecular Mechanisms, and Cancer Types. Frontiers in Pharmacology, 2021, 12, 746067.	3.5	5
575	Nanotechnology-based immunotherapies to combat cancer metastasis. Molecular Biology Reports, 2021, 48, 6563-6580.	2.3	8
576	Remodeling of Tumor Microenvironment by Tumorâ€Targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy. Small, 2021, 17, e2102624.	10.0	36
577	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	47.7	657
578	High-Affinity Chimeric Antigen Receptor With Cross-Reactive scFv to Clinically Relevant EGFR Oncogenic Isoforms. Frontiers in Oncology, 2021, 11, 664236.	2.8	14

#	Article	IF	CITATIONS
579	Current Status and Opportunities in Adaptive Data Analysis for Therapeutic Cell Manufacturing. Current Opinion in Biomedical Engineering, 2021, 20, 100351.	3.4	1
580	Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers, 2021, 13, 4787.	3.7	14
581	A Fully Integrated Online Platform For Real Time Monitoring Of Multiple Product Quality Attributes In Biopharmaceutical Processes For Monoclonal Antibody Therapeutics. Journal of Pharmaceutical Sciences, 2022, 111, 358-367.	3.3	31
582	Systemic inhibition of PTPN22 augments anticancer immunity. Journal of Clinical Investigation, 2021, 131, .	8.2	24
583	Engineered platelets: Advocates for tumor immunotherapy. Nano Today, 2021, 40, 101281.	11.9	15
584	Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Engineering and Regenerative Medicine, 2022, 19, 263-280.	3.7	11
585	Targeting natural killer cells in cancer immunotherapy. , 2022, , 63-82.		1
586	Engineering solutions to design CAR-T cells. , 2022, , 1-31.		0
587	Assessing Oximetry Response to Chimeric Antigen Receptor T-cell Therapy against Glioma with 19F MRI in a Murine Model. Radiology Imaging Cancer, 2021, 3, e200062.	1.6	7
588	CAR T Cells for Hematologic Malignancies. , 2021, , 829-846.		0
589	Advances in pluripotent stem cell-derived natural killer cells for cancer immunotherapy. , 2021, , 165-181.		0
590	Cerebrospinal Fluid Biomarkers in Childhood Leukemias. Cancers, 2021, 13, 438.	3.7	4
591	Using the Inducible Caspase-9 Suicide-Safeguard System with iPSC and Bioluminescent Tracking. Methods in Molecular Biology, 2019, 2048, 259-264.	0.9	2
592	Flow Cytometer Performance Characterization, Standardization, and Control. Series in Bioengineering, 2017, , 171-199.	0.6	5
593	Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 145-160.	13.7	21
594	Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Critical Reviews in Oncology/Hematology, 2020, 152, 102993.	4.4	16
595	Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, .	2.4	122
602	Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science, 2019, 365, 162-168.	12.6	282

#	Article	IF	CITATIONS
603	Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight, 2020, 5, .	5.0	30
604	Anticancer Drugs and the Nervous System. CONTINUUM Lifelong Learning in Neurology, 2020, 26, 732-764.	0.8	13
605	Advanced Therapy Medicinal Products Challenges and Perspectives in Regenerative Medicine. Journal of Clinical Medicine Research, 2020, 12, 780-786.	1.2	24
606	EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC. Aging, 2019, 11, 11054-11072.	3.1	52
607	Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. Oncotarget, 2017, 8, 55084-55093.	1.8	7
608	Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era. Current Medicinal Chemistry, 2019, 26, 1002-1018.	2.4	11
609	Deepening a Simple Question: Can MSCs Be Used to Treat Cancer?. Anticancer Research, 2017, 37, 4747-4758.	1.1	13
610	Chimeric antigen receptor T cells immunotherapy: challenges and opportunities in hematological malignancies. Immunotherapy, 2020, 12, 1341-1357.	2.0	3
611	Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy. BlOpreparations Prevention Diagnosis Treatment, 2018, 18, 140-149.	0.5	5
612	Adaptor CAR Platforms—Next Generation of T Cell-Based Cancer Immunotherapy. Cancers, 2020, 12, 1302.	3.7	45
613	CAR T‑cell therapy for gastric cancer: Potential and perspective (Review). International Journal of Oncology, 2020, 56, 889-899.	3.3	5
614	HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation. Oncology Letters, 2017, 14, 4415-4427.	1.8	60
615	Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma. ELife, 2020, 9, .	6.0	13
616	Multifunctional Gold Nanostars for Sensitive Detection, Photothermal Treatment and Immunotherapy of Brain Tumor. Bioanalysis, 2021, , 235-255.	0.1	0
617	Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection. Faraday Discussions, 2021, 233, 315-335.	3.2	2
618	Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Therapy, 2021, , .	4.6	2
619	Advances in immune therapies in hematological malignancies. Journal of Internal Medicine, 2022, 292, 205-220.	6.0	5
620	Adoptive T-cell therapy for Hodgkin lymphoma. Blood Advances, 2021, 5, 4291-4302.	5.2	11

		CITATION REPORT		
#	Article		IF	CITATIONS
621	A topography of immunotherapies against gastrointestinal malignancies. Panminerva ${\sf N}$	Vedica, 2022, 64, .	0.8	3
622	Finding the volume dial in stem cell manufacturing: Bioinspired and bioengineered app up. Current Opinion in Biomedical Engineering, 2021, 20, 100356.	roaches to scale	3.4	Ο
623	The TNF-α/TNFR2 Pathway: Targeting a Brake to Release the Anti-tumor Immune Respo Cell and Developmental Biology, 2021, 9, 725473.	onse. Frontiers in	3.7	21
624	Identification of Novel Modalities Through Bibliometric Analysis for Timely Developmer Regulatory Guidance: A Case Study of T Cell Immunity. Frontiers in Medicine, 2021, 8,		2.6	2
625	Understanding and improving cellular immunotherapies against cancer: From cell-man tumor-immune models. Advanced Drug Delivery Reviews, 2021, 179, 114003.	ufacturing to	13.7	20
626	T Cell Immunotherapy: From Synthetic Biology to Clinical Practice. , 2015, , 217-230.			0
627	Th17 Cells: Can Epigenetic Manipulation and Artificial T cell Receptors Make Th17 cells Immunotherapeutic Anti-Tumor Effector T Cells?. MOJ Immunology, 2016, 4, .	s Efficient	11.0	0
629	DlgR2 knockdown boosts dendritic cell activity and inhibits hepatocellular carcinoma t <i>in-situ</i> growth. Oncotarget, 2017, 8, 54993-55002.	umor	1.8	2
630	Synergizing genome editing and cancer immunotherapy. Translational Cancer Researcl S969-S972.	h, 2017, 6,	1.0	0
632	Regulatory Considerations for Genetically Manipulated Cell-Based Products. , 2018, , 2	95-295.		0
634	Road to Cancer Cure–So Near and Yet So Far. Journal of Medical Academics, 2018, 1	., 94-101.	0.1	0
635	Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2018, 11, 1-9.	y in Vitro.	0.4	7
639	Development of Therapeutic Antibodies Against Carbonic Anhydrases. , 2019, , 305-32	!2.		0
641	Principles of Immuno-Oncology. , 2019, , 113-120.			0
642	Novel Immunotherapies and Novel Combinations of Immunotherapy. , 2019, , 1-22.			0
643	METHODS OF CREATION OF ORTHOTOPIC MODELS OF HUMAN COLON CANCER IN II ANIMALS. Voprosy Onkologii, 2019, 65, 303-307.	MMUNODEFICIENT	0.2	4
646	Identification of Cell Surface Targets for CAR T Cell Immunotherapy. Methods in Molec 2020, 2097, 45-54.	ular Biology,	0.9	3
647	Nrf2 activation mediates tumor-specific hepatic stellate cells-induced DIgR2 expressior cells. Aging, 2019, 11, 11565-11575.	n in dendritic	3.1	2

# 651	ARTICLE Highâ€Throughput and Dosageâ€Controlled Intracellular Delivery of Large Cargos by an Acousticâ€Electric Microâ€Vortices Platform. Advanced Science, 2022, 9, e2102021.	IF 11.2	Citations 18
652	Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. International Journal of Molecular Sciences, 2021, 22, 11781.	4.1	30
653	CAR-T Cell Clinical Trials Experience $\hat{a} \in$ Past, Present and Future. , 2020, , 303-375.		0
654	The Future of Transplantation: Hope, Investigative Discipline, and Fairness. Organ and Tissue Transplantation, 2020, , 1-8.	0.0	0
655	E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging, 2020, 12, 24394-24423.	3.1	17
656	Treatment of Acute Myeloid Leukemia: A Concise Overview. Abasyn Journal of Life Sciences, 2020, , 111-128.	0.1	0
657	Novel Immunotherapies and Novel Combinations of Immunotherapy for Metastatic Melanoma. , 2020, , 1165-1186.		0
658	Chimeric antigen receptor T-cell therapy in hematopoietic and nonhematopoietic malignancies. Biomedical and Biotechnology Research Journal, 2020, 4, 179.	0.6	0
659	Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted?. Methods in Molecular Biology, 2020, 2115, 407-417.	0.9	1
660	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 26320-26326.	13.8	55
661	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 26524-26530.	2.0	2
663	T-Cell Immunotherapy: From Synthetic Biology to Clinical Practice. , 2021, , 199-218.		0
664	Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy. Ecancermedicalscience, 2020, 14, 1095.	1.1	2
666	Synergistic anti-tumor effect of anti-PD-L1 antibody cationic microbubbles for delivery of the miR-34a gene combined with ultrasound on cervical carcinoma. American Journal of Translational Research (discontinued), 2021, 13, 988-1005.	0.0	1
667	Cyclooxygenase-2 expressed hepatocellular carcinoma induces cytotoxic T lymphocytes exhaustion through M2 macrophage polarization. American Journal of Translational Research (discontinued), 2021, 13, 4360-4375.	0.0	5
668	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Current Research in Translational Medicine, 2022, 70, 103320.	1.8	9
669	T-cell Receptor Therapy Targeting Mutant Capicua Transcriptional Repressor in Experimental Gliomas. Clinical Cancer Research, 2022, 28, 378-389.	7.0	11
670	Immunotherapy Approaches in HPV-Associated Head and Neck Cancer. Cancers, 2021, 13, 5889.	3.7	21

#	Article	IF	CITATIONS
671	Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. Advanced Materials, 2022, 34, e2106390.	21.0	65
672	Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. VII. Present and future of technologies for production of CAR cell therapies. Hematology, Transfusion and Cell Therapy, 2021, 43, S46-S53.	0.2	0
673	Targeting HLA-DR loss in hematologic malignancies with an inhibitory chimeric antigen receptor. Molecular Therapy, 2022, 30, 1215-1226.	8.2	9
675	Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. Journal of Neuro-Oncology, 2022, 156, 81-96.	2.9	9
676	Injectable and Biodegradable Chitosan Hydrogel-Based Drug Depot Contributes to Synergistic Treatment of Tumors. Biomacromolecules, 2021, 22, 5339-5348.	5.4	17
677	Predicting T ell quality during manufacturing through an artificial intelligenceâ€based integrative multiomics analytical platform. Bioengineering and Translational Medicine, 2022, 7, e10282.	7.1	9
678	Metabolic installation of macrophage-recruiting glycan ligand on tumor cell surface for in vivo tumor suppression. Bioorganic and Medicinal Chemistry Letters, 2022, 57, 128500.	2.2	1
679	Therapeutic effiacy of T cells expressing chimeric antigen receptor derived from a mesothelin-specific scFv in orthotopic human pancreatic cancer animal models. Neoplasia, 2022, 24, 98-108.	5.3	6
680	Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy. Ecancermedicalscience, 2020, 14, 1095.	1.1	5
682	Semaphorins as Potential Immune Therapeutic Targets for Cancer. Frontiers in Oncology, 2022, 12, 793805.	2.8	3
683	Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen Receptor T Cells in Solid Tumors. Molecular and Cellular Biology, 2022, 42, MCB0044921.	2.3	8
684	Challenges and Advances in Chimeric Antigen Receptor Therapy for Acute Myeloid Leukemia. Cancers, 2022, 14, 497.	3.7	17
685	Impact of Cancer Stem Cells and Cancer Stem Cell-Driven Drug Resiliency in Lung Tumor: Options in Sight. Cancers, 2022, 14, 267.	3.7	11
686	Emerging strategies for biomaterial-assisted cancer immunotherapy. Korean Journal of Chemical Engineering, 2022, 39, 227-240.	2.7	1
687	TCR-T Immunotherapy: The Challenges and Solutions. Frontiers in Oncology, 2021, 11, 794183.	2.8	36

#	Article	IF	CITATIONS
691	New Era for Malignant Pleural Mesothelioma: Updates on Therapeutic Options. Journal of Clinical Oncology, 2022, 40, 681-692.	1.6	26
692	Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chemical Biology, 2022, 29, 1024-1036.e5.	5.2	8
694	IL-13Rα2 humanized scFv-based CAR-T cells exhibit therapeutic activity against glioblastoma. Molecular Therapy - Oncolytics, 2022, 24, 443-451.	4.4	8
696	Multifunctional theranostic nanoparticles for multi-modal imaging-guided CAR-T immunotherapy and chemo-photothermal combinational therapy of non-Hodgkin's lymphoma. Biomaterials Science, 2022, 10, 2577-2589.	5.4	10
697	A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunology Research, 2022, 10, 512-524.	3.4	12
698	Research Progress in Alpha-fetoprotein-induced Immunosuppression of Liver Cancer. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2237-2243.	2.4	12
699	Emerging CAR T Cell Strategies for the Treatment of AML. Cancers, 2022, 14, 1241.	3.7	24
700	Site-Specific Dinitrophenylation of Single-Chain Antibody Fragments for Redirecting a Universal CAR-T Cell against Cancer Antigens. Journal of Molecular Biology, 2022, 434, 167513.	4.2	6
701	Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Frontiers in Oncology, 2022, 12, 830199.	2.8	9
703	Development of a Localized Drug Delivery System with a Step-by-Step Cell Internalization Capacity for Cancer Immunotherapy. ACS Nano, 2022, 16, 5778-5794.	14.6	18
704	Recent Advances in CAR T-Cell Therapy for Patients with Chronic Lymphocytic Leukemia. Cancers, 2022, 14, 1715.	3.7	9
705	Update for Advance CAR-T Therapy in Solid Tumors, Clinical Application in Peritoneal Carcinomatosis From Colorectal Cancer and Future Prospects. Frontiers in Immunology, 2022, 13, 841425.	4.8	10
706	Tuning T cell receptor sensitivity through catch bond engineering. Science, 2022, 376, eabl5282.	12.6	53
707	Cellular immunotherapy in gastric cancer: adoptive cell therapy and dendritic cell-based vaccination. Immunotherapy, 2022, 14, 475-488.	2.0	12
708	Cell Trafficking at the Intersection of the Tumor–Immune Compartments. Annual Review of Biomedical Engineering, 2022, 24, 275-305.	12.3	9
709	IBI379, a novel B cell maturation antigen/CD3 bispecific T-cell engager, displays high antitumor efficacy in preclinical models of multiple myeloma. Cancer Letters, 2022, 536, 215663.	7.2	1
710	A Comprehensive Review of Recent Advancements in Cancer Immunotherapy and Generation of CAR T Cell by CRISPR-Cas9. Processes, 2022, 10, 16.	2.8	13
732	New approaches in chimeric antigen receptor T-cell therapy for breast cancer. Journal of Central South University (Medical Sciences), 2020, 45, 1120-1126.	0.1	0

#	Article	IF	CITATIONS
735	Cytokine Release Syndrome After Modified CAR-NK Therapy in an Advanced Non-small Cell Lung Cancer Patient: A Case Report. Cell Transplantation, 2022, 31, 096368972210942.	2.5	13
736	Advances in Chimeric Antigen Receptor (CAR) T-Cell Therapies for the Treatment of Primary Brain Tumors. Antibodies, 2022, 11, 31.	2.5	4
737	Cell surface–tethered IL-12 repolarizes the tumor immune microenvironment to enhance the efficacy of adoptive T cell therapy. Science Advances, 2022, 8, eabi8075.	10.3	21
738	Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114321.	13.7	36
739	Enhanced human T cell expansion with inverse opal hydrogels. Biomaterials Science, 2022, 10, 3730-3738.	5.4	9
740	PTPN22: structure, function, and developments in inhibitor discovery with applications for immunotherapy. Expert Opinion on Drug Discovery, 2022, 17, 825-837.	5.0	3
741	Nanodrugs Targeting T Cells in Tumor Therapy. Frontiers in Immunology, 0, 13, .	4.8	13
742	Bidirectional effects of intestinal microbiota and antibiotics: a new strategy for colorectal cancer treatment and prevention. Journal of Cancer Research and Clinical Oncology, 2022, 148, 2387-2404.	2.5	6
743	Tailoring Multifunctional Small Molecular Photosensitizers to In Vivo Selfâ€Assemble with Albumin to Boost Tumorâ€Preferential Accumulation, NIR Imaging, and Photodynamic/Photothermal/Immunotherapy. Small, 2022, 18, .	10.0	11
744	Bioengineered nanogels for cancer immunotherapy. Chemical Society Reviews, 2022, 51, 5136-5174.	38.1	81
745	Synergistic Therapeutic Effects of Low Dose Decitabine and NY-ESO-1 Specific TCR-T Cells for the Colorectal Cancer With Microsatellite Stability. Frontiers in Oncology, 0, 12, .	2.8	4
746	Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nature Reviews Drug Discovery, 2022, 21, 529-540.	46.4	134
748	Tumor immunotherapy: Mechanisms and clinical applications. , 2022, 1, .		2
749	From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. Journal of Inflammation Research, 0, Volume 15, 4061-4085.	3.5	1
750	Case Report: Clinical and Serological Hallmarks of Cytokine Release Syndrome in a Canine B Cell Lymphoma Patient Treated With Autologous CAR-T Cells. Frontiers in Veterinary Science, 0, 9, .	2.2	4
751	Advances and challenges of CARÂTÂtherapy and suitability of animal models (Review). Molecular and Clinical Oncology, 2022, 17, .	1.0	4
752	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	7.2	2
753	Multivalent, Bispecific αB7-H3-αCD3 Chemically Self-Assembled Nanorings Direct Potent T Cell Responses against Medulloblastoma. ACS Nano, 2022, 16, 12185-12201.	14.6	6

CITATION REPORT ARTICLE IF CITATIONS Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T 12.8 14 lymphocytes engagement. Nature Communications, 2022, 13, . DLL4 and VCAM1 enhance the emergence of T cell–competent hematopoietic progenitors from human pluripotent stem cells. Science Advances, 2022, 8, . Unified Therapeuticâ€Prophylactic Vaccine Demonstrated with a Postoperative Filler Gel to Prevent 14.9 17 Tumor Recurrence and Metastasis. Advanced Functional Materials, 2022, 32, . <scp>DLK1</scp>â€directed chimeric antigen receptor Tâ€cell therapy for hepatocellular carcinoma. Liver International, 2022, 42, 2524-2537. EZH1 repression generates mature iPSC-derived CAR TÂcells with enhanced antitumor activity. Cell Stem 11.1 36 Cell, 2022, 29, 1181-1196.e6. The impact of race, ethnicity, and obesity on CAR T-cell therapy outcomes. Blood Advances, 2022, 6, 5.2 6040-6050. Emerging immune-based technologies for high-grade gliomas. Expert Review of Anticancer Therapy, 2.4 1 2022, 22, 957-980. Intracavity generation of glioma stem cell $\hat{a} \in$ specific CAR macrophages primes locoregional immunity 12.4 68 for postoperative glioblastoma therapy. Science Translational Medicine, 2022, 14, . RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature, 2022, 609, 174-182. 27.8 65 Methylation related genes are associated with prognosis of patients with head and neck squamous 2.5 cell carcinoma via altering tumor immune microenvironment. Journal of Dental Sciences, 2022, , . Melanoma-derived small extracellular vesicles remodel the systemic onco-immunity via disrupting 7.2 7 hematopoietic stem cell proliferation and differentiation. Cancer Letters, 2022, 545, 215841. Exploration of the underlying biological differences and targets in ovarian cancer patients with 4.8 diverse immunotherapy response. Frontiers in Immunology, 0, 13, . Nano-drug delivery systems for T cell-based immunotherapy. Nano Today, 2022, 46, 101621. 11.9 13 Potency monitoring of CAR T cells. Methods in Cell Biology, 2023, , 173-189. 1.1 Targeting Metastatic Disease: Challenges and New Opportunities., 2022, , 51-68. 0 The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells, 2022, 11, 2682. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during 4.4 10 CAR-T immunotherapy. Journal of Translational Medicine, 2022, 20, .

772	A novel LUAD prognosis prediction model based on immune checkpoint-related lncRNAs. Frontiers in Genetics, 0, 13, .	2.3	1
-----	---	-----	---

#

754

757

759

761

763

764

765

767

769

#	Article	IF	CITATIONS
773	Systematic pan‑cancer analysis identifies CDC45 as having an oncogenic role in human cancers. Oncology Reports, 2022, 48, .	2.6	4
774	Novel cellular therapies for hepatobiliary malignancies. Hepatobiliary and Pancreatic Diseases International, 2022, , .	1.3	1
776	The T Cell Journey: A Tour de Force. Advanced Biology, 2023, 7, .	2.5	4
777	细è∫žè¡¨é¢å·¥ç¨‹çš"ç−ç•¥åĞ应ç". Scientia Sinica Vitae, 2022, , .	0.3	0
779	Anti-Apoptotic c-FLIP Reduces the Anti-Tumour Activity of Chimeric Antigen Receptor T Cells. Cancers, 2022, 14, 4854.	3.7	1
781	Tumor microenvironment: barrier or opportunity towards effective cancer therapy. Journal of Biomedical Science, 2022, 29, .	7.0	67
782	Biomimetic cell membraneâ€coated poly(lacticâ€ <scp><i>co</i></scp> â€glycolic acid) nanoparticles for biomedical applications. Bioengineering and Translational Medicine, 2023, 8, .	7.1	25
783	Targeted Therapy and Immunotherapy for Heterogeneous Breast Cancer. Cancers, 2022, 14, 5456.	3.7	8
784	Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines, 2022, 10, 1942.	4.4	7
785	Prognostic and therapeutic prediction by screening signature combinations from transcriptome–methylome interactions in oral squamous cell carcinoma. Scientific Reports, 2022, 12, .	3.3	0
786	Cellâ€Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. Small, 2023, 19, .	10.0	10
787	DNA origami–based artificial antigen-presenting cells for adoptive T cell therapy. Science Advances, 2022, 8, .	10.3	17
788	Disruption of CISH promotes the antitumor activity of human TÂcells and decreases PD-1 expression levels. Molecular Therapy - Oncolytics, 2023, 28, 46-58.	4.4	7
789	Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end?. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2709-2734.	2.5	6
790	Role of T cells in cancer immunotherapy: Opportunities and challenges. , 2023, 1, 116-126.		11
791	Modifying enzyme replacement therapy – A perspective. Journal of Cellular and Molecular Medicine, 2023, 27, 165-173.	3.6	6
793	Mapping the interplay between NK cells and HIV: therapeutic implications. Journal of Leukocyte Biology, 2023, 113, 109-138.	3.3	1
794	Engineered bacteria for augmented <i>in situ</i> tumor vaccination. Biomaterials Science, 2023, 11, 1137-1152.	5.4	6

~			-	
(``		ON	REPC	NDT
\sim	$\Pi \cap \Pi$		ILLI C	

#	ARTICLE	IF	CITATIONS
795	Chimeric antigen receptor T (<scp>CARâ€T</scp>) cells: Novel cell therapy for hematological malignancies. Cancer Medicine, 2023, 12, 7844-7858.	2.8	15
796	Advances in adoptive cellular therapy for colorectal cancer: a narrative review. Annals of Translational Medicine, 2022, 10, 1404-1404.	1.7	4
797	CAR T cells: engineered immune cells to treat brain cancers and beyond. Molecular Cancer, 2023, 22, .	19.2	7
798	Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Frontiers in Immunology, 0, 14, .	4.8	3
799	Developments of PROTACs technology in immune-related diseases. European Journal of Medicinal Chemistry, 2023, 249, 115127.	5.5	4
800	CAR-T cells for cancer immunotherapy. Chinese Chemical Letters, 2023, 34, 108202.	9.0	3
801	Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+. Nature Methods, 2023, 20, 706-713.	19.0	5
802	Capsid-modified adeno-associated virus vectors as novel vaccine platform for cancer immunotherapy. Molecular Therapy - Methods and Clinical Development, 2023, 29, 238-253.	4.1	1
804	The research status and prospects of MUC1 in immunology. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	3
806	Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Delivery and Translational Research, 2023, 13, 2041-2056.	5.8	9
808	The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer—Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers, 2023, 15, 1642.	3.7	4
809	CAR T Cell Therapy: A Versatile Living Drug. International Journal of Molecular Sciences, 2023, 24, 6300.	4.1	10
810	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	32.8	6
811	Engineering a modular double-transmembrane synthetic receptor system for customizing cellular programs. Cell Reports, 2023, 42, 112385.	6.4	5
812	Messenger RNA electroporated hepatitis B virus (HBV) antigen-specific T cell receptor (TCR) redirected T cell therapy is well-tolerated in patients with recurrent HBV-related hepatocellular carcinoma post-liver transplantation: results from a phase I trial. Hepatology International, 2023, 17, 850-859.	4.2	2
813	Modern T cell technologies for immunotherapy of solid tumors. Medical Immunology (Russia), 2023, 25, 271-286.	0.4	0
814	Regulation of CD19 CAR-T cell activation based on an engineered downstream transcription factor. Molecular Therapy - Oncolytics, 2023, 29, 77-90.	4.4	1
815	T cell-mimicking platelet-drug conjugates. Matter, 2023, 6, 2340-2355.	10.0	4

#	Article	IF	CITATIONS
816	Self-assembling paclitaxel-mediated stimulation of tumor-associated macrophages for postoperative treatment of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	18
817	Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy, 2023, 15, 679-697.	2.0	0
818	Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics, 2023, 15, 1427.	4.5	7
819	Targeting Stage-Specific Embryonic Antigen 4 (SSEA-4) in Triple Negative Breast Cancer by CAR T Cells Results in Unexpected on Target/off Tumor Toxicities in Mice. International Journal of Molecular Sciences, 2023, 24, 9184.	4.1	Ο
820	A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. European Journal of Pharmaceutical Sciences, 2023, 187, 106476.	4.0	4
821	Applications of intelligent biomaterials in cancer immunotherapy: A review. Materials Today: Proceedings, 2023, , .	1.8	1
822	Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials, 2023, 300, 122185.	11.4	5
823	Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration. Science Advances, 2023, 9, .	10.3	7
824	Cancer/testis antigens: promising immunotherapy targets for digestive tract cancers. Frontiers in Immunology, 0, 14, .	4.8	1
825	Engineering enhanced chimeric antigen receptor-T cell therapy for solid tumors. Immuno-Oncology Technology, 2023, 19, 100385.	0.3	1
826	Adoptive cell therapy for cancer treatment. Exploration, 2023, 3, .	11.0	2
828	Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Molecular Pharmaceutics, 2023, 20, 3757-3778.	4.6	5
829	c-Met is a chimeric antigen receptor T-cell target for treating recurrent nasopharyngeal carcinoma. Cytotherapy, 2023, 25, 1037-1047.	0.7	0
830	Applications of <scp>CRISPR</scp> technology in cellular immunotherapy. Immunological Reviews, 2023, 320, 199-216.	6.0	4
831	Synthetic Antigen-Conjugated DNA Systems for Antibody Detection and Characterization. ACS Sensors, 2023, 8, 2415-2426.	7.8	5
832	Gene editing therapeutics based on mRNA delivery. Advanced Drug Delivery Reviews, 2023, 200, 115026.	13.7	6
833	Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2023, 71, .	2.3	1
834	Electroactive nanoinjection platform for intracellular delivery and gene silencing. Journal of Nanobiotechnology, 2023, 21, .	9.1	5

#	Article	IF	CITATIONS
835	Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine. Nature Communications, 2023, 14, .	12.8	8
836	Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon, 2023, 9, e19147.	3.2	2
837	Exploring CAR-T Cell Therapy Side Effects: Mechanisms and Management Strategies. Journal of Clinical Medicine, 2023, 12, 6124.	2.4	1
838	Modular pooled discovery of synthetic knockin sequences to program durable cell therapies. Cell, 2023, 186, 4216-4234.e33.	28.9	2
839	Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Frontiers in Immunology, 0, 14, .	4.8	1
840	Refining chimeric antigen receptors via barcoded protein domain combination pooled screening. Molecular Therapy, 2023, 31, 3210-3224.	8.2	1
841	Toll-like receptor-targeted nanoparticles: A powerful combination for tumor immunotherapy. Nano Today, 2023, 53, 102003.	11.9	0
842	Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. , 2023, 40, .		3
843	Emerging Vaccine for the Treatment of Cancer Via Nanotechnology. , 2023, , 79-99.		0
844	Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opinion on Therapeutic Targets, 2023, 27, 841-860.	3.4	0
845	Development of a CD8+ T cell-based molecular classification for predicting prognosis and heterogeneity in triple-negative breast cancer by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon, 2023, 9, e19798.	3.2	1
846	3D Centrifugationâ€Enabled Priming of Synaptic Activation Promotes Primary T Cell Expansion. Advanced Therapeutics, 2023, 6, .	3.2	0
847	Evolution and synthetic biology. Current Opinion in Microbiology, 2023, 76, 102394.	5.1	1
848	CAR-T Cell Therapy: From the Shop to Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 15688.	4.1	4
849	Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	1
850	Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics, 2023, 15, 2622.	4.5	1
851	Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules, 2023, 28, 7679.	3.8	0
852	Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers, 2023, 15, 5661.	3.7	0

#	Article	IF	CITATIONS
853	Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine. ACS Measurement Science Au, 2023, 3, 393-403.	4.4	1
855	4SCAR2.0 therapy for the management of post-transplantation relapse of B-cell acute lymphoblastic leukemia. , 0, 2, .		0
856	Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioactive Materials, 2024, 33, 377-395.	15.6	0
857	CAR-T treatment for cancer: prospects and challenges. Frontiers in Oncology, 0, 13, .	2.8	1
859	Advances in research based on antibody-cell conjugation. Frontiers in Immunology, 0, 14, .	4.8	0
860	Efficacy and safety of neoadjuvant chemotherapy containing anti-angiogenic drugs, immunotherapy, or PARP inhibitors for ovarian cancer. Critical Reviews in Oncology/Hematology, 2024, 194, 104238.	4.4	0
861	Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chemical Reviews, 2024, 124, 889-928.	47.7	1
862	Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells. Cell Research, 2024, 34, 31-46.	12.0	1
863	Worldwide research trends on tumor burden and immunotherapy: a bibliometric analysis. International Journal of Surgery, 2024, 110, 1699-1710.	2.7	0
864	A versatile method for conjugating lipid nanoparticles on T cells through combination of click chemistry and metabolic glycoengineering. Biotechnology Journal, 2024, 19, .	3.5	0
865	T-Cell Lymphoma From CAR T-Cell Therapy—A New Safety Notice. JAMA - Journal of the American Medical Association, 2024, 331, 389.	7.4	1
866	In Situ Reprogramming of Immune Cells Using Synthetic Nanomaterials. Advanced Materials, 2024, 36, .	21.0	0
867	mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Advanced Drug Delivery Reviews, 2024, 206, 115190.	13.7	0
868	Single-cell coating with biomimetic extracellular nanofiber matrices. Acta Biomaterialia, 2024, 177, 50-61.	8.3	0
869	Systemically administered low-affinity HER2 CAR T cells mediate antitumor efficacy without toxicity. , 2024, 12, e008566.		0
870	Continuous manufacturing of lentiviral vectors using a stable producer cell line in a fixed-bed bioreactor. Molecular Therapy - Methods and Clinical Development, 2024, 32, 101209.	4.1	0
871	In Vivo Stimulation of Therapeutic Antigen‧pecific T Cells in an Artificial Lymph Node Matrix. Advanced Materials, 0, , .	21.0	0
872	Development of chimeric antigen receptor (CAR)-T cells targeting A56 viral protein implanted by oncolytic virus. IScience, 2024, 27, 109256.	4.1	Ο

		CITATION REPOR	т
#	Article	IF	CITATIONS
873	Construction of Smart DNAâ \in Based Drug Delivery Systems for Cancer Therapy. Small, 0, , .	10.	0 0
874	The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplantation, 2024, 33, .	2.5	Ο
875	Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell The Cells, 2024, 13, 451.	rapy. 4.1	0
876	Harnessing natural killer cells to target HIV-1 persistence. Current Opinion in HIV and AIDS, 2 141-149.	2024, 19, 3.8	О