Switching on electrocatalytic activity in solid oxide cell

Nature 537, 528-531 DOI: 10.1038/nature19090

Citation Report

		DODT	
#	ARTICLE	IF	CITATIONS
2	An emerging platform for electrocatalysis: perovskite exsolution. Science Bulletin, 2016, 61, 1783-1784.	4.3	17
3	Tracking the structural evolution at atomic-scale in the spinel Mn 3 O 4 induced by electrochemical cycling. Electrochemistry Communications, 2016, 72, 166-170.	2.3	7
4	Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis. Chemical Reviews, 2016, 116, 13633-13684.	23.0	229
5	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
6	Three dimensional printing of components and functional devices for energy and environmental applications. Energy and Environmental Science, 2017, 10, 846-859.	15.6	228
7	A review of high temperature co-electrolysis of H ₂ O and CO ₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 2017, 46, 1427-1463.	18.7	515
8	In situ growth of Pt ₃ Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 6399-6404.	5.2	70
9	Electrochemical reduction of CO 2 in solid oxide electrolysis cells. Journal of Energy Chemistry, 2017, 26, 593-601.	7.1	108
10	Synthesis and characterization of bi-component ZnSnO 3 /Zn 2 SnO 4 (perovskite/spinel) nano-composites for photocatalytic degradation of Intracron Blue: Structural, opto-electronic and morphology study. Journal of Molecular Liquids, 2017, 238, 397-401.	2.3	34
11	Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent. Royal Society Open Science, 2017, 4, 161051.	1.1	37
12	Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C. Advanced Materials, 2017, 29, 1700132.	11.1	257
13	Highly active and stable Er _{0.4} Bi _{1.6} O ₃ decorated La _{0.76} Sr _{0.19} MnO _{3+Î} nanostructured oxygen electrodes for reversible solid oxide cells. Journal of Materials Chemistry A, 2017, 5, 12149-12157.	5.2	63
14	Nickelâ€Iron Alloy Nanoparticleâ€Decorated K ₂ NiF ₄ â€Type Oxide as an Efficient and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 2378-2384.	1.7	34
15	Efficient CO 2 electrolysis with scandium doped titanate cathode. International Journal of Hydrogen Energy, 2017, 42, 8197-8206.	3.8	27
16	A novel high performance composite anode with in situ growth of Fe-Ni alloy nanoparticles for intermediate solid oxide fuel cells. Electrochimica Acta, 2017, 235, 317-322.	2.6	46
17	Mo-doped Pr 0.6 Sr 0.4 Fe 0.8 Ni 0.2 O 3-Î [^] as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochimica Acta, 2017, 227, 33-40.	2.6	73
18	Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 2017, 46, 6345-6378.	18.7	246
19	Mechanistic Understanding and the Rational Design of Sinter-Resistant Heterogeneous Catalysts. ACS Catalysis, 2017, 7, 7156-7173.	5.5	214

#	Article	IF	CITATIONS
20	Modeling the impedance spectra of mixed conducting thin films with exposed and embedded current collectors. Physical Chemistry Chemical Physics, 2017, 19, 26310-26321.	1.3	17
21	High-Affinity-Assisted Nanoscale Alloys as Remarkable Bifunctional Catalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS Nano, 2017, 11, 7729-7735.	7.3	101
22	Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nature Communications, 2017, 8, 1855.	5.8	121
23	Enhanced electrochemical property of La0.6Sr0.4Co0.8Fe0.2O3 as cathode for solid oxide fuel cell by efficient in situ polarization-exsolution treatment. Electrochimica Acta, 2017, 258, 1096-1105.	2.6	28
24	Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2017, 2, 923-931.	19.8	178
26	Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. ChemSusChem, 2017, 10, 3333-3341.	3.6	97
27	Bi-component cobalt metatitanate and cobalt oxide nano-composite for high efficient photocatalytic degradation of triazo Direct Blue 71: synthesis, characterization and surface properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 11013-11019.	1.1	3
28	Insights into the Surface Reactivity of Cermet and Perovskite Electrodes in Oxidizing, Reducing, and Humid Environments. ACS Applied Materials & Interfaces, 2017, 9, 25265-25277.	4.0	20
29	Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes. Journal of Energy Chemistry, 2017, 26, 839-853.	7.1	125
30	The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes. Electrochimica Acta, 2018, 268, 195-201.	2.6	16
31	The enhanced electrochemical response of Sr(Ti _{0.3} Fe _{0.7} Ru _{0.07})O _{3â^'δ} anodes due to exsolved Ru–Fe nanoparticles. Journal of Materials Chemistry A, 2018, 6, 5193-5201.	5.2	41
32	Promotion of Oxygen Reduction with Both Amorphous and Crystalline MnO _{<i>x</i>} through the Surface Engineering of La _{0.8} Sr _{0.2} MnO _{3â€<i>î´</i>} Perovskite. ChemElectroChem, 2018, 5, 1105-1112.	1.7	43
33	Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy, 2018, 45, 148-176.	8.2	363
34	New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells. ACS Applied Materials & Interfaces, 2018, 10, 1761-1770.	4.0	131
35	Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses. Journal of Power Sources, 2018, 377, 110-120.	4.0	20
36	Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells. Journal of Power Sources, 2018, 378, 433-442.	4.0	48
37	Direct Electrolysis of CO ₂ in Symmetrical Solid Oxide Electrolysis Cell Based on La _{0.6} Sr _{0.4} Fe _{0.8} Ni _{0.2} O _{3-δ} Electrode. Journal of the Electrochemical Society, 2018, 165, F17-F23.	1.3	82
38	Highly efficient electrochemical reforming of CH ₄ /CO ₂ in a solid oxide electrolyser. Science Advances, 2018, 4, eaar5100.	4.7	136

#	Article	IF	Citations
39	Synthesis and applications of nanoporous perovskite metal oxides. Chemical Science, 2018, 9, 3623-3637.	3.7	129
40	Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr ₂ FeMo _{2/3} Mg _{1/3} O _{6â^'} <i>_{Î'}</i> for Solid Oxide Fuel Cells. Advanced Energy Materials, 2018, 8, 1800062.	10.2	62
41	Self-Regenerating Co–Fe Nanoparticles on Perovskite Oxides as a Hydrocarbon Fuel Oxidation Catalyst in Solid Oxide Fuel Cells. Chemistry of Materials, 2018, 30, 2515-2525.	3.2	74
42	Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process. Chemistry of Materials, 2018, 30, 2838-2847.	3.2	77
43	Ni-Substituted Sr(Ti,Fe)O3 SOFC Anodes: Achieving High Performance via Metal Alloy Nanoparticle Exsolution. Joule, 2018, 2, 478-496.	11.7	220
44	Nanomaterials for solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 353-368.	8.2	333
45	Niobium Doped Lanthanum Strontium Ferrite as A Redoxâ€Stable and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemSusChem, 2018, 11, 254-263.	3.6	52
46	A self-assembled dual-phase composite as a precursor of high-performance anodes for intermediate temperature solid oxide fuel cells. Chemical Communications, 2018, 54, 12341-12344.	2.2	11
47	Effect of Small Nbâ€doping Amount on the Performance of BaCoO _{3â€Î´} â€based Perovskite as Bifunctional Oxygen Catalysts. ChemistrySelect, 2018, 3, 12424-12429.	0.7	9
48	Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists. Joule, 2018, 2, 1476-1499.	11.7	255
49	High performance of Mo-doped La0.6Sr0.4Fe0.9Ni0.1O3-l´ perovskites as anode for solid oxide fuel cells. Electrochimica Acta, 2018, 292, 540-545.	2.6	15
50	Microâ€∕Nanohoneycomb Solid Oxide Electrolysis Cell Anodes with Ultralarge Current Tolerance. Advanced Energy Materials, 2018, 8, 1802203.	10.2	40
51	Comprehensive Understanding of Cathodic and Anodic Polarization Effects on Stability of Nanoscale Oxygen Electrode for Reversible Solid Oxide Cells. ACS Applied Materials & Interfaces, 2018, 10, 39608-39614.	4.0	11
52	A Universal Strategy to Design Superior Waterâ€5plitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	11.1	108
53	Investigation of real polarization resistance for electrode performance in proton-conducting electrolysis cells. Journal of Materials Chemistry A, 2018, 6, 18508-18517.	5.2	51
54	Thermally driven <i>in situ</i> exsolution of Ni nanoparticles from (Ni, Gd)CeO ₂ for high-performance solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 18133-18142.	5.2	32
55	Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides. Journal of the American Chemical Society, 2018, 140, 8128-8137.	6.6	49
56	A Highly Efficient and Robust Perovskite Anode with Iron–Palladium Coâ€exsolutions for Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2018, 11, 2593-2603.	3.6	25

#	Article	IF	CITATIONS
57	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
58	Energetics of Nanoparticle Exsolution from Perovskite Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3772-3778.	2.1	65
59	A novel anode for solid oxide fuel cells prepared from phase conversion of La0.3Sr0.7Fe0.7Cr0.3O3-δ perovskite under humid hydrogen. Electrochimica Acta, 2018, 284, 303-313.	2.6	21
60	Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature. Energy Conversion and Management, 2018, 171, 807-814.	4.4	54
61	Porous Scandia-Stabilized Zirconia Layer for Enhanced Performance of Reversible Solid Oxide Cells. ACS Applied Materials & Interfaces, 2018, 10, 25295-25302.	4.0	18
62	Thermally stable and coking resistant CoMo alloy-based catalysts as fuel electrodes for solid oxide electrochemical cells. Journal of Materials Chemistry A, 2018, 6, 15377-15385.	5.2	21
63	Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 15947-15953.	5.2	77
64	Roles of Fe Ni nanoparticles and SrLaFeO4 substrate in the performance and reliability of a composite anode prepared through in-situ exsolution for intermediate temperature solid oxide fuel cells (I). International Journal of Hydrogen Energy, 2018, 43, 10440-10447.	3.8	33
65	Expanding possibilities for solid-phase crystallization by exsolving tunable Pd–NiO core–shell nanostructures. CrystEngComm, 2018, 20, 6372-6376.	1.3	12
66	Nanocatalysts anchored on nanofiber support for high syngas production via methane partial oxidation. Applied Catalysis A: General, 2018, 565, 119-126.	2.2	16
67	Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation. Ionics, 2019, 25, 773-784.	1.2	25
68	Sr-substituted SmBa0.75Ca0.25CoFeO5+ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 770, 616-624.	2.8	10
69	Co-infiltration of Nickel and Mixed Conducting Gd0.1Ce0.9O2â^'Î′ and La0.6Sr0.3Ni0.15Cr0.85O3â~'δ Phases in Ni-YSZ Anodes for Improved Stability and Performance. Jom, 2019, 71, 3835-3847.	0.9	7
70	A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells. Journal of Power Sources, 2019, 438, 226991.	4.0	100
71	Demonstration of hydrogen production in a hybrid lignite-assisted solid oxide electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 22770-22779.	3.8	1
72	Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution. ACS Applied Materials & Interfaces, 2019, 11, 27924-27933.	4.0	74
73	Model System Supported Impedance Simulation of Composite Electrodes. Fuel Cells, 2019, 19, 417-428.	1.5	6
74	Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO2 electroreduction. Journal of Energy Chemistry, 2019, 36, 87-94.	7.1	38

#	Article	IF	CITATIONS
75	Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios. Applied Catalysis B: Environmental, 2019, 258, 117950.	10.8	53
76	In situ exsolution of PdO nanoparticles from non-stoichiometric LaFePd0.05O3+Ĩ′ electrode for impedancemetric NO2 sensor. Sensors and Actuators B: Chemical, 2019, 298, 126827.	4.0	26
77	Study on the Influence of Harbour Channel Excavation on the Stability of Breakwater. IOP Conference Series: Earth and Environmental Science, 2019, 304, 042038.	0.2	0
78	Structural and electrochemical property evolutions of perovskite SOFC anodes: Role of fuel atmosphere in (La0.4Sr0.6)1-Co0.2Fe0.7Nb0.1O3-δ. International Journal of Hydrogen Energy, 2019, 44, 31386-31393.	3.8	14
79	Conformal Electrocatalytic Surface Nanoionics for Accelerating High-Temperature Electrochemical Reactions in Solid Oxide Fuel Cells. Nano Letters, 2019, 19, 8767-8773.	4.5	14
80	Ultrahigh Photocatalytic Rate at a Singleâ€Metalâ€Atomâ€Oxide. Advanced Materials, 2019, 31, e1903491.	11.1	53
81	<i>In Situ</i> Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano, 2019, 13, 12996-13005.	7.3	144
82	Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158525.	1.2	15
83	Enhanced CO2 Electrolysis at Redox Engineered Interfaces. ECS Transactions, 2019, 91, 2565-2570.	0.3	2
84	Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. Journal of Materials Chemistry A, 2019, 7, 20558-20566.	5.2	47
85	Hierarchical dual-porosity nanoscale nickel cermet electrode with high performance and stability. Nanoscale, 2019, 11, 17746-17758.	2.8	8
86	Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH ₄ Conversion. ACS Applied Energy Materials, 2019, 2, 7288-7298.	2.5	63
87	Thermal Stability of an in Situ Exsolved Metallic Nanoparticle Structured Perovskite Type Hydrogen Electrode for Solid Oxide Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 17834-17844.	3.2	50
88	Enhancing the performance of high-temperature H2O/CO2 co-electrolysis process on the solid oxide Sr2Fe1.6Mo0.5O6-δ-SDC/LSGM/Sr2Fe1.5Mo0.5O6-δ-SDC cell. Electrochimica Acta, 2019, 301, 63-68.	2.6	48
89	A-Site Ordered Double Perovskite with in Situ Exsolved Core–Shell Nanoparticles as Anode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 6995-7005.	4.0	67
90	Threshold catalytic onset of carbon formation on CeO ₂ during CO ₂ electrolysis: mechanism and inhibition. Journal of Materials Chemistry A, 2019, 7, 15233-15243.	5.2	19
91	Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering. Electrochimica Acta, 2019, 318, 120-129.	2.6	39
92	Exsolution of Fe–Ni alloy nanoparticles from (La,Sr)(Cr,Fe,Ni)O ₃ perovskites as potential oxygen transport membrane catalysts for methane reforming. Journal of Materials Chemistry A, 2019, 7, 15812-15822.	5.2	47

#	Article	IF	CITATIONS
93	Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends in Chemistry, 2019, 1, 410-424.	4.4	227
94	Insight into the Electrochemical Processes of the Titanate Electrode with in Situ Ni Exsolution for Solid Oxide Cells. ACS Applied Energy Materials, 2019, 2, 4033-4044.	2.5	14
95	Nanostructured Materials and Interfaces for Advanced Ionic Electronic Conducting Oxides. Advanced Materials Interfaces, 2019, 6, 1900462.	1.9	39
96	Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering. Nano Energy, 2019, 62, 64-78.	8.2	75
97	Nanocrystalline nickel–cobalt electrocatalysts to generate hydrogen using alkaline solutions as storage fuel for the renewable energy. International Journal of Hydrogen Energy, 2019, 44, 11411-11420.	3.8	16
98	Facet-Dependent <i>in Situ</i> Growth of Nanoparticles in Epitaxial Thin Films: The Role of Interfacial Energy. Journal of the American Chemical Society, 2019, 141, 7509-7517.	6.6	89
99	High-throughput, super-resolution 3D reconstruction of nano-structured solid oxide fuel cell electrodes and quantification of microstructure-property relationships. Journal of Power Sources, 2019, 427, 112-119.	4.0	26
100	Morphology evolution and exsolution mechanism of a partially decomposed anode for intermediate temperature-solid oxide fuel cells. Electrochimica Acta, 2019, 304, 30-41.	2.6	18
101	Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 629-646.	2.7	27
102	Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles. Electrochimica Acta, 2019, 306, 159-166.	2.6	28
103	Microstructure evolution and kinetics of B-site nanoparticle exsolution from an A-site-deficient perovskite surface: a phase-field modeling and simulation study. Physical Chemistry Chemical Physics, 2019, 21, 10902-10907.	1.3	12
104	Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nature Communications, 2019, 10, 1173.	5.8	93
105	<i>In situ</i> exsolved FeNi ₃ nanoparticles on nickel doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^Î} perovskite for efficient electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2019, 7, 11967-11975.	5.2	159
106	Lattice strain-enhanced exsolution of nanoparticles in thin films. Nature Communications, 2019, 10, 1471.	5.8	114
107	Growth Kinetics of Individual Co Particles Ex-solved on SrTi _{0.75} Co _{0.25} O _{3-1´} Polycrystalline Perovskite Thin Films. Journal of the American Chemical Society, 2019, 141, 6690-6697.	6.6	75
108	Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nature Communications, 2019, 10, 1550.	5.8	59
109	Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nature Nanotechnology, 2019, 14, 245-251.	15.6	84
110	Pd-doped lanthanum ferrites for symmetric solid oxide fuel cells (SSOFCs). Materialia, 2019, 8, 100460.	1.3	8

#	Article	IF	CITATIONS
111	Synthesis and Evaluation of the A-Site Deficient Perovskite La0.65Sr0.3Cr0.85Ni0.15O3-l̂´as Fuel Electrode for High Temperature Co-Electrolysis Enhanced by In Situ Exsolution of Ni Nanoparticles. ECS Transactions, 2019, 91, 1751-1760.	0.3	3
112	Synthesis and characterization of multiwalled carbon nanotubes supported LaxCalâ^'xMnO3 (x = 0.2,) Tj ETQq1 1	8.78431	4 rgBT /Ove
113	A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with <i>in situ</i> metal exsolution. Journal of Materials Chemistry A, 2019, 7, 26944-26953.	5.2	37
114	Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers. Nano Energy, 2019, 57, 186-194.	8.2	36
115	The role of hydrogen and fuel cells in the global energy system. Energy and Environmental Science, 2019, 12, 463-491.	15.6	2,253
116	Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2020, 14, 359-382.	1.2	40
117	High performance and stability of nanocomposite oxygen electrode for solid oxide cells. International Journal of Hydrogen Energy, 2020, 45, 5554-5564.	3.8	18
118	Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy and Environmental Science, 2020, 13, 53-85.	15.6	178
119	Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr,Ba)2Mn2-yFeyO5+l´layered perovskites for SOEC cathodes. Applied Catalysis B: Environmental, 2020, 268, 118389.	10.8	58
120	In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Coâ€Doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^'} <i>_{1´}</i> Cathode for CO ₂ Electrolysis. Advanced Materials, 2020, 32, e1906193.	11.1	185
121	<i>In situ</i> exsolution of Ni particles on the PrBaMn ₂ O ₅ SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen. Journal of Materials Chemistry A, 2020, 8, 3590-3597.	5.2	20
122	Robust redox-reversible perovskite type steam electrolyser electrode decorated with <i>in situ</i> exsolved metallic nanoparticles. Journal of Materials Chemistry A, 2020, 8, 582-591.	5.2	47
123	FeNbO4-based oxide cathode for steam electrolysis. Solid State Ionics, 2020, 345, 115181.	1.3	9
124	Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases. ACS Catalysis, 2020, 10, 1278-1288.	5.5	52
125	Revising the role of chromium on the surface of perovskite electrodes: Poison or promoter for the solid oxide electrolysis cell performance?. Journal of Catalysis, 2020, 381, 520-529.	3.1	9
126	Recent advances in solid oxide cell technology for electrolysis. Science, 2020, 370, .	6.0	505
127	A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in-situ exsolved nickel nanoparticles in the anode. Ceramics International, 2020, 46, 19952-19959.	2.3	32
128	Construction of Multifunctional Nanoarchitectures in One Step on a Composite Fuel Catalyst through In Situ Exsolution of La _{0.5} Sr _{0.5} O.5Sr _{0.5} Fe _{0.8} Ni _{0.1} Nb _{0.1} O.1ACS	4.0	23

ARTICLE IF CITATIONS Rationally structuring proton-conducting solid oxide fuel cell anode with Ni metal catalyst and 129 2.3 5 porous skeleton. Ceramics International, 2020, 46, 24038-24044. Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7, 2519-2565. 139 6.4 Surface decorated La0.43Ca0.37Ni0.06Ti0.94O3a[^]d as an anode functional layer for solid oxide fuel cell 131 1.2 3 applications. Korean Journal of Chemical Engineering, 2020, 37, 1440-1444. Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate. ACS Applied 4.0 24 Materials & amp; Interfaces, 2020, 12, 37444-37453. Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in 133 2.5 152 Cathode Development. Energy & amp; Fuels, 2020, 34, 15169-15194. Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering 1.2 technology. Korean Journal of Chemical Engineering, 2020, 37, 1436-1439. Organic Photochemistry-Assisted Nanoparticle Segregation on Perovskites. Cell Reports Physical 135 2.8 11 Science, 2020, 1, 100243. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical 4.0 29 solid oxide cell. Journal of Power Sources, 2020, 475, 228620. <i>In situ</i> exsolved Co nanoparticles coupled on LiCoO₂ nanofibers to induce oxygen 137 electrocatalysis for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 5.2 27 19946-19953. Iron stabilized 1/3 A-site deficient Laâ€"Tiâ€"O perovskite cathodes for efficient CO₂ 5.2 electroreduction. Journal of Materials Chemistry A, 2020, 8, 21053-21061. Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nature 139 5.846 Communications, 2020, 11, 4801. In-operando gas switching to suppress the degradation of symmetrical solid oxide fuel cells. Journal 4.0 of Power Sources, 2020, 476, 228630. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on 141 4.7 79 perovskite via atomic layer deposition. Science Advances, 2020, 6, eabb1573. Tailoring the Surface of Perovskite through In Situ Growth of Ru/RuO₂ Nanoparticles as Robust Symmetrical Electrodes for Reversible Solid Oxide Cells. Advanced Materials Interfaces, 2020, 142 7,2000828. Rapid Laser Processing of Thin Srâ€Doped LaCrO_{3–<i>Î</i>} Interconnects for Solid Oxide 143 1.8 5 Fuel Cells. Energy Technology, 2020, 8, 2000364. Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti,Fe)O_{3â[~]δ}-based fuel electrodes for electricity generation and hydrogen production. 144 Journal of Materials Chemistry A, 2020, 8, 25867-25879. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells. 145 1.9 34 Nanomaterials, 2020, 10, 2445. PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water 146 oxidation performance. Applied Catalysis B: Environmental, 2020, 272, 119046.

#	Article	IF	CITATIONS
147	Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell. Renewable Energy, 2020, 158, 410-420.	4.3	20
148	The role of doping and microstructure on hydrogen solubility in monoclinic ZrO2: Experimental validations of simulated defect chemistry. Acta Materialia, 2020, 195, 172-183.	3.8	3
149	A mesoporous catalytic fiber architecture decorated by exsolved nanoparticles for reversible solid oxide cells. Journal of Power Sources, 2020, 468, 228349.	4.0	14
150	Control of transition metal–oxygen bond strength boosts the redox ex-solution in a perovskite oxide surface. Energy and Environmental Science, 2020, 13, 3404-3411.	15.6	36
151	A novel catalytic membrane reactor with homologous exsolution-based perovskite catalyst. Journal of Membrane Science, 2020, 608, 118213.	4.1	23
152	Accelerating effect of polarization on electrode/electrolyte interface generation and electrocatalytic performance of Er0.4Bi1.6O3 decorated Sm0.95CoO3-δ cathodes. Journal of Power Sources, 2020, 465, 228281.	4.0	20
153	The role of manganese substitution on the redox behavior of La0.6Sr0.4Fe0.8Mn0.2O3-δ. Journal of the European Ceramic Society, 2020, 40, 4076-4083.	2.8	20
154	<i>In Situ</i> Exsolved Metal Nanoparticles: A Smart Approach for Optimization of Catalysts. Chemistry of Materials, 2020, 32, 5424-5441.	3.2	89
155	One pot solvent assisted syntheses of Ag ₃ SbS ₃ nanocrystals and exploring their phase dependent electrochemical behavior toward oxygen reduction reaction and visible light induced methanol oxidation reaction. Dalton Transactions, 2020, 49, 9464-9479.	1.6	11
156	Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	32
157	Materials for reversible solid oxide cells. Current Opinion in Electrochemistry, 2020, 21, 265-273.	2.5	72
158	Electrochemical performance and anode reaction process for Ca doped Sr2Fe1·5Mo0·5O6-δ as electrodes for symmetrical solid oxide fuel cells. Electrochimica Acta, 2020, 341, 136067.	2.6	44
159	Progress and Opportunities for Exsolution in Electrochemistry. Electrochem, 2020, 1, 32-43.	1.7	21
160	Hard and soft Xâ€ray photoelectron spectroscopy for selective probing of surface and bulk chemical compositions in a perovskiteâ€type Ni catalyst. Surface and Interface Analysis, 2020, 52, 811-817.	0.8	11
161	Enhancing perovskite electrocatalysis through synergistic functionalization of B-site cation for efficient water splitting. Chemical Engineering Journal, 2020, 401, 126082.	6.6	39
162	An Up-scalable, Infiltration-Based Approach for Improving the Durability of Ni/YSZ Electrodes for Solid Oxide Cells. Journal of the Electrochemical Society, 2020, 167, 024519.	1.3	23
163	Proton-conducting oxides for energy conversion and storage. Applied Physics Reviews, 2020, 7, .	5.5	249
164	BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells. Ceramics International, 2020, 46, 11811-11818.	2.3	30

	CITATION	Report	
#	Article	IF	CITATIONS
165	Progress in perovskite anodes for intermediate-temperature solid oxide fuel cells. , 2020, , 195-261.		1
166	Exploring Ni(Mn _{1/3} Cr _{2/3}) ₂ O ₄ spinel-based electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 3988-3998.	5.2	27
167	Ni-Fe Bimetallic Nanocatalysts Produced by Topotactic Exsolution in Fe deposited PrBaMn _{1.7} Ni _{0.3} O _{5+<i>δ</i>} for Dry Reforming of Methane. Journal of the Electrochemical Society, 2020, 167, 064518.	1.3	18
168	Metal Nanoparticle Exsolution on a Perovskite Stannate Support with High Electrical Conductivity. Nano Letters, 2020, 20, 3538-3544.	4.5	30
169	Review on exsolution and its driving forces in perovskites. JPhys Energy, 2020, 2, 032001.	2.3	75
170	Reaction tuned formation of hierarchical BaCo0.4Fe0.4Zr0.1Y0.1O3-ſ´ cathode. Journal of Power Sources, 2020, 455, 227971.	4.0	15
171	High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. Journal of Energy Chemistry, 2021, 54, 736-745.	7.1	66
172	A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell. Catalysis Today, 2021, 364, 89-96.	2.2	13
173	Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles. Journal of Power Sources, 2021, 482, 228981.	4.0	36
174	Understanding the A-site non-stoichiometry in perovskites: promotion of exsolution of metallic nanoparticles and the hydrogen oxidation reaction in solid oxide fuel cells. Sustainable Energy and Fuels, 2021, 5, 401-411.	2.5	26
175	New Insight into the Doped Strontium Titanate Cathode with In Situ Exsolved Nickel Nanoparticles for Electrolysis of Carbon Dioxide. Advanced Materials Interfaces, 2021, 8, 2001598.	1.9	13
176	Cobalt-free perovskite Ba1-xNdxFeO3-δ air electrode materials for reversible solid oxide cells. Ceramics International, 2021, 47, 7985-7993.	2.3	20
177	Perovskite oxides as supercapacitive electrode: Properties, design and recent advances. Coordination Chemistry Reviews, 2021, 431, 213680.	9.5	42
178	α-PbO2-type niobate as efficient cathode materials for steam and CO2 electrolysis. Journal of Power Sources, 2021, 483, 229234.	4.0	9
179	High-performance direct carbon dioxide-methane solid oxide fuel cell with a structure-engineered double-layer anode. Journal of Power Sources, 2021, 484, 229199.	4.0	42
180	Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy, 2021, 82, 105707.	8.2	67
181	Rare earth elements based oxide ion conductors. Inorganic Chemistry Frontiers, 2021, 8, 1374-1398.	3.0	24
182	A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells. Applied Catalysis B: Environmental, 2021, 282, 119553.	10.8	56

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
183	Ce-enhanced LaMnO ₃ perovskite catalyst with exsolved Ni particles for H ₂ production from CH ₄ dry reforming. Sustainable Energy and Fuels, 2021, 5, 5481-5489.	2.5	3
184	Tailoring of a catalyst La0.8Ce0.1Ni0.4Ti0.6O3â~î^ interlayer via in situ exsolution for a catalytic membrane reactor. Reaction Chemistry and Engineering, 2021, 6, 1395-1403.	1.9	2
185	Progress of Exsolved Metal Nanoparticles on Oxides as High Performance (Electro)Catalysts for the Conversion of Small Molecules. Small, 2021, 17, e2005383.	5.2	53
186	Exsolution of Embedded Nanoparticles in Defect Engineered Perovskite Layers. ACS Nano, 2021, 15, 4546-4560.	7.3	18
187	Upscaling of Coâ€Impregnated La _{0.20} Sr _{0.25} Ca _{0.45} TiO ₃ Anodes for Solid Oxide Fuel Cells: A Progress Report on a Decade of Academicâ€Industrial Collaboration. Advanced Energy Materials, 2021, 11, 2003951.	10.2	13
188	Emergence and Future of Exsolved Materials. Small, 2021, 17, e2006479.	5.2	86
189	Progress and challenges of ceramics for supercapacitors. Journal of Materiomics, 2021, 7, 1198-1224.	2.8	15
190	Achieving Strong Coherency for a Composite Electrode via One-Pot Method with Enhanced Electrochemical Performance in Reversible Solid Oxide Cells. ACS Catalysis, 2021, 11, 3704-3714.	5.5	36
191	Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances. Progress in Natural Science: Materials International, 2021, 31, 341-372.	1.8	39
192	In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. Applied Surface Science, 2021, 543, 148817.	3.1	24
193	Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems. Journal of Power Sources, 2021, 492, 229626.	4.0	17
194	Activation Strategies of Perovskiteâ€Type Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	4.6	29
195	Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability. Chemical Engineering Journal, 2021, 410, 128318.	6.6	29
196	Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells. Applied Catalysis B: Environmental, 2021, 285, 119828.	10.8	27
197	Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. Nature Chemistry, 2021, 13, 677-682.	6.6	61
198	Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells. Renewable and Sustainable Energy Reviews, 2021, 143, 110918.	8.2	78
199	Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La,Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction. Applied Catalysis B: Environmental, 2021, 286, 119917.	10.8	42
200	Tuning Point Defects by Elastic Strain Modulates Nanoparticle Exsolution on Perovskite Oxides. Chemistry of Materials, 2021, 33, 5021-5034.	3.2	36

#	Article	IF	CITATIONS
201	Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell. ACS Applied Materials & Interfaces, 2021, 13, 35719-35728.	4.0	35
202	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	2.3	40
203	Enhanced Electrochemical Performance of the Fe-Based Layered Perovskite Oxygen Electrode for Reversible Solid Oxide Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 34282-34291.	4.0	27
204	Controlling exsolution with a charge-balanced doping approach. Nano Energy, 2021, 87, 106193.	8.2	9
205	Investigation of a self-assembled Sr0.74La0.26CoO3-δ-SrZr0.79Co0.21O3-δ composite with hierarchical structure as intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2021, 506, 230230.	4.0	11
206	Rational design of CO2 electroreduction cathode via in situ electrochemical phase transition. Journal of Energy Chemistry, 2022, 66, 603-611.	7.1	7
207	Applications and recent advances of rare earth in solid oxide fuel cells. Journal of Rare Earths, 2022, 40, 1668-1681.	2.5	35
208	Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6â^î´ via repeated redox manipulations for CO2 electrolysis. Nature Communications, 2021, 12, 5665.	5.8	102
209	In-situ exsolved FeNi nanoparticles on perovskite matrix anode for co-production of ethylene and power from ethane in proton conducting fuel cells. Electrochimica Acta, 2021, 393, 139096.	2.6	17
210	Electrochemical exsolution of Ag nanoparticles from AgNbO3 sensing electrode for enhancing the performance of mixed potential type NH3 sensors. Sensors and Actuators B: Chemical, 2021, 344, 130296.	4.0	11
211	Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells. Science Advances, 2021, 7, eabj8590.	4.7	16
212	Theoretical insights on the exsolved behavior of ruthenium atom in titanate perovskite. Applied Surface Science, 2021, 566, 150641.	3.1	5
213	In-situ exsolution of Ni nanoparticles to achieve an active and stable solid oxide fuel cell anode catalyst on A-site deficient La0.4Sr0.4Ti0.94Ni0.06O3-δ. Journal of Industrial and Engineering Chemistry, 2021, 103, 264-274.	2.9	17
214	In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion. Applied Catalysis B: Environmental, 2021, 298, 120588.	10.8	16
215	Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach. Energy, 2022, 238, 121821.	4.5	28
216	Mo-doping allows high performance for a perovskite cathode applied in proton-conducting solid oxide fuel cells. Sustainable Energy and Fuels, 2021, 5, 4261-4267.	2.5	27
217	Unveiling the Interface Structure of the Exsolved Co–Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 3287-3294.	4.0	8
218	<i>A</i> -site deficient chromite with <i>in situ</i> Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9, 5685-5701.	5.2	22

#	Article	IF	CITATIONS
219	<i>In Situ</i> exsolved Au nanoparticles from perovskite oxide for efficient epoxidation of styrene. Journal of Materials Chemistry A, 2021, 9, 10374-10384.	5.2	19
220	Replacement of Ca by Ni in a Perovskite Titanate to Yield a Novel Perovskite Exsolution Architecture for Oxygenâ€Evolution Reactions. Advanced Energy Materials, 2020, 10, 1903693.	10.2	53
221	Facilitating oxygen reduction by silver nanoparticles on lanthanum strontium ferrite cathode. Journal of Solid State Electrochemistry, 2020, 24, 609-621.	1.2	8
222	Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS Nano, 2021, 15, 81-110.	7.3	95
223	In situ and operando characterisation techniques for solid oxide electrochemical cells: recent advances. JPhys Energy, 2021, 3, 012001.	2.3	10
224	Unraveling the evolution of exsolved Fe–Ni alloy nanoparticles in Ni-doped La _{0.3} Ca _{0.7} Fe _{0.7} Cr _{0.3} O _{3â[^]<i>î[^]</i>} and their role in enhancing CO ₂ –CO electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 2280-2294.	5.2	12
225	Activating Lattice Oxygen in Perovskite Oxide by Bâ€Site Cation Doping for Modulated Stability and Activity at Elevated Temperatures. Advanced Science, 2021, 8, e2102713.	5.6	44
226	Examining Operando Generated Ni-Based Alloy Nanomaterials as Fuel Electrodes in Solid Oxide Cells. Journal of the Electrochemical Society, 2021, 168, 104514.	1.3	4
227	Elucidating the Strain–Vacancy–Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde. Small, 2021, 17, e2102970.	5.2	29
228	Roadmap for Sustainable Mixed Ionicâ€Electronic Conducting Membranes. Advanced Functional Materials, 2022, 32, .	7.8	49
229	Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides. Small Methods, 2021, 5, e2100868.	4.6	19
230	Emerging anode materials architectured with NiCoFe ternary alloy nanoparticles for ethane-fueled protonic ceramic fuel cells. Journal of Power Sources, 2021, 515, 230634.	4.0	9
231	Solid Oxide Fuel Cell Materials. , 2018, , 175-215.		0
232	High Temperature Co-electrolysis – A Route to Syngas. Inorganic Materials Series, 2019, , 42-99.	0.5	1
233	La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 617.	0.6	3
234	Exsolution Synthesis of Nanocomposite Perovskites with Tunable Electrical and Magnetic Properties. Advanced Functional Materials, 2022, 32, 2108005.	7.8	20
235	Heterogeneity in the Mo doped La0.55Sr0.45FeO3 cathode for direct CO2 electrolysis. Chemical Engineering Journal, 2022, 433, 133632.	6.6	16
236	Unveiling the key factor for the phase reconstruction and exsolved metallic particle distribution in perovskites. Nature Communications, 2021, 12, 6814.	5.8	28

#	Article	IF	CITATIONS
237	Heterostructure interface effect on the ORR/OER kinetics of Ag–PrBa _{0.5} Sr _{0.5} Co ₂ O _{5+δ} for highâ€efficiency Li–O ₂ battery. Journal of the American Ceramic Society, 2022, 105, 2690-2701.	1.9	7
238	Iron-based electrode materials for solid oxide fuel cells and electrolysers. Energy and Environmental Science, 2021, 14, 6287-6319.	15.6	48
239	Highly promoted electrocatalytic activity of spinel CoFe ₂ O ₄ by combining with Er _{0.4} Bi _{1.6} O ₃ as a bifunctional oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2022, 10, 2045-2054.	5.2	6
240	A review on recent advances and trends in symmetrical electrodes for solid oxide cells. Journal of Power Sources, 2022, 520, 230852.	4.0	58
241	Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects – A review. Solid State Ionics, 2022, 375, 115833.	1.3	22
242	Development of intertwined nanostructured multi-phase air electrodes for efficient and durable reversible solid oxide cells. Applied Catalysis B: Environmental, 2022, 305, 121056.	10.8	16
243	A Robust Approach to In Situ Exsolve Highly Dispersed and Stable Electrocatalysts. Small, 2022, 18, e2105741.	5.2	2
244	Layered-perovskite oxides with <i>in situ</i> exsolved Co–Fe alloy nanoparticles as highly efficient electrodes for high-temperature carbon dioxide electrolysis. Journal of Materials Chemistry A, 2022, 10, 2327-2335.	5.2	26
245	Bulk and surface exsolution produces a variety of Fe-rich and Fe-depleted ellipsoidal nanostructures in La _{0.6} Sr _{0.4} FeO ₃ thin films. Nanoscale, 2022, 14, 663-674.	2.8	9
246	Nanoscale interface engineering for solid oxide fuel cells using atomic layer deposition. Nanoscale Advances, 2022, 4, 1060-1073.	2.2	13
247	Exsolution of nanoparticles on A-site-deficient lanthanum ferrite perovskites: its effect on co-electrolysis of CO ₂ and H ₂ O. Journal of Materials Chemistry A, 2022, 10, 2483-2495.	5.2	13
248	<i>In situ</i> construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO ₂ reduction electrocatalysts for high performance solid oxide electrolysis cells. Journal of Materials Chemistry A, 2022, 10, 2509-2518.	5.2	30
249	Bariumâ€doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â€} <i>_δ</i> perovskite anode materials for protonic ceramic fuel cells for ethane conversion. Journal of the American Ceramic Society, 2022, 105, 3613-3624.	1.9	9
250	Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxides. Energy and Environmental Science, 2022, 15, 1097-1105.	15.6	33
251	Electrochemically reconstructed perovskite with cooperative catalytic sites for CO2-to-formate conversion. Applied Catalysis B: Environmental, 2022, 306, 121101.	10.8	14
252	Ceria Nanoparticles as Promoters of Co2 Electroreduction on Ni/Ysz: An Efficient Preparation Strategy and Insights into the Catalytic Promotion Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
253	Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science, 2022, 15, 2200-2232.	15.6	87
254	Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water. Polymers, 2022, 14, 768.	2.0	11

#	Article	IF	CITATIONS
255	Lowâ€Temperature Exsolution of Ni–Ru Bimetallic Nanoparticles from Aâ€Site Deficient Double Perovskites. Small, 2022, 18, e2107020.	5.2	7
256	A Flexible Method to Fabricate Exsolutionâ€Based Nanoparticleâ€Decorated Materials in Seconds. Advanced Science, 2022, 9, e2200250.	5.6	14
257	Investigate the multi-physics performance of a new fuel cell stack by a 3D large-scale model basing on realistic structures. International Journal of Hydrogen Energy, 2023, 48, 7085-7095.	3.8	5
258	Enhanced oxygen and hydrogen evolution activities of Pt/LaCoO3 perovskite oxide via in-situ exsolution of Pt nanoparticles. Journal of Chemical Sciences, 2022, 134, 1.	0.7	8
259	Synthesizing Functional Ceramic Powders for Solid Oxide Cells in Minutes through Thermal Shock. ACS Energy Letters, 2022, 7, 1223-1229.	8.8	6
260	The metal/oxide heterointerface delivered by solid-based exsolution strategy: A review. Chemical Engineering Journal, 2022, 440, 135868.	6.6	23
261	Shape-shifting nanoparticles on a perovskite oxide for highly stable and active heterogeneous catalysis. Chemical Engineering Journal, 2022, 441, 136025.	6.6	13
262	In-situ exsolution of cobalt nanoparticles from La0.5Sr0.5Fe0.8Co0.2O3-δ cathode for enhanced CO2 electrolysis performance. Green Chemical Engineering, 2022, 3, 250-258.	3.3	7
263	Sol-Gel Combustion-Assisted Electrostatic Spray Deposition for Durable Solid Oxide Fuel Cell Cathodes. Frontiers in Chemistry, 2022, 10, 873758.	1.8	6
264	Fly ash to improve density and ionic conductivity of solid oxide cell electrolytes. Materials Today Communications, 2022, , 103546.	0.9	1
265	Anodic Shock-Triggered Exsolution of Metal Nanoparticles from Perovskite Oxide. Journal of the American Chemical Society, 2022, 144, 7657-7666.	6.6	15
266	Robust Ruddlesdenâ€Popper phase Sr ₃ Fe _{1.3} Mo _{0.5} N _{i0.2} O _{7â€Î} decorated with inâ€situ exsolved Ni nanoparticles as an efficient anode for hydrocarbon fueled solid oxide fuel cells. SusMat, 2022, 2, 487-501.	7.8	18
267	Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3â^î^ for efficient oxygen evolution reaction. Nano Research, 2022, 15, 6977-6986.	5.8	34
268	Manipulation of rare earth on voltage-driven in-situ exsolution process of perovskite cathodes for low-temperature solid oxide fuel cells. Chemical Engineering Journal, 2022, 446, 136934.	6.6	7
269	Engineering surface segregation of perovskite oxide through wet exsolution for CO catalytic oxidation. Journal of Hazardous Materials, 2022, 436, 129110.	6.5	7
270	Fabrication and Performance of Micro-Tubular Solid Oxide Cells. Energies, 2022, 15, 3536.	1.6	4
271	Recent advance in physical description and material development for single component SOFC: A mini-review. Chemical Engineering Journal, 2022, 444, 136533.	6.6	50
272	Toward enhanced oxygen evolution on NaBH4 treated Ba0.5Sr0.5Co0.8Fe0.2O3â~î^ nanofilm: Insights into the facilitated surface reconstruction. Materials Today Energy, 2022, 27, 101046.	2.5	5

#	Article	IF	CITATIONS
273	Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Applied Catalysis B: Environmental, 2022, 314, 121517.	10.8	16
274	Metal nanoparticles at grain boundaries of titanate toward efficient carbon dioxide electrolysis. Journal of Materials Chemistry A, 0, , .	5.2	3
275	Nanostructured spinel Mn1.3Co1.3Cu0.4O4 as a bifunctional electrocatalyst for high-performance solid oxide electrochemical cells at intermediate temperatures. Journal of Power Sources, 2022, 539, 231611.	4.0	9
276	Synergistic interaction between in situ exsolved and phosphorized nanoparticles and perovskite oxides for enhanced electrochemical water splitting. International Journal of Hydrogen Energy, 2022, 47, 20016-20026.	3.8	6
277	A Highly Efficient Bifunctional Electrode Fashioned with In Situ Exsolved NiFe Alloys for Reversible Solid Oxide Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 7595-7602.	3.2	12
278	Surface Modified Perovskite Srco0.8fe0.1nb0.1o3-î" Oxide for Enhanced Electrocatalytic Activity of Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
279	Ionic Liquid-Assisted Exsolution of High-Density Cu Nanoparticles on La1.568sr0.392ce0.04nicuxo4-Δ as Cathode for Zn-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
280	Oxygen reduction reaction in solid oxide fuel cells. , 2022, , 379-426.		0
281	Dynamic Surface Evolution of Metal Oxides for Autonomous Adaptation to Catalytic Reaction Environments. Advanced Materials, 2023, 35, .	11.1	1
282	Effect of particle size distribution on crystallization behavior of glassâ€based seals in reversible solid oxide cells. Journal of the American Ceramic Society, 0, , .	1.9	0
283	Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. ACS Catalysis, 2022, 12, 7696-7708.	5.5	7
284	La0.5Ba0.5CuxFe1â^'xO3â^'δ as cathode for high-performance proton-conducting solid oxide fuel cell. Separation and Purification Technology, 2022, 297, 121485.	3.9	9
285	Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Applied Catalysis B: Environmental, 2022, 316, 121627.	10.8	16
286	Improvement Co2 Eletrocatalytic Activity of Lctn Fuel Electrode for Solid Oxide Electrolysis Cells Via an Electro-Reduction Activation Strategy. SSRN Electronic Journal, 0, , .	0.4	0
287	Tracking the nanoparticle exsolution/reoxidation processes of Ni-doped SrTi _{0.3} Fe _{0.7} O _{3â~'<i>δ</i>} electrodes for intermediate temperature symmetric solid oxide fuel cells. Journal of Materials Chemistry A, 2022, 10, 15554-15568.	5.2	14
288	Phase transition with <i>in situ</i> exsolution nanoparticles in the reduced Pr _{0.5} Ba _{0.5} Fe _{0.8} Ni _{0.2} O _{3â^'<i>δ</i>} electrode for symmetric solid oxide cells. Journal of Materials Chemistry A, 2022, 10, 16490-16496.	5.2	29
289	Exsolution-Driven Surface Transformation in the Host Oxide. Nano Letters, 2022, 22, 5401-5408.	4.5	23
290	Operational Aspects of a Perovskite Chromite-Based Fuel Electrode in Solid Oxide Electrolysis Cells (SOEC). ACS Applied Energy Materials, 2022, 5, 8143-8156.	2.5	7

#	Article	IF	CITATIONS
291	Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion. Exploration, 2022, 2, .	5.4	5
292	Exsolution of phase-separated nanoparticles via trigger effect toward reversible solid oxide cell. Applied Energy, 2022, 323, 119615.	5.1	10
293	A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells. Separation and Purification Technology, 2022, 298, 121581.	3.9	16
294	Ceria nanoparticles as promoters of CO2 electroreduction on Ni/YSZ: An efficient preparation strategy and insights into the catalytic promotion mechanism. Nano Energy, 2022, 101, 107564.	8.2	8
295	Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nature Communications, 2022, 13, .	5.8	27
296	Redox-manipulated RhO nanoclusters uniformly anchored on Sr2Fe1.45Rh0.05Mo0.5O6–δ perovskite for CO2 electrolysis. Fundamental Research, 2022, , .	1.6	2
297	Assessing performance degradation induced by thermal cycling in solid oxide cells. Energy Conversion and Management, 2022, 270, 116239.	4.4	7
298	Surface modified perovskite SrCo0.8Fe0.1Nb0.1O3-Ĩ oxide for enhanced electrocatalytic activity of oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 923, 116824.	1.9	0
299	Ionic liquid-assisted exsolution of high-density Cu nanoparticles on La1.568Sr0.392Ce0.04NiCuxO4-δas cathode for Zn-air batteries. Chemical Engineering Journal, 2023, 451, 139037.	6.6	4
300	A critical review of the nano-structured electrodes of solid oxide cells. Chemical Communications, 2022, 58, 10619-10626.	2.2	9
301	Reactivation of chromia poisoned oxygen exchange kinetics in mixed conducting solid oxide fuel cell electrodes by serial infiltration of lithia. Energy and Environmental Science, 2022, 15, 4038-4047.	15.6	10
302	The facilitated cathodic elementary reactions of solid oxide electrolysis cells for CO ₂ conversion over a Ce decorated La _{0.43} Ca _{0.37} Ti _{0.94} Ni _{0.06} O _{3â^'<i>δ</i>} electrocatalyst, lournal of Materials Chemistry A, 2022, 10, 20350-20364.	5.2	9
303	Tunable Magnetism and Morphology of Ferromagnetic Nanocups in Perovskite Ferroelectric Films via Co Exsolution of Transition Metals. ACS Applied Electronic Materials, 2022, 4, 4499-4506.	2.0	2
304	CO2 High-Temperature Electrolysis Technology Toward Carbon Neutralization in the Chemical Industry. Engineering, 2023, 21, 101-114.	3.2	8
305	Ultrafast Ambient-Air Exsolution on Metal Oxide via Momentary Photothermal Effect. ACS Nano, 2022, 16, 18133-18142.	7.3	8
306	Exceptionally Highâ€Performance Reversible Solid Oxide Electrochemical Cells with Ultrathin and Defectâ€Free Sm _{0.075} Nd _{0.075} Ce _{0.85} O _{2â€F} Interlayers. Advanced Functional Materials, 2022, 32, .	7.8	7
307	Rapid Plasma Exsolution from an Aâ€site Deficient Perovskite Oxide at Room Temperature. Advanced Energy Materials, 2022, 12, .	10.2	13
308	Current Status and Future Prospects of Power-To-Hydrogen Towards 100% Renewable Energy. Lecture Notes in Energy, 2022, , 667-690.	0.2	0

#	Article	IF	CITATIONS
309	Atomically Interfacial Engineering on Molybdenum Nitride Quantum Dots Decorated Nâ€doped Graphene for Highâ€Rate and Stable Alkaline Hydrogen Production. Advanced Science, 2022, 9, .	5.6	15
310	A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures. Chinese Journal of Chemical Engineering, 2023, 56, 25-32.	1.7	5
311	Magnesium-Doped Sr2(Fe,Mo)O6â^´î´Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells. Membranes, 2022, 12, 1006.	1.4	4
312	Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films. Nature Communications, 2022, 13, .	5.8	12
313	Metal exsolution engineering on perovskites for electrocatalysis: a perspective. Materials Today Energy, 2023, 31, 101216.	2.5	7
314	Interfacial electron transfer in heterojunction nanofibers for highly efficient oxygen evolution reaction. Nanoscale, 0, , .	2.8	3
315	Enhancing puncture voltage of La0.8Sr0.2Ga0.8Mg0.2O3-δ solid electrolyte membrane by improving CO2 reduction kinetics. Journal of Power Sources, 2023, 556, 232482.	4.0	2
316	In situ/operando regulation of the reaction activities on hetero-structured electrodes for solid oxide cells. Progress in Materials Science, 2023, 133, 101050.	16.0	22
317	Tailoring the Stability of Ti-Doped Sr2Fe1.4TixMo0.6â^'xO6â^'δ Electrode Materials for Solid Oxide Fuel Cells. Materials, 2022, 15, 8268.	1.3	0
318	Controlling the Size of Au Nanoparticles on Reducible Oxides with the Electrochemical Potential. Journal of the American Chemical Society, 2022, 144, 21926-21938.	6.6	6
319	Electrochemical Performance of Pr _{0.4} Sr _{0.5} Co _{<i>x</i>} Fe _{0.9–<i>x</i>} Mo _{0.1} O Oxides in a Reversible SOFC/SOEC System. Energy & Fuels, 2022, 36, 15165-15176.	< зир >3â^'	Î′<¢sub>
320	Advances in component and operation optimization of solid oxide electrolysis cell. Chinese Chemical Letters, 2023, 34, 108035.	4.8	2
321	Ni/NiO Exsolved Perovskite La _{0.2} Sr _{0.7} Ti _{0.9} Ni _{0.1} O _{3â^{~1}Î} for Semiconductor-Ionic Fuel Cells: Roles of Electrocatalytic Activity and Physical Junctions. ACS Applied Materials & amp; Interfaces, 2023, 15, 870-881.	4.0	13
322	Application of CuNi–CeO2 fuel electrode in oxygen electrode supported reversible solid oxide cell. International Journal of Hydrogen Energy, 2023, 48, 9565-9573.	3.8	3
323	A novel exsolution technique—twice lasers: rapidly aroused explosive exsolution of nanoparticles to boost electrochemical performance. Nanotechnology, 2023, 34, 105709.	1.3	0
324	A critical review of key materials and issues in solid oxide cells. , 2023, 2, 111-136.		11
325	Advancing Electrode Properties through Functionalization for Solid Oxide Cells Application: A Review. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
326	Fast Surface Oxygen Release Kinetics Accelerate Nanoparticle Exsolution in Perovskite Oxides. Journal of the American Chemical Society, 2023, 145, 1714-1727.	6.6	12

#	Article	IF	CITATIONS
327	Optimizing La1-xSrxFeO3-l´ electrodes for symmetrical reversible solid oxide cells. International Journal of Hydrogen Energy, 2023, 48, 11045-11057.	3.8	4
328	Exsolution Modeling and Control to Improve the Catalytic Activity of Nanostructured Electrodes. Advanced Materials, 2023, 35, .	11.1	2
329	A-site deficient titanate perovskite surface with exsolved nickel nanoparticles for ethanol steam reforming. Chemical Engineering Science, 2023, 274, 118690.	1.9	3
330	Fabrication of anode supported solid oxide electrolysis cell with the co-tape casting technique and study on co-electrolysis characteristics. Journal of Power Sources, 2023, 569, 232912.	4.0	9
331	In situ Construction of Metal/Perovskite Interfaces with Exsolved FeNi Alloy Nanoparticles for High-Temperature CO ₂ Electrolysis. Energy & Fuels, 2023, 37, 3102-3109.	2.5	2
332	Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers. Chemical Reviews, 2023, 123, 7119-7192.	23.0	47
333	Improvement CO ₂ Electrocatalytic Activity of LCTN Fuel Electrode for Solid Oxide Electrolysis Cells via an Electro-Reduction Activation Strategy. Journal of the Electrochemical Society, 2023, 170, 034501.	1.3	2
334	Applied current on the suppression of strontium segregation in Sr2Fe1.5Mo0.5O6-δ electrode for improved oxygen evolution reaction. Applied Materials Today, 2023, 31, 101769.	2.3	1
335	Synthesis and characterisation of a ceria-based cobalt-zinc anode nanocomposite for low-temperature solid oxide fuel cells (LT-SOFCs). Electrochimica Acta, 2023, 445, 142057.	2.6	6
336	Boosting the performance and durability of heterogeneous electrodes for solid oxide electrochemical cells utilizing a data-driven powder-to-power framework. Science Bulletin, 2023, 68, 516-527.	4.3	6
337	Palladium exsolution and dissolution with lanthanum ferrite perovskite oxides. Journal of Materials Science, 2023, 58, 5178-5185.	1.7	1
338	Exsolved catalyst particles as a plaything of atmosphere and electrochemistry. , 2023, 1, 274-289.		0
339	<i>In situ</i> electrochemical reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-l´ perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. National Science Review, 2023, 10, .	4.6	6
340	Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface. Nature Communications, 2023, 14, .	5.8	8
341	Emerging Exsolution Materials for Diverse Energy Applications: Design, Mechanism, and Future Prospects. Chemistry of Materials, 2023, 35, 3745-3764.	3.2	3
342	Oxygen Vacancy Migration in Ca ₂ Ga _{2+<i>x</i>} Ge _{1â€"<i>x</i>} O _{7â€"0.5<i>x</i>} Melilite. ACS Applied Energy Materials, 2023, 6, 3986-3995.	2.5	4
343	Metal Oxide‣upported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	4.6	6
344	Nanoparticle exsolution <i>via</i> electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. Journal of Materials Chemistry A, 0, , .	5.2	4

#	Article	IF	CITATIONS
345	Rocking chair-like movement of ex-solved nanoparticles on the Ni-Co doped La0.6Ca0.4FeO3-l̂´oxygen carrier during chemical looping reforming coupled with CO2 splitting. Applied Catalysis B: Environmental, 2023, 332, 122745.	10.8	4
346	Recent Advances in Perovskite Oxides Electrocatalysts: Ordered Perovskites, Cations Segregation and Exsolution. ChemCatChem, 2023, 15, .	1.8	2
347	Ceramics for supercapacitors. , 2023, , 157-183.		0
348	An active and stable hydrogen electrode of solid oxide cells with exsolved Fe–Co–Ni nanoparticles from Sr2FeCo0.2Ni0.2Mo0.6O6-δ double-perovskite. , 2023, 2, 100133.		5
349	Emerging Trends in Solid Oxide Electrolysis Cells. Lecture Notes in Energy, 2023, , 313-382.	0.2	1
366	Recent advances in exsolved perovskite oxide construction: exsolution theory, modulation, challenges, and prospects. Journal of Materials Chemistry A, 2023, 11, 17961-17976.	5.2	5
383	Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies. Nano-Micro Letters, 2024, 16, .	14.4	3
396	Ultrasonic reduction: an unconventional route to exsolute Ag from perovskite La(Ag)FeO _{3â^<i>Î</i>} for enhanced catalytic oxidation activity. Chemical Communications, 2024, 60, 2633-2636	2.2	0