Genetically encoded indicators of neuronal activity

Nature Neuroscience 19, 1142-1153 DOI: 10.1038/nn.4359

Citation Report

#	Article	IF	CITATIONS
1	Estimating Fast Neural Input Using Anatomical and Functional Connectivity. Frontiers in Neural Circuits, 2016, 10, 99.	1.4	2
2	Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse. Journal of Neuroscience, 2016, 36, 11059-11073.	1.7	76
3	Probing forebrain to hindbrain circuit functions in <i>Xenopus</i> . Genesis, 2017, 55, e22999.	0.8	9
4	Probes for monitoring regulated exocytosis. Cell Calcium, 2017, 64, 65-71.	1.1	7
5	Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Molecular Imaging and Biology, 2017, 19, 373-378.	1.3	27
6	Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction. Neuron, 2017, 93, 1388-1404.e10.	3.8	118
7	In Vivo Biosensing: Progress and Perspectives. ACS Sensors, 2017, 2, 327-338.	4.0	149
8	Optogenetic methods in drug screening: technologies and applications. Current Opinion in Biotechnology, 2017, 48, 8-14.	3.3	22
9	Emerging tools to study enteric neuromuscular function. American Journal of Physiology - Renal Physiology, 2017, 312, G420-G426.	1.6	9
10	Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. Neurophotonics, 2017, 4, 031212.	1.7	29
11	Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neuroscience Research, 2017, 118, 92-103.	1.0	6
12	Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo. Journal of Neurophysiology, 2017, 118, 1141-1150.	0.9	19
13	Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond. Trends in Biotechnology, 2017, 35, 625-639.	4.9	31
14	A stable brain from unstable components: Emerging concepts and implications for neural computation. Neuroscience, 2017, 357, 172-184.	1.1	66
15	Mapping brain structure and function: cellular resolution, global perspective. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 245-264.	0.7	4
16	General features of inhibition in the inner retina. Journal of Physiology, 2017, 595, 5507-5515.	1.3	37
17	Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron, 2017, 96, 572-603.	3.8	274
18	Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nature Communications, 2017, 8, 1229.	5.8	22

#	Article	IF	CITATIONS
19	Deep tissue imaging with multiphoton fluorescence microscopy. Current Opinion in Biomedical Engineering, 2017, 4, 32-39.	1.8	103
20	SRpHi ratiometric pH biosensors for super-resolution microscopy. Nature Communications, 2017, 8, 577.	5.8	50
21	Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. DMM Disease Models and Mechanisms, 2017, 10, 1039-1059.	1.2	83
22	Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition. Scientific Reports, 2017, 7, 8286.	1.6	39
23	Voltage Imaging: Pitfalls and Potential. Biochemistry, 2017, 56, 5171-5177.	1.2	85
24	Optoacoustic micro-tomography at 100 volumes per second. Scientific Reports, 2017, 7, 6850.	1.6	50
25	Whole-Brain Imaging Using Genetically Encoded Activity Sensors in Vertebrates. , 2017, , 321-341.		2
26	Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Advanced Drug Delivery Reviews, 2017, 119, 73-100.	6.6	42
27	Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Science Advances, 2017, 3, eaao5520.	4.7	60
28	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	1.7	24
29	Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10046-E10055.	3.3	120
30	Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neuroscience, 2017, 20, 1172-1179.	7.1	927
31	Chemistry Is Dead. Long Live Chemistry!. Biochemistry, 2017, 56, 5165-5170.	1.2	89
32	Mammalian cortical voltage imaging using genetically encoded voltage indicators: a review honoring professor Amiram Grinvald. Neurophotonics, 2017, 4, 031214.	1.7	12
33	Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Analytical Chemistry, 2017, 89, 314-341.	3.2	109
34	Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. ELife, 2017, 6, .	2.8	161
35	Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics, 2017, 7, 3539-3558.	4.6	17
36	Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. Biomedical Optics Express, 2017, 8, 5794.	1.5	71

#	Article	IF	Citations
37	Tracking individual action potentials throughout mammalian axonal arbors. ELife, 2017, 6, .	2.8	55
38	Illuminating Brain Activities with Fluorescent Protein-Based Biosensors. Chemosensors, 2017, 5, 32.	1.8	19
39	Transgenic Strategies for Sparse but Strong Expression of Genetically Encoded Voltage and Calcium Indicators. International Journal of Molecular Sciences, 2017, 18, 1461.	1.8	22
40	An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator. PLoS ONE, 2017, 12, e0179460.	1.1	47
41	Feasibility analysis of genetically-encoded calcium indicators as a neural signal source for all-optical brain-machine interfaces. , 2017, , .		4
42	The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Research, 2017, 6, 459.	0.8	9
43	Microbial Rhodopsins. Sub-Cellular Biochemistry, 2018, 87, 19-56.	1.0	39
44	A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nature Chemical Biology, 2018, 14, 352-360.	3.9	264
46	Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends in Neurosciences, 2018, 41, 385-403.	4.2	16
47	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	3.8	374
48	Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators. Scientific Reports, 2018, 8, 6048.	1.6	24
49	Imaging of electrical activity in small diameter fibers of the murine peripheral nerve with virally-delivered GCaMP6f. Scientific Reports, 2018, 8, 3219.	1.6	7
50	Probing the brain with molecular fMRI. Current Opinion in Neurobiology, 2018, 50, 201-210.	2.0	30
51	Microfabricated Probes for Studying Brain Chemistry: A Review. ChemPhysChem, 2018, 19, 1128-1142.	1.0	36
52	Optical Voltage Sensing Using DNA Origami. Nano Letters, 2018, 18, 1962-1971.	4.5	43
53	Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology, 2018, 50, 92-100.	2.0	244
54	The rise of three-dimensional human brain cultures. Nature, 2018, 553, 437-445.	13.7	373
55	Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nature Reviews Materials, 2018, 3, .	23.3	51

D

#	Article	IF	CITATIONS
56	A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity. Annual Review of Neuroscience, 2018, 41, 431-452.	5.0	87
57	Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters. Cell Structure and Function, 2018, 43, 61-74.	0.5	23
58	Nongenetic Optical Methods for Measuring and Modulating Neuronal Response. ACS Nano, 2018, 12, 4086-4095.	7.3	35
59	Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology, 2018, 43, 937-952.	2.8	172
60	Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annual Review of Neuroscience, 2018, 41, 323-348.	5.0	127
61	Simultaneous profiling of activity patterns in multiple neuronal subclasses. Journal of Neuroscience Methods, 2018, 303, 16-29.	1.3	5
62	Engineered viral vectors for functional interrogation, deconvolution, and manipulation of neural circuits. Current Opinion in Neurobiology, 2018, 50, 163-170.	2.0	24
63	Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry, 2018, 57, 3995-4004.	1.2	33
64	Genetic Reporters of Neuronal Activity: c-Fos and G-CaMP6. Methods in Enzymology, 2018, 603, 197-220.	0.4	50
65	Integrative whole-brain neuroscience in larval zebrafish. Current Opinion in Neurobiology, 2018, 50, 136-145.	2.0	95
66	Genetically encoded fluorescent voltage indicators: are we there yet?. Current Opinion in Neurobiology, 2018, 50, 146-153.	2.0	43
67	Liveâ€cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS Journal, 2018, 285, 203-219.	2.2	63
68	Spatiotemporal control of mitochondrial network dynamics in astroglial cells. Biochemical and Biophysical Research Communications, 2018, 500, 17-25.	1.0	9
69	Acid–base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 588-602.	2.4	30
70	Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Current Opinion in Neurobiology, 2018, 48, 17-29.	2.0	23
71	Electronic and Ionic Materials for Neurointerfaces. Advanced Functional Materials, 2018, 28, 1704335.	7.8	63
72	Optogenetic and chemogenetic techniques for neurogastroenterology. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 21-38.	8.2	40
73	Three-Dimensional Control of Ion Channel Function through Optogenetics and Co-Culture. SLAS Discovery, 2018, 23, 102-108.	1.4	3

#	Article	IF	CITATIONS
74	Recording Identified Neurons in Awake and Anesthetized Rodents. Springer Series in Computational Neuroscience, 2018, , 365-409.	0.3	1
75	Fast, in vivo voltage imaging using a red fluorescent indicator. Nature Methods, 2018, 15, 1108-1116.	9.0	126
76	Monkey-MIMMS: Towards Automated Cellular Resolution Large- Scale Two-Photon Microscopy In The Awake Macaque Monkey. , 2018, 2018, 3013-3016.		6
77	Heparan Sulfate as a Therapeutic Target in Tauopathies: Insights From Zebrafish. Frontiers in Cell and Developmental Biology, 2018, 6, 163.	1.8	30
78	Combining Optical Approaches with Human Inducible Pluripotent Stem Cells in G Protein-Coupled Receptor Drug Screening and Development. Biomolecules, 2018, 8, 180.	1.8	3
79	In Vivo Calcium Imaging of Lateral-line Hair Cells in Larval Zebrafish. Journal of Visualized Experiments, 2018, , .	0.2	27
80	The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 2018, 7, 231-244.	2.9	46
81	Presynaptic loss of dynaminâ€related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. Journal of Physiology, 2018, 596, 6263-6287.	1.3	17
82	Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology, 2018, 159, 3822-3833.	1.4	12
83	Calcium imaging of CPG-evoked activity in efferent neurons of the stick insect. PLoS ONE, 2018, 13, e0202822.	1.1	6
84	Mormyrid Electric Fish as a Model to Study Cellular and Molecular Basis of Temporal Processing in the Brain. , 2018, , 279-294.		0
85	Zebrafish, Medaka, and Other Small Fishes. , 2018, , .		4
86	Visualization of synaptic vesicle dynamics with fluorescence proteins. Folia Neuropathologica, 2018, 56, 21-29.	0.5	1
87	Improved methods for marking active neuron populations. Nature Communications, 2018, 9, 4440.	5.8	110
88	Video-rate volumetric neuronal imaging using 3D targeted illumination. Scientific Reports, 2018, 8, 7921.	1.6	20
89	New Approaches to Cognitive Neurobiology: Methods for Two-Photon in Vivo Imaging of Cognitively Active Neurons. Neuroscience and Behavioral Physiology, 2018, 48, 741-746.	0.2	2
90	Multiphoton Intravital Calcium Imaging. Current Protocols in Cytometry, 2018, 85, e40.	3.7	2
91	Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS Photonics, 2018, 5, 2860-2867.	3.2	22

ARTICLE IF CITATIONS # Presynaptic GCaMP expression decreases vesicle release probability at the calyx of Held. Synapse, 2018, 92 0.6 19 72, é22040. Advances in Cognitive Neurodynamics (VI). Advances in Cognitive Neurodynamics, 2018, , . 0.1 50 Hz volumetric functional imaging with continuously adjustable depth of focus. Biomedical Optics 94 1.5 40 Express, 2018, 9, 1964. Excitation wavelength optimization improves photostability of ASAP-family GEVIs. Molecular Brain, 2018, 11, 32. All-Optical Assay to Study Biological Neural Networks. Frontiers in Neuroscience, 2018, 12, 451. 96 1.4 13 Electrophysiology Techniques in Visual Prosthesis. Advances in Cognitive Neurodynamics, 2018, , 0.1 203-209. The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales. 98 1.8 13 Frontiers in Cellular Neuroscience, 2018, 12, 82. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Frontiers in 90 1.4 Neuroscience, 2018, 12, 389. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nature 100 9.4 292 Biotechnology, 2018, 36, 726-737. Blood–brain barrier on a chip. Methods in Cell Biology, 2018, 146, 159-182. Feasibility of imaging evoked activity throughout the rat brain using electrical impedance 102 2.1 26 tomography. NeuroImage, 2018, 178, 1-10. Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5. 1.1 High-Yield Passive Si Photodiode Array Towards Optical Neural Recording. IEEE Electron Device 104 2.2 5 Letters, 2018, 39, 524-527. <i>In Vivo</i> Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry. Analytical 3.2 Chemistry, 2018, 90, 10943-10950. In vivo measurement of afferent activity with axon-specific calcium imaging. Nature Neuroscience, 106 156 7.1 2018, 21, 1272-1280. Peptide-functionalized carbon dots for sensitive and selective Ca2+ detection. Sensors and Actuators B: Chemical, 2018, 273, 1654-1659. α-Neurexins Together with α2Î-1 Auxiliary Subunits Regulate Ca²⁺Influx through 108 1.7 64 Ca_v2.1 Channels. Journal of Neuroscience, 2018, 38, 8277-8294. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a 1.4 Miniaturized Microscope. Frontiers in Neuroscience, 2018, 12, 496.

#	Article	IF	CITATIONS
110	Genetically Encoding Quinoline Reverses Chromophore Charge and Enables Fluorescent Protein Brightening in Acidic Vesicles. Journal of the American Chemical Society, 2018, 140, 11058-11066.	6.6	20
111	Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis. Neuron, 2018, 98, 1099-1115.e8.	3.8	193
112	Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol, 2019, 74, 47-63.	0.8	43
113	Recent Trends in Invertebrate Neuroscience. , 0, , 3-30.		0
114	The Airyscan Detector: Confocal Microscopy Evolution for the Neurosciences. Progress in Optical Science and Photonics, 2019, , 83-102.	0.3	2
115	Patterned Two-Photon Illumination for High-Speed Functional Imaging of Brain Networks In Vivo. Progress in Optical Science and Photonics, 2019, , 123-141.	0.3	1
116	The Future of Gene-Guided Neuroscience Research in Non-Traditional Model Organisms. Brain, Behavior and Evolution, 2019, 93, 108-121.	0.9	24
117	Gâ€proteinâ€coupled receptorâ€based sensors for imaging neurochemicals with high sensitivity and specificity. Journal of Neurochemistry, 2019, 151, 279-288.	2.1	41
118	Next-generation interfaces for studying neural function. Nature Biotechnology, 2019, 37, 1013-1023.	9.4	157
119	Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science, 2019, 365, 699-704.	6.0	362
120	Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. Korean Journal of Physiology and Pharmacology, 2019, 23, 237.	0.6	35
121	High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Translational Research, 2019, 213, 50-66.	2.2	7
122	Spectrally filtered passive Si photodiode array for on-chip fluorescence imaging of intracellular calcium dynamics. Scientific Reports, 2019, 9, 9083.	1.6	9
123	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. Journal of Physical Chemistry Letters, 2019, 10, 4374-4381.	2.1	9
124	Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Frontiers in Synaptic Neuroscience, 2019, 11, 20.	1.3	41
125	Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Frontiers in Molecular Biosciences, 2019, 6, 99.	1.6	11
126	Imaging Neuromodulatory Signaling Events at Single Cell Resolution in Behaving Animal. Microscopy and Microanalysis, 2019, 25, 1130-1131.	0.2	1
127	Measuring brain chemistry using genetically encoded fluorescent sensors. Current Opinion in Biomedical Engineering, 2019, 12, 59-67.	1.8	12

#	ARTICLE	IF	CITATIONS
128	Optical voltage imaging in neurons: moving from technology development to practical tool. Nature Reviews Neuroscience, 2019, 20, 719-727.	4.9	132
129	A high-speed, bright, red fluorescent voltage sensor to detect neural activity. Scientific Reports, 2019, 9, 15878.	1.6	23
130	Synapse Formation. , 2019, , 227-267.		0
131	Studying a Light Sensor with Light: Multiphoton Imaging in theÂRetina. Neuromethods, 2019, , 225-250.	0.2	25
132	Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of <i>In Vivo</i> Neuronal Activity. Journal of Neuroscience, 2019, 39, 9042-9052.	1.7	79
133	Label-free optical imaging of membrane potential. Current Opinion in Biomedical Engineering, 2019, 12, 118-125.	1.8	13
134	Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1. International Journal of Molecular Sciences, 2019, 20, 4086.	1.8	10
135	Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. International Journal of Molecular Sciences, 2019, 20, 4200.	1.8	83
136	The next generation of approaches to investigate the link between synaptic plasticity and learning. Nature Neuroscience, 2019, 22, 1536-1543.	7.1	104
137	Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Frontiers in Synaptic Neuroscience, 2019, 11, 23.	1.3	10
138	V1 microcircuits underlying mouse visual behavior. Current Opinion in Neurobiology, 2019, 58, 191-198.	2.0	4
139	New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. New England Journal of Medicine, 2019, 380, 459-471.	13.9	71
140	Calcium Signalling. Methods in Molecular Biology, 2019, , .	0.4	2
141	Measuring Calcium and ROS by Genetically Encoded Protein Sensors and Fluorescent Dyes. Methods in Molecular Biology, 2019, 1925, 183-196.	0.4	3
142	Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Scientific Reports, 2019, 9, 7603.	1.6	25
143	WONOEP appraisal: Network concept from an imaging perspective. Epilepsia, 2019, 60, 1293-1305.	2.6	14
144	Cell death assays for neurodegenerative disease drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 901-913.	2.5	20
145	Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11038-11047.	3.3	54

#	Article	IF	CITATIONS
146	Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators. Biophysical Journal, 2019, 116, 1873-1886.	0.2	54
147	Activity Patterns in the Neuropil of Striatal Cholinergic Interneurons in Freely Moving Mice Represent Their Collective Spiking Dynamics. ENeuro, 2019, 6, ENEURO.0351-18.2018.	0.9	22
148	An Optical Exposé of Cortical Function. Trends in Neurosciences, 2019, 42, 511-513.	4.2	0
149	Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca ²⁺] transients in weakly GCaMP6fâ€expressing hippocampal pyramidal cells. Journal of Physiology, 2019, 597, 2925-2947.	1.3	17
150	Two Decades of Genetically Encoded Biosensors Based on Förster Resonance Energy Transfer. Cell Structure and Function, 2019, 44, 153-169.	0.5	37
151	Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks. Neuron, 2019, 101, 1016-1028.	3.8	43
152	pyPhotometry: Open source Python based hardware and software for fiber photometry data acquisition. Scientific Reports, 2019, 9, 3521.	1.6	28
153	Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 2019, 20, 330-345.	4.9	436
154	Recent Developments in Nanosensors for Imaging Applications in Biological Systems. Annual Review of Analytical Chemistry, 2019, 12, 109-128.	2.8	36
155	Singleâ€neuron axonal reconstruction: The search for a wiring diagram of the brain. Journal of Comparative Neurology, 2019, 527, 2190-2199.	0.9	26
156	Calcium imaging approaches in investigation of pain mechanism in the spinal cord. Experimental Neurology, 2019, 317, 129-132.	2.0	7
157	Imaging and Analysis of Presynaptic Calcium Influx in Cultured Neurons Using synGCaMP6f. Frontiers in Synaptic Neuroscience, 2019, 11, 12.	1.3	20
158	Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. Applied Sciences (Switzerland), 2019, 9, 562.	1.3	32
159	The impact of neuroimaging advancement on neurocognitive evaluation in pediatric brain tumor survivors: A review. Brain Science Advances, 2019, 5, 117-127.	0.3	5
160	Circuit Mechanisms of Neurodegenerative Diseases: A New Frontier With Miniature Fluorescence Microscopy. Frontiers in Neuroscience, 2019, 13, 1174.	1.4	22
161	Engineering Photoactivatability in Genetically Encoded Voltage and pH Indicators. Frontiers in Cellular Neuroscience, 2019, 13, 482.	1.8	14
162	Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell, 2019, 179, 1590-1608.e23.	13.5	242
163	Prefrontal circuit organization for executive control. Neuroscience Research, 2019, 140, 23-36.	1.0	40

#	Article	IF	Citations
164	Peeking into the sleeping brain: Using in vivo imaging in rodents to understand the relationship between sleep and cognition. Journal of Neuroscience Methods, 2019, 316, 71-82.	1.3	8
165	Molecular tools for imaging and recording neuronal activity. Nature Chemical Biology, 2019, 15, 101-110.	3.9	67
166	The kinetic mechanisms of fast-decay red-fluorescent genetically encoded calcium indicators. Journal of Biological Chemistry, 2019, 294, 3934-3946.	1.6	28
167	Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators. Journal of the American Chemical Society, 2019, 141, 1349-1358.	6.6	55
168	A miniature multi-contrast microscope for functional imaging in freely behaving animals. Nature Communications, 2019, 10, 99.	5.8	62
169	Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Neuroscience Research, 2019, 146, 13-21.	1.0	10
170	Interrogating metabolism as an electron flow system. Current Opinion in Systems Biology, 2019, 13, 59-67.	1.3	15
171	Hemodynamic and neuronal responses to cocaine differ in awake versus anesthetized animals: Optical brain imaging study. Neurolmage, 2019, 188, 188-197.	2.1	13
172	Insights from intoxicated Drosophila. Alcohol, 2019, 74, 21-27.	0.8	17
173	Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. NeuroImage, 2019, 199, 718-729.	2.1	14
175	The evolution of the axonal transport toolkit. Traffic, 2020, 21, 13-33.	1.3	18
176	Zebrafish in Biomedical Research. , 2020, , 237-244.		0
177	Genetically encoded single circularly permuted fluorescent protein-based intensity indicators. Journal Physics D: Applied Physics, 2020, 53, 113001.	1.3	10
178	Electrophysiology, Unplugged: Imaging Membrane Potential with Fluorescent Indicators. Accounts of Chemical Research, 2020, 53, 11-19.	7.6	70
179	Toxoplasma gondii. Methods in Molecular Biology, 2020, , .	0.4	3
180	Targeted insertional mutagenesis libraries for deep domain insertion profiling. Nucleic Acids Research, 2020, 48, e11-e11.	6.5	23
181	Capturing activated neurons and synapses. Neuroscience Research, 2020, 152, 25-34.	1.0	8
182	Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron, 2020, 108, 93-110.	3.8	123

	СІТАТ	CITATION REPORT	
#	Article	IF	CITATIONS
183	Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics. Neuron, 2020, 108, 33-43.	3.8	67
184	Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity—at Depth and in Real Time. Neuron, 2020, 108, 66-92.	3.8	40
185	Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins. ACS Chemical Neuroscience, 2020, 11, 3523-3531.	1.7	15
186	Chemical Biology Toolbox for Studying Pancreatic Islet Function – A Perspective. Cell Chemical Biology, 2020, 27, 1015-1031.	2.5	4
187	Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice. Neuron, 2020, 108, 968-983.e9.	3.8	77
188	Acoustic biosensors for ultrasound imaging of enzyme activity. Nature Chemical Biology, 2020, 16, 988-996.	3.9	89
189	A Guide to Understanding "State-of-the-Art―Basic Research Techniques in Anesthesiology. Anesthesi and Analgesia, 2020, 131, 450-463.	ia 1.1	2
190	Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: Progress and prospects. Neuroscience Research, 2020, 152, 3-14.	1.0	51
191	Innovations in the Neurosurgical Management of Epilepsy. World Neurosurgery, 2020, 139, 775-788.	0.7	8
192	Advanced Electrical and Optical Microsystems for Biointerfacing. Advanced Intelligent Systems, 2020, 2, 2000091.	3.3	16
193	New imaging tools to study synaptogenesis. , 2020, , 119-148.		0
194	Recent advances in neurotechnologies with broad potential for neuroscience research. Nature Neuroscience, 2020, 23, 1522-1536.	7.1	111
195	High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics. Nature Communications, 2020, 11, 6020.	5.8	61
196	Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell, 2020, 27, 430-440.e5.	5.2	108
197	Multiplexed Optical Sensors in Arrayed Islands of Cells for multimodal recordings of cellular physiology. Nature Communications, 2020, 11, 3881.	5.8	29
198	NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology. Frontiers in Neuroscience, 2020, 14, 712.	1.4	4
199	Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron, 2020, 108, 302-321.	3.8	85
200	Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Frontiers in Molecular Neuroscience, 2020, 13, 572312.	1.4	10

#	Article	IF	CITATIONS
201	Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor Archon2. International Journal of Molecular Sciences, 2020, 21, 6576.	1.8	5
202	Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Frontiers in Neuroscience, 2020, 14, 819.	1.4	10
203	Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell, 2020, 183, 1986-2002.e26.	13.5	104
204	Turning strains into strengths for understanding psychiatric disorders. Molecular Psychiatry, 2020, 25, 3164-3177.	4.1	6
205	3D Localization for Light-Field Microscopy via Convolutional Sparse Coding on Epipolar Images. IEEE Transactions on Computational Imaging, 2020, 6, 1017-1032.	2.6	14
206	Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods in Enzymology, 2020, 639, 167-189.	0.4	1
207	Monitoring neuronal activity with voltage-sensitive fluorophores. Methods in Enzymology, 2020, 640, 185-204.	0.4	1
208	EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data. Frontiers in Neural Circuits, 2020, 14, 25.	1.4	65
209	Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Frontiers in Neural Circuits, 2020, 14, 31.	1.4	22
210	GCaMP as an indirect measure of electrical activity in rat trigeminal ganglion neurons. Cell Calcium, 2020, 89, 102225.	1.1	16
211	Simultaneous Electrophysiology and Fiber Photometry in Freely Behaving Mice. Frontiers in Neuroscience, 2020, 14, 148.	1.4	43
212	Fluorescent sensors for neuronal signaling. Current Opinion in Neurobiology, 2020, 63, 31-41.	2.0	29
213	Readout of fluorescence functional signals through highly scattering tissue. Nature Photonics, 2020, 14, 361-364.	15.6	27
214	64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Scientific Reports, 2020, 10, 3830.	1.6	34
215	Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Frontiers in Physiology, 2020, 11, 643.	1.3	44
216	Label-free optical detection of bioelectric potentials using electrochromic thin films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17260-17268.	3.3	25
217	Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange. BMC Developmental Biology, 2020, 20, 15.	2.1	6
218	Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants, 2020, 9, 516.	2.2	10

#	Article	IF	CITATIONS
219	Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. NeuroImage, 2020, 220, 117069.	2.1	14
220	Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo. Neuroscience Research, 2021, 169, 2-8.	1.0	34
221	A general approach to engineer positive-going eFRET voltage indicators. Nature Communications, 2020, 11, 3444.	5.8	31
222	Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nature Methods, 2020, 17, 287-290.	9.0	155
223	A Multimodal Ca(II) Responsive Near IR-MR Contrast Agent Exhibiting High Cellular Uptake. ACS Chemical Biology, 2020, 15, 334-341.	1.6	12
224	Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings. PLoS ONE, 2020, 15, e0228076.	1.1	22
225	Light-mediated control of Gene expression in mammalian cells. Neuroscience Research, 2020, 152, 66-77.	1.0	24
226	Neural plasticity of the amygdala. Handbook of Behavioral Neuroscience, 2020, , 115-126.	0.7	1
227	Visual escape in larval zebrafish: stimuli, circuits, and behavior. , 2020, , 49-71.		5
228	Multifunctional Flexible Biointerfaces for Simultaneous Colocalized Optophysiology and Electrophysiology. Advanced Functional Materials, 2020, 30, 1910027.	7.8	33
229	High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10278-10285.	3.3	53
230	The memory toolbox: how genetic manipulations and cellular imaging are transforming our understanding of learned information. Current Opinion in Behavioral Sciences, 2020, 32, 136-147.	2.0	4
231	Development of Lipid-Coated Semiconductor Nanosensors for Recording of Membrane Potential in Neurons. ACS Photonics, 2020, 7, 1141-1152.	3.2	11
232	Uncoupling endosomal <scp>CLC</scp> chloride/proton exchange causes severe neurodegeneration. EMBO Journal, 2020, 39, e103358.	3.5	29
233			
	Optical interrogation of multi-scale neuronal plasticity underlying behavioral learning. Current Opinion in Neurobiology, 2021, 67, 8-15.	2.0	8
234		2.0 0.5	8
234 235	Opinion in Neurobiology, 2021, 67, 8-15. Integrating research into a molecular cloning course to address the evolving biotechnology		

		CITATION R	EPORT	
#	Article		IF	Citations
237	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268,	120559.	5.7	32
238	Genetic Dissection of Neuropeptide Circuits Mediating Psychosocial Stress. , 2021, , 1-	19.		0
239	Genetically encoded sensors enable micro- and nano-scopic decoding of transmission i diseased brains. Molecular Psychiatry, 2021, 26, 443-455.	n healthy and	4.1	9
240	Fluorescence lifetime predicts performance of voltage sensitive fluorophores in cardior neurons. RSC Chemical Biology, 2021, 2, 248-258.	nyocytes and	2.0	8
241	Current Status of and Perspectives on the Application of Marmosets in Neurobiology. of Neuroscience, 2021, 44, 27-48.	Annual Review	5.0	59
242	Long term intravital single cell tracking under multiphoton microscopy. Journal of Neur Methods, 2021, 349, 109042.	oscience	1.3	3
243	Dynamic Recording of Membrane Potential from Hippocampal Neurons by Using a Fluc Resonance Energy Transfer-Based Voltage Biosensor. Neuromethods, 2021, , 523-530.		0.2	0
244	Electric Field Stimulation for the Functional Assessment of Isolated Dorsal Root Ganglie Excitability. Annals of Biomedical Engineering, 2021, 49, 1110-1118.	on Neuron	1.3	0
245	Expanding horizons of biosciences by light-control. Biophysics and Physicobiology, 202	21, 18, 13-15.	0.5	0
246	Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines, 20	21, 12, 124.	1.4	26
247	Recording site placement on planar silicon-based probes affects signal quality in acute recordings. Scientific Reports, 2021, 11, 2028.	neuronal	1.6	16
248	A silicon-rhodamine chemical-genetic hybrid for far red voltage imaging from defined n brain slice. RSC Chemical Biology, 2021, 2, 1594-1599.	eurons in	2.0	4
249	The Property-Based Practical Applications and Solutions of Genetically Encoded Acetyle Monoamine Sensors. Journal of Neuroscience, 2021, 41, 2318-2328.	choline and	1.7	6
250	A dark quencher genetically encodable voltage indicator (dqGEVI) exhibits high fidelity Proceedings of the National Academy of Sciences of the United States of America, 202	and speed. 11, 118, .	3.3	8
252	A high-performance genetically encoded fluorescent biosensor for imaging physiologic peroxynitrite. Cell Chemical Biology, 2021, 28, 1542-1553.e5.	al	2.5	14
253	Monitoring In Vivo Neural Activity to Understand Gut–Brain Signaling. Endocrinolog	y, 2021, 162, .	1.4	11
254	Chemical Biology Tools To Investigate Malaria Parasites. ChemBioChem, 2021, 22, 221	.9-2236.	1.3	5
256	Fiberoptic array for multiple channel infrared neural stimulation of the brain. Neuropho 8, 025005.	tonics, 2021,	1.7	6

	CIJ	TATION REPORT	
#	Article	IF	CITATIONS
257	All-optical electrophysiology in behaving animals. Journal of Neuroscience Methods, 2021, 353, 10910)1. 1.3	9
258	The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. Nature Chemical Biology, 2021, 17, 718-723.	3.9	86
259	Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging. Journal of Neuroscience, 202 41, 4160-4168.	1, 1.7	56
261	Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Frontiers in Neuroscience, 202 15, 643859.	21, 1.4	8
262	Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. Journal of Neuroscience Methods, 2021, 355, 109129.	1.3	4
264	Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. Science Advances, 2021, 7, .	4.7	34
265	Apical intercalated cell cluster: A distinct sensory regulator in the amygdala. Cell Reports, 2021, 35, 109151.	2.9	6
266	Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging. Journal of the American Chemical Society, 2021, 143, 10482-10499.	6.6	13
267	Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Frontiers in Cellular Neuroscience, 2021, 15, 696540.	1.8	16
268	Methods for analyzing neuronal structure and activity in <i>Caenorhabditis elegans</i> . Genetics, 2021, 218, .	1.2	9
269	In vivo imaging of immediate early gene expression dynamics segregates neuronal ensemble of memories of dual events. Molecular Brain, 2021, 14, 102.	1.3	12
270	Automated Microscope-IndependentFluorescence Guided Micropipette. Biomedical Optics Express, 20 12, 4689-4699.	021, <u>1.5</u>	0
271	Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Frontiers in Systems Neuroscience, 2021, 15, 688673.	1.2	4
272	Optical volumetric brain imaging: speed, depth, and resolution enhancement. Journal Physics D: Applied Physics, 2021, 54, 323002.	1.3	14
273	Real-Time Fluorescent Measurement of Synaptic Functions in Models of Amyotrophic Lateral Sclerosis. Journal of Visualized Experiments, 2021, , .	0.2	2
274	Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Communications Biology, 2021, 4, 924.	2.0	12
275	Advances and prospects of rhodopsin-based optogenetics in plant research. Plant Physiology, 2021, 1 572-589.	87, 2.3	6
276	Imaging the Hypothalamo-Neurohypophysial System. Neuroendocrinology, 2023, 113, 168-178.	1.2	3

#	Article	IF	CITATIONS
277	Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings. Journal of Visualized Experiments, 2021, , .	0.2	0
278	High-throughput Analysis of Synaptic Activity in Electrically Stimulated Neuronal Cultures. Neuroinformatics, 2021, 19, 737-750.	1.5	2
279	Design and Prototyping of Genetically Encoded Arsenic Biosensors Based on Transcriptional Regulator AfArsR. Biomolecules, 2021, 11, 1276.	1.8	6
280	Imaging neuronal protein signaling dynamics in vivo. Current Opinion in Neurobiology, 2021, 69, 68-75.	2.0	4
281	Dendrite enlightenment. Current Opinion in Neurobiology, 2021, 69, 222-230.	2.0	9
282	In vivo wideâ€field voltage imaging in zebrafish with voltageâ€sensitive dye and genetically encoded voltage indicator. Development Growth and Differentiation, 2021, 63, 417-428.	0.6	5
283	Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. Journal of Neuroscience Methods, 2021, 360, 109251.	1.3	17
284	Point-localized, site-specific membrane potential optical recording by single fluorescent nanodiscs. Biophysical Reports, 2021, 1, 100007.	0.7	3
285	EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. Journal of General Physiology, 2021, 153, .	0.9	6
286	Molecular fMRI of neurochemical signaling. Journal of Neuroscience Methods, 2021, 364, 109372.	1.3	7
287	Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nature Communications, 2021, 12, 5284.	5.8	13
288	Architectures of neuronal circuits. Science, 2021, 373, eabg7285.	6.0	112
289	An expression system of channelrhodopsin-2 driven by a minimal Arc/Arg3.1 promoter and Tet system was developed in human neuroblastoma cells. Plasmid, 2021, 117, 102597.	0.4	0
291	Neuromorphic electronics based on copying and pasting the brain. Nature Electronics, 2021, 4, 635-644.	13.1	94
292	Near-infrared and far-red genetically encoded indicators of neuronal activity. Journal of Neuroscience Methods, 2021, 362, 109314.	1.3	17
293	The Advent of Biomolecular Ultrasound Imaging. Neuroscience, 2021, 474, 122-133.	1.1	14
294	Medaka as a model teleost: characteristics and approaches of genetic modification. , 2022, , 185-213.		2
295	Extended Large Area Si/ZnO Heterojunction Biosensor for Assessing Functional Behavior of Primary Cortical Neuronal Cells. IEEE Sensors Journal, 2021, 21, 14619-14626.	2.4	4

#	Article	IF	CITATIONS
296	Polymer bulk-heterojunction synaptic field-effect transistors with tunable decay constant. Journal of Materials Chemistry C, 2021, 9, 4854-4861.	2.7	8
297	Imaging Glutamate with Genetically Encoded Fluorescent Sensors. Neuromethods, 2018, , 117-153.	0.2	3
298	Genetic Indicators for Calcium Signaling Studies in Toxoplasma gondii. Methods in Molecular Biology, 2020, 2071, 187-207.	0.4	13
299	Vision Made Easy: Cubozoans Can Advance Our Understanding of Systems-Level Visual Information Processing. Results and Problems in Cell Differentiation, 2018, 65, 599-624.	0.2	2
300	Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Structure and Function, 2020, 225, 467-480.	1.2	6
301	Mesh electronics: a new paradigm for tissue-like brain probes. Current Opinion in Neurobiology, 2018, 50, 33-41.	2.0	131
302	Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nature Communications, 2020, 11, 2399.	5.8	13
303	Rhodopsin-based voltage imaging tools for use in muscles and neurons of <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17051-17060.	3.3	34
304	Differential attentional control mechanisms by two distinct noradrenergic coeruleo-frontal cortical pathways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29080-29089.	3.3	47
305	Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity. Pain, 2021, 162, 1068-1081.	2.0	22
306	Cross-species neuroscience: closing the explanatory gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190633.	1.8	41
331	Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Research, 2018, 7, 1421.	0.8	39
332	Simultaneous voltage and calcium imaging and optogenetic stimulation with high sensitivity and a wide field of view. Biomedical Optics Express, 2019, 10, 789.	1.5	39
333	Microsecond Timescale Selective Access Two-photon Targeting for Functional Measurements in Tissue. , 2020, , .		3
334	Large-scale femtosecond holography for near simultaneous optogenetic neural modulation. Optics Express, 2019, 27, 32228.	1.7	11
335	Three-photon neuronal imaging in deep mouse brain. Optica, 2020, 7, 947.	4.8	97
336	Advanced fluorescence microscopy for in vivo imaging of neuronal activity. Optica, 2019, 6, 758.	4.8	31
337	<i>In Vitro</i> Testing of Voltage Indicators: Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, BeRST1, FlicR1, and Chi-VSFP-Butterfly. ENeuro, 2020, 7, ENEURO.0060-20.2020.	0.9	35

338Blue Light-Induced Gene Expression Alterations in Cultured Neurons Are the Result of Phototoxic0.916339Narrowly Confined and Clomerulus-Specific Onset Latencies of Odor-Evoked Calcium Transients in the Juxtaglomerular Cells of the Mouse Main Olfactory Bulb. ENeuro, 2019, 6, ENEURO.0387-18.2019.0.910340Diving into the brain: deep-brain imaging techniques in conscious animals. Journal of Endocrinology, 2020, 246, R33-R50.1.211341Impacts of the retinal environment and photoreceptor type on functional regeneration. Neural Regeneration Research, 2017, 12, 376.1.66342On the development of optical peripheral nerve interfaces. Neural Regeneration Research, 2019, 14, 425.1.614343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural0.10346Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous1.01	
338Interactions with Neuronal Culture Media. ENeuro, 2020, 7, ENEURO.0386-19.2019.0.916339Narrowly Confined and Glomerulus-Specific Onset Latencies of Odor-Evoked Calcium Transients in the Juxtaglomerular Cells of the Mouse Main Olfactory Bulb. ENeuro, 2019, 6, ENEURO.0387-18.2019.0.910340Diving into the brain: deep-brain imaging techniques in conscious animals. Journal of Endocrinology, 2020, 246, R33-R50.1.211341Impacts of the retinal environment and photoreceptor type on functional regeneration. Neural Regeneration Research, 2017, 12, 376.1.66342On the development of optical peripheral nerve interfaces. Neural Regeneration Research, 2019, 14, 425.1.614343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural Networks, 2021, 28, 136-143.0.10	ATIONS
339the Juxtaglomerular Cells of the Mouse Main Olfactory Bulb. ENeuro, 2019, 6, ENEURO.0387-18.2019.0.910340Diving into the brain: deep-brain imaging techniques in conscious animals. Journal of Endocrinology, 2020, 246, R33-R50.1.211341Impacts of the retinal environment and photoreceptor type on functional regeneration. Neural Regeneration Research, 2017, 12, 376.1.66342On the development of optical peripheral nerve interfaces. Neural Regeneration Research, 2019, 14, 425.1.614343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural Networks, 2021, 28, 136-143.0.10	
3402020, 246, R33-R50.1.211341Impacts of the retinal environment and photoreceptor type on functional regeneration. Neural1.66342On the development of optical peripheral nerve interfaces. Neural Regeneration Research, 2019, 14, 425.1.614343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural0.10346Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous1.81	
341Regeneration Research, 2017, 12, 376.1.61.66342On the development of optical peripheral nerve interfaces. Neural Regeneration Research, 2019, 14, 425.1.614343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural0.10344Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous1.01	
343Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .2.833344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural0.10346Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous1.01	
344Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .2.876345Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural0.10346Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous1.01	
 Song Production Circuits in Songbirds Revealed by Intracellular Recordings. The Brain & Neural Networks, 2021, 28, 136-143. Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous 	
343 Networks, 2021, 28, 136-143. 0.1 0 Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous 1.0 1	
Monitoring of Cortical Activities. Frontiers in Cellular Neuroscience, 2021, 15, 750663.	
 Photocycle dynamics of the Archaerhodopsin 3 based fluorescent voltage sensor Archon2. Journal of Photochemistry and Photobiology B: Biology, 2021, 225, 112331. 	
A genetically targeted reporter for PET imaging of deep neuronal circuits in mammalian brains. EMBO 3.5 9 Journal, 2021, 40, e107757.	
Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. ELife, 2021, 2.8 33 10, .	
Activity-based anorexia animal model: a review of the main neurobiological findings. Journal of Eating Disorders, 2021, 9, 123.	
351Stereotaxic Viral Injection and Gradient-Index Lens Implantation for Deep Brain In Vivo Calcium Imaging. Journal of Visualized Experiments, 2021, , .0.22	
The neural circuits moving fly larvae. Hikaku Seiri Seikagaku(Comparative Physiology and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	182 Td
 Pre-resonance stimulated Raman scattering spectroscopy and imaging of membrane potential using 2 	
Design considerations for a miniature multicontrast neuroimager. , 2019, , . 0	

964	REAL TIME MONITORING OF NEUROMODULATORS IN BEHAVING ANIMALS USING GENETICALLY ENCODED INDICATORS. , 2019, , 1-18.
-----	---

#	Article	IF	CITATIONS
366	The Cre/Lox System to Assess the Development of the Mouse Brain. Methods in Molecular Biology, 2020, 2047, 491-512.	0.4	2
368	Imaging Sleep and Wakefulness. , 2020, , 169-178.		0
375	A Novel Assay Allowing Drug Self-Administration, Extinction, and Reinstatement Testing in Head-Restrained Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 744715.	1.0	12
376	From Neurons to Cognition: Technologies for Precise Recording of Neural Activity Underlying Behavior. BME Frontiers, 2020, 2020, .	2.2	7
377	A brief introduction to biophotonic techniques and methods. Science China Life Sciences, 2020, 63, 1771-1775.	2.3	4
378	In vivo voltage-sensitive dye imaging of mouse cortical activity with mesoscopic optical tomography. Neurophotonics, 2020, 7, 041402.	1.7	3
380	Transcriptional readout of neuronal activity via an engineered Ca ²⁺ -activated protease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33186-33196.	3.3	20
381	Voltage-Sensitive Fluorescent Proteins for Optical Electrophysiology. , 2020, , 383-407.		0
383	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
384	Simulated Performance of Electroenzymatic Glutamate Biosensors In Vivo Illuminates the Complex Connection to Calibration In Vitro. ACS Chemical Neuroscience, 2021, 12, 4275-4285.	1.7	1
385	Optical tools to study the subcellular organization of GPCR neuromodulation. Journal of Neuroscience Methods, 2022, 366, 109408.	1.3	6
389	Inexpensive Methods for Live Imaging of Central Pattern Generator Activity in the Larval Locomotor System. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2020, 19, A124-A133.	0.6	0
390	Simultaneous Two-Photon Voltage or Calcium Imaging and Multi-Channel Local Field Potential Recordings in Barrel Cortex of Awake and Anesthetized Mice. Frontiers in Neuroscience, 2021, 15, 741279.	1.4	6
391	A Multimodal Multiâ€Shank Fluorescence Neural Probe for Cellâ€Typeâ€Specific Electrophysiology in Multiple Regions across a Neural Circuit. Advanced Science, 2022, 9, e2103564.	5.6	10
392	An Autonomous Molecular Bioluminescent Reporter (AMBER) for Voltage Imaging in Freely Moving Animals. Advanced Biology, 2021, 5, e2100842.	1.4	6
394	Voltage Imaging in Drosophila Using a Hybrid Chemical-Genetic Rhodamine Voltage Reporter. Frontiers in Neuroscience, 2021, 15, 754027.	1.4	4
395	A repurposed vaccine grants durable anterograde access to neural circuits. Nature Methods, 2021, 18, 1459-1461.	9.0	1
396	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	5.8	22

#	Article	IF	CITATIONS
397	Calcium signaling as an integrator and decoder of niche factors to control somatic stem cell quiescence and activation. FEBS Journal, 2021, , .	2.2	1
398	DeepNeuriteâ"¢: Identification of neurites from nonâ€specific binding of fluorescence probes through deep learning. FASEB BioAdvances, 0, , .	1.3	0
399	A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm ² FoV. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 1295-1305.	2.7	7
401	Fluorescence imaging of large-scale neural ensemble dynamics. Cell, 2022, 185, 9-41.	13.5	68
402	Neuroimaging with light field microscopy: a mini review of imaging systems. European Physical Journal: Special Topics, 2022, 231, 749-761.	1.2	11
403	Improved clearing method contributes to deep imaging of plant organs. Communications Biology, 2022, 5, 12.	2.0	17
404	Dendritic Excitability and Synaptic Plasticity In Vitro and In Vivo. Neuroscience, 2022, 489, 165-175.	1.1	9
405	Powerâ€effective scanning with <scp>AODs</scp> for <scp>3D</scp> optogenetic applications. Journal of Biophotonics, 2022, 15, e202100256.	1.1	5
406	Pooled genetic perturbation screens with image-based phenotypes. Nature Protocols, 2022, 17, 476-512.	5.5	21
407	Application of AAV1 for Anterograde Transsynaptic Circuit Mapping and Inputâ€Dependent Neuronal Cataloging. Current Protocols, 2022, 2, e339.	1.3	11
408	Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Experimental Neurology, 2022, 351, 114008.	2.0	4
409	Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nature Communications, 2021, 12, 7114.	5.8	19
410	Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods in Molecular Biology, 2022, 2468, 89-115.	0.4	0
411	Optical Imaging of Epileptic Seizures. , 2022, , 1-31.		0
414	A red fluorescent protein with improved monomericity enables ratiometric voltage imaging with ASAP3. Scientific Reports, 2022, 12, 3678.	1.6	9
415	Comparing synthetic refocusing to deconvolution for the extraction of neuronal calcium transients from light fields. Neurophotonics, 2022, 9, 041404.	1.7	3
416	Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nature Reviews Neurology, 2022, 18, 273-288.	4.9	111
417	An open-source transparent microelectrode array. Journal of Neural Engineering, 2022, 19, 024001.	1.8	3

#	Article	IF	CITATIONS
418	Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nature Reviews Neuroscience, 2022, 23, 257-274.	4.9	79
420	Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. Journal of Neurochemistry, 2023, 164, 284-308.	2.1	10
421	Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nature Communications, 2022, 13, 1850.	5.8	16
422	Optical recording of neural responses to gold-nanorod mediated photothermal neural inhibition. Journal of Neuroscience Methods, 2022, 373, 109564.	1.3	7
423	SynActJ: Easy-to-Use Automated Analysis of Synaptic Activity. Frontiers in Computer Science, 2021, 3, .	1.7	6
424	Observing and Quantifying Fluorescent Reporters. Methods in Molecular Biology, 2022, 2468, 73-87.	0.4	0
425	Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines, 2022, 10, 951.	1.4	6
426	Review on data analysis methods for mesoscale neural imaging in vivo. Neurophotonics, 2022, 9, 041407.	1.7	2
443	Imaging Synaptic Density: The Next Holy Grail of Neuroscience?. Frontiers in Neuroscience, 2022, 16, 796129.	1.4	24
444	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
445	Genetically encoded tools for measuring and manipulating metabolism. Nature Chemical Biology, 2022, 18, 451-460.	3.9	15
449	Tools to measure membrane potential of neurons. Biomedical Journal, 2022, 45, 749-762.	1.4	8
451	Calcium Imaging of Neural Activity in Fly Photoreceptors. Cold Spring Harbor Protocols, 2022, 2022, pdb.top107800.	0.2	0
452	Design and Initial Characterization of a Small Near-Infrared Fluorescent Calcium Indicator. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
454	Optogenetics at the presynapse. Nature Neuroscience, 2022, 25, 984-998.	7.1	37
455	The impact of neuroimaging advancement on neurocognitive evaluation in pediatric brain tumor survivors: A review. Brain Science Advances, 2019, 5, 117-127.	0.3	0
456	Single-Shot Light-Field Microscopy: An Emerging Tool for 3D Biomedical Imaging. Biochip Journal, 2022, 16, 397-408.	2.5	10
458	Genetically encoded calcium channel modulators: design and applications in neurobiology. Scientia Sinica Vitae, 2022, 52, 1173-1183.	0.1	0

#	Article	IF	CITATIONS
459	Fluorescent indicators for imaging membrane potential of organelles. Current Opinion in Chemical Biology, 2022, 71, 102203.	2.8	3
460	Spatiotemporal dynamics in large-scale cortical networks. Current Opinion in Neurobiology, 2022, 77, 102627.	2.0	3
462	QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Nature Communications, 2022, 13, .	5.8	13
463	Neuronal Activity Reporters as Drug Screening Platforms. Micromachines, 2022, 13, 1500.	1.4	0
464	Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nature Biotechnology, 2023, 41, 282-292.	9.4	39
465	A high-performance genetically encoded fluorescent indicatorÂfor in vivo cAMP imaging. Nature Communications, 2022, 13, .	5.8	26
466	Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. Neurophotonics, 2022, 9, .	1.7	6
467	Optogenetic Stimulation and Spatial Localization of Neurons Using a Multi-OLED Approach. ACS Photonics, 2022, 9, 3279-3290.	3.2	1
468	Multiregion neuronal activity: the forest and the trees. Nature Reviews Neuroscience, 2022, 23, 683-704.	4.9	21
469	Fully Implantable 192×256 SPAD Sensor with Global-Shutter and Micro-LEDs for Bidirectional Subdural Optical Brain-Computer Interfaces. , 2022, , .		0
470	Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators. Biochemistry, 2023, 62, 169-177.	1.2	1
471	Theoretical investigation of the photocycle dynamics of the Archaerhodopsin 3 based fluorescent voltage sensor Archon2. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437, 114366.	2.0	0
472	Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
473	Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. European Journal of Neuroscience, 2022, 56, 6141-6161.	1.2	2
474	Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging. Nature Communications, 2022, 13, .	5.8	5
476	<i>In vitro</i> recording of muscle activity induced by high intensity laser optogenetic stimulation using a diamond quantum biosensor. AVS Quantum Science, 2022, 4, .	1.8	3
477	Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. NeuroImage, 2022, 264, 119735.	2.1	6
478	Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiology of Disease, 2023, 176, 105943.	2.1	9

	CITATION REI	PORT	
#	Article	IF	CITATIONS
479	The zebrafish model of Tuberous sclerosis complex to study epilepsy. , 2023, , 227-240.		0
480	Longitudinal in vivo Ca ²⁺ imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
481	Catecholamines modulate the hypoxic ventilatory response of larval zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2023, 226, .	0.8	2
482	Toward Plasmonic Neural Probes: SERS Detection of Neurotransmitters through Goldâ€Nanoislandsâ€Decorated Tapered Optical Fibers with Subâ€10Ânm Gaps. Advanced Materials, 2023, 35, .	11.1	17
483	Dimensionality reduction and recurrence analysis reveal hidden structures of striatal pathological states. Frontiers in Systems Neuroscience, 0, 16, .	1.2	2
484	Subthalamic neurons interact with nigral dopaminergic neurons to regulate movement in mice. Acta Physiologica, 2023, 237, .	1.8	7
485	Video-based pooled screening yields improved far-red genetically encoded voltage indicators. Nature Methods, 2023, 20, 1082-1094.	9.0	24
486	Optical Imaging of Epileptic Seizures. , 2023, , 3087-3117.		1
487	Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLoS Biology, 2023, 21, e3001984.	2.6	10
488	Hypothalamic kisspeptin neurons as potential mediators of estradiol negative and positive feedback. Peptides, 2023, 163, 170963.	1.2	6
489	Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells, 2023, 12, 1148.	1.8	3
490	Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron, 2023, 111, 1547-1563.e9.	3.8	20
492	MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging. Micromachines, 2023, 14, 470.	1.4	6
493	High-Speed Neural Imaging with Synaptic Resolution: Bessel Focus Scanning Two-Photon Microscopy and Optical-Sectioning Widefield Microscopy. Neuromethods, 2023, , 293-329.	0.2	0
494	Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. Journal of Neural Engineering, 2023, 20, 026019.	1.8	4
495	GCaMP Imaging in Mosquitoes: Central Nervous System. Cold Spring Harbor Protocols, 2023, 2023, pdb.top107682.	0.2	0
497	Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse. Communications Biology, 2023, 6, .	2.0	1
498	Design and characterization of two-photon line excitation array detection (2p-LEAD) microscopy for monitoring in vivo neuronal activity. , 2023, , .		2

#	Article	IF	CITATIONS
499	Imaging the brain in action: a motorized optical rotary joint for wide field fibroscopy in freely moving animals. Neurophotonics, 2023, 10, .	1.7	0
501	All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications, 2023, 14, .	5.8	3
502	Evaluation of Neurotoxicity With Human Pluripotent Stem Cell–Derived Cerebral Organoids. Current Protocols, 2023, 3, .	1.3	1
503	Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. Nature Methods, 2023, 20, 918-924.	9.0	12
504	Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research. ACS Applied Bio Materials, 2023, 6, 1701-1719.	2.3	1
508	Two-Photon Targeted, Quad Whole-Cell Patch-Clamping Robot. , 2023, , .		1
510	Exploring urinary bladder neural circuitry through calcium imaging. , 2023, , 169-192.		0
517	Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neuroscience Bulletin, 0, , .	1.5	0
522	Tools and Model Systems to Study Nerve-Cancer Interactions. , 2023, , 169-184.		0
526	CCaMP, a Family of Single-Fluorophore Genetically Encoded Calcium Indicators. Journal of Evolutionary Biochemistry and Physiology, 2023, 59, 1195-1214.	0.2	Ο