Directed evolution of artificial metalloenzymes for in vi

Nature 537, 661-665 DOI: 10.1038/nature19114

Citation Report

#	Article	IF	CITATIONS
2	Tandem Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. Catalysts, 2016, 6, 194.	1.6	51
3	Notizen aus der Chemie. Nachrichten Aus Der Chemie, 2016, 64, 1142-1144.	0.0	0
4	A radical change in enzyme catalysis. Nature, 2016, 540, 345-346.	13.7	19
5	Redefining Biology via Enzyme Engineering. Cell, 2017, 168, 1.	13.5	47
6	Synthetic metabolism: metabolic engineering meets enzyme design. Current Opinion in Chemical Biology, 2017, 37, 56-62.	2.8	177
7	Organische Chemie 2016. Nachrichten Aus Der Chemie, 2017, 65, 266-304.	0.0	0
8	Reversible Covalent and Supramolecular Functionalization of Waterâ€Soluble Gold(I) Complexes. Chemistry - A European Journal, 2017, 23, 6048-6055.	1.7	14
9	Enantioselective Chemo―and Biocatalysis: Partners in Retrosynthesis. Angewandte Chemie - International Edition, 2017, 56, 8942-8973.	7.2	236
10	Enantioselektive Chemo―und Biokatalyse: Partner in der Retrosynthese. Angewandte Chemie, 2017, 129, 9068-9100.	1.6	75
11	Reaction: Opportunities for Sustainable Catalysts. CheM, 2017, 2, 443-444.	5.8	29
12	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2017, 56, 10156-10160.	7.2	23
13	<i>In vivo</i> activation of an [FeFe] hydrogenase using synthetic cofactors. Energy and Environmental Science, 2017, 10, 1563-1567.	15.6	34
14	Substrate mediated enzyme prodrug therapy. Advanced Drug Delivery Reviews, 2017, 118, 24-34.	6.6	29
15	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie, 2017, 129, 10290-10294.	1.6	3
16	Design and evolution of enzymes for non-natural chemistry. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 23-30.	3.2	144
17	Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts in Oneâ€Pot Procedures. Advanced Synthesis and Catalysis, 2017, 359, 2026-2049.	2.1	49
18	A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase. Journal of the American Chemical Society, 2017, 139, 5149-5155.	6.6	26
19	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	7.2	141

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
20	Synthetische Biologie â \in " die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6	494-6519.	1.6	11
21	Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Me Engineering, 2017, 40, 33-40.	tabolic	3.6	27
22	Rational design of metalloenzymes: From single to multiple active sites. Coordination C Reviews, 2017, 336, 1-27.	hemistry	9.5	122
23	Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-E Pathways. ACS Catalysis, 2017, 7, 710-724.	nzyme	5.5	322
24	Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artific Metallo-Î ² -lactamases. Journal of the American Chemical Society, 2017, 139, 16772-167		6.6	39
25	Orthogonal Expression of an Artificial Metalloenzyme for Abiotic Catalysis. ChemBioCho 2380-2384.	em, 2017, 18,	1.3	33
26	Enzyme engineering: reaching the maximal catalytic efficiency peak. Current Opinion in Biology, 2017, 47, 140-150.	Structural	2.6	87
27	Enzymes as key features in therapeutic cell mimicry. Advanced Drug Delivery Reviews, 2	.017, 118, 94-108.	6.6	36
28	Artificial metalloenzymes as catalysts in non-natural compounds synthesis. Coordinatio Reviews, 2017, 351, 160-171.	n Chemistry	9.5	20
29	Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligar Cell Chemical Biology, 2017, 24, 1040-1047.e4.	nd Interaction.	2.5	13
30	Genetically programmed chiral organoborane synthesis. Nature, 2017, 552, 132-136.		13.7	237
32	The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Advances in N Physiology, 2017, 70, 315-379.	licrobial	1.0	48
33	On the origin of synthetic life: attribution of output to a particular algorithm. Physica So 92, 013002.	cripta, 2017,	1.2	5
34	2-Methyl-2,4-pentanediol (MPD) boosts as detergent-substitute the performance of ß- catalyst for phenylacetylene polymerization. Beilstein Journal of Organic Chemistry, 201	barrel hybrid 17, 13, 1498-1506.	1.3	12
35	Repurposing proteins for new bioinorganic functions. Essays in Biochemistry, 2017, 61,	245-258.	2.1	12
36	Enhancement of malate production through engineering of the periplasmic rTCA pathw <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2018, 115, 1571-1580.	ay in	1.7	37
37	Enabling Biocatalysis by High-Throughput Protein Engineering Using Droplet Microfluid to Mass Spectrometry. ACS Omega, 2018, 3, 1498-1508.	cs Coupled	1.6	86
38	Cavity Size Engineering of a \hat{l}^2 -Barrel Protein Generates Efficient Biohybrid Catalysts for Metathesis. ACS Catalysis, 2018, 8, 3358-3364.	Olefin	5.5	39

	CITATION	Report	
#	Article	IF	CITATIONS
39	Directed Evolution of Protein Catalysts. Annual Review of Biochemistry, 2018, 87, 131-157.	5.0	330
40	An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catalysis Science and Technology, 2018, 8, 2294-2298.	2.1	41
42	A Whole Cell <i>E. coli</i> Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein. ACS Catalysis, 2018, 8, 2611-2614.	5.5	71
43	Catalytically Active Single-Chain Polymeric Nanoparticles: Exploring Their Functions in Complex Biological Media. Journal of the American Chemical Society, 2018, 140, 3423-3433.	6.6	141
44	Organometallic catalysis in biological media and living settings. Coordination Chemistry Reviews, 2018, 359, 57-79.	9.5	86
45	Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 2018, 43, 180-198.	3.7	70
46	Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46, e51-e51.	6.5	32
47	From protein engineering to artificial enzymes – biological and biomimetic approaches towards sustainable hydrogen production. Sustainable Energy and Fuels, 2018, 2, 724-750.	2.5	48
48	Expanding the boundary of biocatalysis: design and optimization of <i>in vitro</i> tandem catalytic reactions for biochemical production. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 115-129.	2.3	37
49	Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Journal of Biological Inorganic Chemistry, 2018, 23, 7-25.	1.1	36
50	Evolving artificial metalloenzymes via random mutagenesis. Nature Chemistry, 2018, 10, 318-324.	6.6	98
51	Designed transition metal catalysts for intracellular organic synthesis. Chemical Society Reviews, 2018, 47, 1811-1821.	18.7	126
52	Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering. Synthetic and Systems Biotechnology, 2018, 3, 20-33.	1.8	12
53	Directed Evolution of an Artificial Imine Reductase. Angewandte Chemie - International Edition, 2018, 57, 1863-1868.	7.2	47
54	Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catalysis, 2018, 8, 1476-1484.	5.5	33
55	In vivo catalyzed new-to-nature reactions. Current Opinion in Biotechnology, 2018, 53, 106-114.	3.3	85
56	Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature Chemistry, 2018, 10, 347-354.	6.6	173
57	Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis, 2018, 1, 12-22.	16.1	479

		CITATION REPORT		
#	Article		IF	Citations
58	Directed Evolution of an Artificial Imine Reductase. Angewandte Chemie, 2018, 130, 18	81-1886.	1.6	8
59	Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review Letters, 2018, 148, 489-511.	. Catalysis	1.4	127
60	The oxidase-like activity of hemin encapsulated by single-ring GroEL mutant and its appl colorimetric detection. Journal of Materials Science, 2018, 53, 8786-8794.	ication for	1.7	3
61	Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Review 142-231.	ws, 2018, 118,	23.0	584
62	Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends in Biotech 36, 60-72.	nology, 2018,	4.9	71
63	Overcoming the Incompatibility Challenge in Chemoenzymatic and Multiâ€Catalytic Ca Chemistry - A European Journal, 2018, 24, 1755-1768.	scade Reactions.	1.7	151
64	The fourth wave of biocatalysis is approaching. Philosophical Transactions Series A, Mat Physical, and Engineering Sciences, 2018, 376, 20170063.	hematical,	1.6	108
65	Special Techniques. , 2018, , 315-405.			1
66	Catalytic Organic Reactions in Water toward Sustainable Society. Chemical Reviews, 20)18, 118, 679-746.	23.0	541
67	Structure of in cell protein crystals containing organometallic complexes. Physical Chen Chemical Physics, 2018, 20, 2986-2989.	nistry	1.3	5
68	Forged and fashioned for faithfulness—ruthenium olefin metathesis catalysts bearing tags. Chemical Communications, 2018, 54, 122-139.	ammonium	2.2	44
69	The chemistry of the carbon-transition metal double and triple bond: Annual survey covered 2016. Coordination Chemistry Reviews, 2018, 356, 1-114.	ering the year	9.5	14
70	Single-chain polymeric nanoparticles: Toward in vivo imaging and catalysis in complex m 563-583.	nedia. , 2018, ,		0
72	Millionenfach beschleunigte Evolution für mal̂²geschneiderte Proteine. BioSpektrum,	2018, 24, 691-693.	0.0	0
73	On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communications Chemistry, 2018, 1, .		2.0	37
74	Extending the application of biocatalysis to meet the challenges of drug development. N Chemistry, 2018, 2, 409-421.	Nature Reviews	13.8	290
75	Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metallopro olefin metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2861-2871.	teins for	1.3	16
76	Future of Enzymology: An Appraisal. , 2018, , 521-551.			0

#	Article	IF	CITATIONS
77	Deep scanning lysine metabolism in <i>Escherichia coli</i> . Molecular Systems Biology, 2018, 14, e8371.	3.2	34
78	Advancements in biocatalysis: From computational to metabolic engineering. Chinese Journal of Catalysis, 2018, 39, 1861-1868.	6.9	24
79	Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. International Journal of Molecular Sciences, 2018, 19, 2896.	1.8	16
80	Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in <i>Escherichia coli'</i> s Periplasm. Journal of the American Chemical Society, 2018, 140, 13171-13175.	6.6	58
81	Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Energy and Environmental Science, 2018, 11, 3163-3167.	15.6	37
83	A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nature Chemistry, 2018, 10, 1201-1206.	6.6	96
84	The Bonding Nature of Cyclometalated Ru Complex: How DFT Study Revealing the Dewarâ€Chattâ€Duncanson Model Relates to the Molecular Properties. ChemistrySelect, 2018, 3, 10750-10761.	0.7	0
85	Künstliche Metalloproteine für die Olefinmetathese. Nachrichten Aus Der Chemie, 2018, 66, 857-861.	0.0	1
86	Designed for life: biocompatible de novo designed proteins and components. Journal of the Royal Society Interface, 2018, 15, 20180472.	1.5	28
87	In Search for the Definition of Life. Journal of Computer Science and Systems Biology, 2018, 11, .	0.0	0
88	Engineered Metalloenzymes with Non anonical Coordination Environments. Chemistry - A European Journal, 2018, 24, 11821-11830.	1.7	33
89	<i>E. coli</i> surface display of streptavidin for directed evolution of an allylic deallylase. Chemical Science, 2018, 9, 5383-5388.	3.7	79
90	Intracellular Deprotection Reactions Mediated by Palladium Complexes Equipped with Designed Phosphine Ligands. ACS Catalysis, 2018, 8, 6055-6061.	5.5	78
91	Molecular Probes for the Determination of Subcellular Compound Exposure Profiles in Gram-Negative Bacteria. ACS Infectious Diseases, 2018, 4, 1355-1367.	1.8	17
92	A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nature Communications, 2018, 9, 1943.	5.8	101
93	Comparing proteins and nucleic acidsÂfor next-generation biomolecularÂengineering. Nature Reviews Chemistry, 2018, 2, 113-130.	13.8	44
95	Solidâ€Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution?. ChemBioChem, 2018, 19, 2023-2032.	1.3	24
96	CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metabolic Engineering, 2018, 48, 288-296.	3.6	60

#	Article	IF	CITATIONS
97	Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Transactions, 2018, 47, 10837-10841.	1.6	28
98	Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go. ACS Catalysis, 2018, 8, 8046-8057.	5.5	16
99	Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angewandte Chemie - International Edition, 2018, 57, 12478-12482.	7.2	38
100	Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews, 2018, 47, 5038-5060.	18.7	63
101	The limits to biocatalysis: pushing the envelope. Chemical Communications, 2018, 54, 6088-6104.	2.2	193
102	The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nature Reviews Chemistry, 2018, 2, 231-243.	13.8	13
103	Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nature Catalysis, 2018, 1, 680-688.	16.1	51
104	Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angewandte Chemie, 2018, 130, 12658-12662.	1.6	14
105	Receptor-Based Artificial Metalloenzymes on Living Human Cells. Journal of the American Chemical Society, 2018, 140, 8756-8762.	6.6	57
106	A metric space for semantic containment: Towards the implementation of genetic firewalls. BioSystems, 2019, 185, 104015.	0.9	11
107	Acidâ€Assisted Direct Olefin Metathesis of Unprotected Carbohydrates in Water. Chemistry - A European Journal, 2019, 25, 14408-14413.	1.7	5
108	Artificial Metalloenzymes: Challenges and Opportunities. ACS Central Science, 2019, 5, 1120-1136.	5.3	153
109	Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends in Biochemical Sciences, 2019, 44, 1022-1040.	3.7	76
110	Regulating Transitionâ€Metal Catalysis through Interference by Short RNAs. Angewandte Chemie - International Edition, 2019, 58, 16400-16404.	7.2	4
111	Kinetics of initiation of the third generation Grubbs metathesis catalyst: convergent associative and dissociative pathways. Faraday Discussions, 2019, 220, 179-195.	1.6	17
112	Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nature Catalysis, 2019, 2, 780-792.	16.1	110
113	Global Analysis of the Role of Terrestrial Water Storage in the Evapotranspiration Estimated from the Budyko Framework at Annual to Monthly Time Scales. Journal of Hydrometeorology, 2019, 20, 2003-2021.	0.7	17
114	Recent developments on creation of artificial metalloenzymes. Tetrahedron Letters, 2019, 60, 151226.	0.7	19

#	Article	IF	CITATIONS
115	Research on Optimization of Association Rules Mining Algorithm. Journal of Physics: Conference Series, 2019, 1302, 042033.	0.3	2
116	A Screening Platform to Identify and Tailor Biocompatible Smallâ€Molecule Catalysts. Chemistry - A European Journal, 2019, 25, 16017-16021.	1.7	7
117	In situ TEM Investigation of the Electroplasticity Phenomenon in Metals. Microscopy and Microanalysis, 2019, 25, 1832-1833.	0.2	2
118	Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nature Communications, 2019, 10, 5060.	5.8	55
119	Regulating Transitionâ€Metal Catalysis through Interference by Short RNAs. Angewandte Chemie, 2019, 131, 16552-16556.	1.6	0
120	Cu II â€Containing 1â€Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angewandte Chemie, 2019, 131, 14747-14751.	1.6	3
121	Cu ^{II} â€Containing 1â€Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angewandte Chemie - International Edition, 2019, 58, 14605-14609.	7.2	12
122	Accurate high-throughput screening based on digital protein synthesis in a massively parallel femtoliter droplet array. Science Advances, 2019, 5, eaav8185.	4.7	48
123	Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nature Catalysis, 2019, 2, 864-872.	16.1	218
124	Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. Journal of the American Chemical Society, 2019, 141, 15869-15878.	6.6	35
125	"Close-to-Releaseâ€: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis. Journal of the American Chemical Society, 2019, 141, 17048-17052.	6.6	61
126	Bacterial dormancy curbs phage epidemics. Nature, 2019, 570, 173-174.	13.7	12
127	Catalytic machinery of enzymes expanded. Nature, 2019, 570, 172-173.	13.7	7
128	Semiholoenzyme optimizes activity and stability of a hyperthermostable iron-superoxide dismutase. Biochemical and Biophysical Research Communications, 2019, 519, 93-99.	1.0	0
129	Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports, 2019, 9, 13551.	1.6	3
130	Biocatalytic Strategies towards [4+2] Cycloadditions. Chemistry - A European Journal, 2019, 25, 6864-6877.	1.7	38
131	Biohybrid catalysts for sequential one-pot reactions based on an engineered transmembrane protein. Catalysis Science and Technology, 2019, 9, 942-946.	2.1	12
132	Nobleâ^'Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Accounts of Chemical Research, 2019, 52, 326-335.	7.6	104

#	Article	IF	CITATIONS
133	Recent Developments in Metal atalyzed Bioâ€orthogonal Reactions for Biomolecule Tagging. ChemBioChem, 2019, 20, 1498-1507.	1.3	12
134	Design and Construction of Functional Supramolecular Metalloprotein Assemblies. Accounts of Chemical Research, 2019, 52, 345-355.	7.6	73
135	Biocatalytic selective functionalisation of alkenes <i>via</i> single-step and one-pot multi-step reactions. Chemical Communications, 2019, 55, 883-896.	2.2	58
136	Gerichtete Evolution ermöglicht das Design von maßgeschneiderten Proteinen zur nachhaltigen Produktion von Chemikalien und Pharmazeutika. Angewandte Chemie, 2019, 131, 36-41.	1.6	19
137	Application of Acetyl-CoA synthetase from Methanothermobacter thermautotrophicus to non-native substrates. Enzyme and Microbial Technology, 2019, 128, 67-71.	1.6	5
138	Enzymeâ€mediated hydrogel encapsulation of single cells for highâ€throughput screening and directed evolution of oxidoreductases. Biotechnology and Bioengineering, 2019, 116, 1878-1886.	1.7	27
139	Artificial Nanometalloenzymes for Cooperative Tandem Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 15718-15726.	4.0	16
140	Aqueous olefin metathesis: recent developments and applications. Beilstein Journal of Organic Chemistry, 2019, 15, 445-468.	1.3	45
141	Bioorthogonal Nanozymes: Progress towards Therapeutic Applications. Trends in Chemistry, 2019, 1, 90-98.	4.4	63
142	Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem, 2019, 12, 2859-2881.	3.6	228
143	Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catalysis, 2019, 9, 4173-4178.	5.5	41
144	Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research, 2019, 52, 585-595.	7.6	121
145	Artificially Created Metalloenzyme Consisting of an Organometallic Complex Immobilized to a Protein Matrix. , 2019, , 307-328.		0
146	An efficient, step-economical strategy for the design of functional metalloproteins. Nature Chemistry, 2019, 11, 434-441.	6.6	57
147	The importance of catalytic promiscuity for enzyme design and evolution. Nature Reviews Chemistry, 2019, 3, 687-705.	13.8	177
148	An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nature Communications, 2019, 10, 5746.	5.8	62
149	Identification and Directed Development of Nonâ€Organic Catalysts with Apparent Panâ€Enzymatic Mimicry into Nanozymes for Efficient Prodrug Conversion. Angewandte Chemie - International Edition, 2019, 58, 278-282.	7.2	56
150	Identification and Directed Development of Nonâ€Organic Catalysts with Apparent Panâ€Enzymatic Mimicry into Nanozymes for Efficient Prodrug Conversion. Angewandte Chemie, 2019, 131, 284-288.	1.6	5

#	Article	IF	CITATIONS
151	Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Proteinâ€Engineeringâ€Blickwinkel. Angewandte Chemie, 2019, 131, 4500-4511.	1.6	7
152	Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angewandte Chemie - International Edition, 2019, 58, 4454-4464.	7.2	64
153	Applications of Protein Engineering and Directed Evolution in Plant Research. Plant Physiology, 2019, 179, 907-917.	2.3	53
154	Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chemical Reviews, 2019, 119, 829-869.	23.0	155
155	Selective C H bond functionalization with engineered heme proteins: new tools to generate complexity. Current Opinion in Chemical Biology, 2019, 49, 67-75.	2.8	106
156	Directed Evolution Empowered Redesign of Natural Proteins for the Sustainable Production of Chemicals and Pharmaceuticals. Angewandte Chemie - International Edition, 2019, 58, 36-40.	7.2	169
157	Control of Intra- <i>versus</i> Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS Nano, 2019, 13, 229-235.	7.3	61
158	Metallopolymers for advanced sustainable applications. Chemical Society Reviews, 2019, 48, 558-636.	18.7	139
159	Stereoselective catalysis controlled by a native leucine or variant isoleucine wingâ€gatekeeper in 2â€haloacid dehalogenase. FEBS Letters, 2019, 593, 308-318.	1.3	1
160	Rationalization of stereoselectivity in enzyme reactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1403.	6.2	5
161	Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnology and Applied Biochemistry, 2020, 67, 484-494.	1.4	31
162	Biosystems design by directed evolution. AICHE Journal, 2020, 66, e16716.	1.8	23
163	Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nature Catalysis, 2020, 3, 319-328.	16.1	90
165	Ligand Taxonomy for Bioinorganic Modeling of Dioxygenâ€Activating Nonâ€Heme Iron Enzymes. Chemistry - A European Journal, 2020, 26, 5916-5926.	1.7	17
166	A Dense-Shell Macromolecular Scaffold for Catalyst- or Substrate-Guided Catalysis in a Cellular Environment. , 2020, 2, 89-94.		16
167	Recent progress in the development of organometallics for the treatment of cancer. Current Opinion in Chemical Biology, 2020, 56, 28-34.	2.8	67
168	Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chemical Communications, 2020, 56, 14519-14540.	2.2	2
169	Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications, 2020, 56, 9586-9599.	2.2	28

#	Article	IF	CITATIONS
170	Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules, 2020, 25, 2989.	1.7	10
171	It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. Journal of the American Chemical Society, 2020, 142, 13878-13885.	6.6	33
172	The Bipartisan Future of Synthetic Chemistry and Synthetic Biology. ChemBioChem, 2020, 21, 3489-3491.	1.3	7
173	Câ•€-Ene-Reductases Reduce the Câ•N Bond of Oximes. ACS Catalysis, 2020, 10, 13377-13382.	5.5	19
174	Unlocking the Full Evolutionary Potential of Artificial Metalloenzymes Through Direct Metal-Protein Coordination. Johnson Matthey Technology Review, 2020, 64, 407-418.	0.5	6
175	A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts, 2020, 10, 874.	1.6	9
176	FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis, 2020, 10, 10946-10953.	5.5	5
177	Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nature Nanotechnology, 2020, 15, 914-921.	15.6	76
178	Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study. Life, 2020, 10, 179.	1.1	20
179	Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Current Opinion in Chemical Biology, 2020, 58, 146-154.	2.8	20
180	Carbeneâ€Induced Rescue of Catalytic Activity in Deactivated Nitrite Reductase Mutant. Chemistry - A European Journal, 2020, 26, 15206-15211.	1.7	2
181	A roadmap towards integrated catalytic systems of the future. Nature Catalysis, 2020, 3, 186-192.	16.1	31
182	Synergistic catalysis in an artificial enzyme. Nature Catalysis, 2020, 3, 184-185.	16.1	13
183	Enzymes with noncanonical amino acids. Current Opinion in Chemical Biology, 2020, 55, 136-144.	2.8	41
184	Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. ACS Nano, 2020, 14, 4767-4773.	7.3	74
185	Selective Crossâ€Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect, 2020, 5, 7254-7257.	0.7	1
186	A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution. Biotechnology for Biofuels, 2020, 13, 114.	6.2	8
187	Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence. Sensors, 2020, 20, 3793.	2.1	22

#	Article	IF	CITATIONS
189	Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems. ACS Applied Bio Materials, 2020, 3, 4717-4746.	2.3	37
190	Heteroleptic Coordination Environments in Metal-Mediated DNA G-Quadruplexes. Frontiers in Chemistry, 2020, 8, 26.	1.8	6
191	Fluorescent and Biocompatible Ruthenium oordinated Oligo(<i>pâ€</i> phenylenevinylene) Nanocatalysts for Transfer Hydrogenation in the Mitochondria of Living Cells. Chemistry - A European Journal, 2020, 26, 4489-4495.	1.7	11
192	The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chemical Science, 2020, 11, 2587-2605.	3.7	188
193	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	0.8	8
194	Modification of proteins using olefin metathesis. Materials Chemistry Frontiers, 2020, 4, 1040-1051.	3.2	26
195	Engineering new catalytic activities in enzymes. Nature Catalysis, 2020, 3, 203-213.	16.1	465
196	Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. ChemBioChem, 2020, 21, 2551-2571.	1.3	20
197	The Quest for Xenobiotic Enzymes: From New Enzymes for Chemistry to a Novel Chemistry of Life. ChemBioChem, 2020, 21, 2241-2249.	1.3	13
198	Enabling protein-hosted organocatalytic transformations. RSC Advances, 2020, 10, 16147-16161.	1.7	5
199	Unlocking the therapeutic potential of artificial metalloenzymes. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 79-94.	1.6	12
200	Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angewandte Chemie - International Edition, 2021, 60, 88-119.	7.2	711
201	Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angewandte Chemie, 2021, 133, 89-123.	1.6	89
202	Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Organic and Biomolecular Chemistry, 2021, 19, 37-45.	1.5	9
203	Directed Evolution of a Cp*Rh ^{III} ‣inked Biohybrid Catalyst Based on a Screening Platform with Affinity Purification. ChemBioChem, 2021, 22, 679-685.	1.3	10
204	Cell mimicry as a bottomâ€up strategy for hierarchical engineering of <scp>natureâ€inspired</scp> entities. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1683.	3.3	18
205	Transition metal catalysts for the bioorthogonal synthesis of bioactive agents. Current Opinion in Chemical Biology, 2021, 61, 32-42.	2.8	71
206	Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. Bulletin of the Chemical Society of Japan, 2021, 94, 382-396.	2.0	14

#	Article	IF	CITATIONS
207	Artificial Enzymes for Dielsâ€Alder Reactions. ChemBioChem, 2021, 22, 443-459.	1.3	11
208	[FeFe] Hydrogenases and Their Functional Models. , 2021, , 731-756.		4
209	Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science and Technology, 2021, 11, 4491-4499.	2.1	5
210	Transition Metalâ€Promoted Reactions in Aqueous Media and Biological Settings. Chemistry - A European Journal, 2021, 27, 4789-4816.	1.7	55
211	Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Science Advances, 2021, 7, .	4.7	41
212	A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C–H insertion. Physical Chemistry Chemical Physics, 2021, 23, 9500-9511.	1.3	15
213	Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. , 2021, , .		1
214	Modular Design of G-Quadruplex MetalloDNAzymes for Catalytic C–C Bond Formations with Switchable Enantioselectivity. Journal of the American Chemical Society, 2021, 143, 3555-3561.	6.6	19
215	An Artificial Cofactor Catalyzing the Baylisâ€Hillman Reaction with Designed Streptavidin as Protein Host**. ChemBioChem, 2021, 22, 1573-1577.	1.3	7
216	In Vivo Assembly of Artificial Metalloenzymes and Application in Wholeâ€Cell Biocatalysis**. Angewandte Chemie - International Edition, 2021, 60, 5913-5920.	7.2	45
217	Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). Journal of Chemical Information and Modeling, 2021, 61, 764-776.	2.5	13
218	Thomas Ward Selected to Receive the 2021 ACS Catalysis Lectureship. ACS Catalysis, 2021, 11, 1816-1817.	5.5	0
219	In Vivo Assembly of Artificial Metalloenzymes and Application in Whole ell Biocatalysis**. Angewandte Chemie, 2021, 133, 5978-5985.	1.6	10
220	Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends in Biotechnology, 2021, 39, 1173-1183.	4.9	58
221	Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a NaÃ ⁻ ve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angewandte Chemie - International Edition, 2021, 60, 10919-10927.	7.2	3
222	Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts, 2021, 11, 359.	1.6	13
223	Artificial Organelles: Towards Adding or Restoring Intracellular Activity. ChemBioChem, 2021, 22, 2051-2078.	1.3	38
224	Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a NaÃ ⁻ ve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angewandte Chemie, 2021, 133, 11014-11022.	1.6	0

#	Article	IF	CITATIONS
225	Engineering Thermostability in Artificial Metalloenzymes to Increase Catalytic Activity. ACS Catalysis, 2021, 11, 3620-3627.	5.5	16
226	Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of Inorganic Biochemistry, 2021, 216, 111352.	1.5	8
228	Prodrug Activation by Gold Artificial Metalloenzyme atalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angewandte Chemie - International Edition, 2021, 60, 12446-12454.	7.2	39
229	Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 311-321.	0.0	0
230	Prodrug Activation by Gold Artificial Metalloenzymeâ€Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angewandte Chemie, 2021, 133, 12554-12562.	1.6	14
231	Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16, 933-941.	15.6	130
232	Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catalysis, 2021, 11, 6343-6347.	5.5	16
233	Directed Evolution: Methodologies and Applications. Chemical Reviews, 2021, 121, 12384-12444.	23.0	220
234	Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions**. Angewandte Chemie - International Edition, 2021, 60, 23672-23677.	7.2	10
235	Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions**. Angewandte Chemie, 0, , .	1.6	0
237	Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catalysis, 2021, 11, 10705-10712.	5.5	7
238	Modular Assembly of Tumorâ€Penetrating and Oligomeric Nanozyme Based on Intrinsically Selfâ€Assembling Protein Nanocages. Advanced Materials, 2021, 33, e2103128.	11.1	27
239	Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 2021, 4, 643-653.	16.1	32
240	Bioorthogonal strategies for the in vivo synthesis or release of drugs. Bioorganic and Medicinal Chemistry, 2021, 45, 116310.	1.4	28
241	New achievements on C-C bond formation in water catalyzed by metal complexes. Coordination Chemistry Reviews, 2021, 443, 213997.	9.5	18
242	In situ activation of therapeutics through bioorthogonal catalysis. Advanced Drug Delivery Reviews, 2021, 176, 113893.	6.6	58
243	Confinement Effects for Efficient Macrocyclization Reactions with Supported Cationic Molybdenum Imido Alkylidene <i>N</i> -Heterocyclic Carbene Complexes. ACS Catalysis, 2021, 11, 11570-11578.	5.5	18
245	C–H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorganic Chemistry, 2021, 60, 13759-13783.	1.9	36

#	Article	IF	CITATIONS
246	Recent developments in compartmentalization of chemoenzymatic cascade reactions. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100538.	3.2	12
247	Semi-synthetic hydrogenases—inÂvitro and inÂvivo applications. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100521.	3.2	5
248	Advances in Metalloprotein Design and Engineering: Strategies Employed and Insights Gained. , 2021, , 900-928.		0
249	Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chemical Communications, 2021, 57, 8814-8817.	2.2	11
250	Symmetry-related residues as promising hotspots for the evolution of <i>de novo</i> oligomeric enzymes. Chemical Science, 2021, 12, 5091-5101.	3.7	5
251	Controlling the Regio- and Stereoselectivity of Cytochrome P450 Monooxygenases by Protein Engineering. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 274-291.	0.8	2
253	Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Materials Horizons, 2021, 8, 3424-3431.	6.4	23
254	Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helvetica Chimica Acta, 2021, 104, e2100179.	1.0	7
255	Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Biological Chemistry, 2022, 403, 403-412.	1.2	5
256	Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nature Chemistry, 2021, 13, 1186-1191.	6.6	56
257	Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis, 2021, 4, 814-827.	16.1	38
258	Development of Bio-Hybrid Materials by Design of Supramolecular Protein Assemblies. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1264-1273.	0.0	0
261	Nobelpreise 2018: Frances H. Arnold. Nachrichten Aus Der Chemie, 2018, 66, 1038-1040.	0.0	0
264	Current Applications of Artificial Metalloenzymes and Future Developments. , 2021, , 363-411.		1
265	Molecularly pure miktoarm spherical nucleic acids: preparation and usage as a scaffold for abiotic intracellular catalysis. Chemical Science, 2021, 12, 15843-15848.	3.7	2
266	Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants. Springer Protocols, 2020, , 213-235.	0.1	0
267	Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. ChemPlusChem, 2022, 87, .	1.3	10
268	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie, 2022, 134, e202110519.	1.6	2

#	ARTICLE	IF	CITATIONS
269	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
270	Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS ONE, 2021, 16, e0260023.	1.1	4
271	The role of streptavidin and its variants in catalysis by biotinylated secondary amines. Organic and Biomolecular Chemistry, 2021, 19, 10424-10431.	1.5	2
272	Assembly and Evolution of Artificial Metalloenzymes within <i>E. coli</i> Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and C╀ Bonds. Journal of the American Chemical Society, 2022, 144, 883-890.	6.6	16
273	Opportunities for interfacing organometallic catalysts with cellular metabolism. , 2021, , .		0
274	Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery. Theranostics, 2022, 12, 1132-1147.	4.6	24
275	Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth suppression. Nature Communications, 2022, 13, 39.	5.8	34
276	Metal substrate catalysis in the confined space for platinum drug delivery. Chemical Science, 2021, 13, 59-67.	3.7	5
277	Metathesis Reactions in Natural Product Fragments and Total Syntheses. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
278	Progress, Challenges, and Opportunities with Artificial Metalloenzymes in Biosynthesis. Biochemistry, 2023, 62, 221-228.	1.2	15
279	Overcoming universal restrictions on metal selectivity by protein design. Nature, 2022, 603, 522-527.	13.7	32
281	Exporting Homogeneous Transition Metal Catalysts to Biological Habitats. European Journal of Organic Chemistry, 2022, 2022, .	1.2	17
284	Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA. Journal of Physical Chemistry B, 2022, 126, 3407-3413.	1.2	0
285	Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angewandte Chemie, 2022, 134, .	1.6	4
286	Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
287	Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chemical Science, 2022, 13, 6478-6495.	3.7	14
288	The road to fully programmable protein catalysis. Nature, 2022, 606, 49-58.	13.7	126
289	Transition Metal Scaffolds Used To Bring Newâ€ŧoâ€Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4

#	Article	IF	CITATIONS
290	Artificial metalloenzymes based on protein assembly. Coordination Chemistry Reviews, 2022, 469, 214593.	9.5	9
292	Oxidation and Peroxygenation of C–H Bonds by Artificial Cu Peptides (ArCuPs): Improved Catalysis via Selective Outer Sphere Modifications. ACS Catalysis, 2022, 12, 8341-8351.	5.5	0
293	Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews, 2022, 122, 11974-12045.	23.0	54
294	Excited-state intermediates in a designer protein encoding a phototrigger caught by an X-ray free-electron laser. Nature Chemistry, 2022, 14, 1054-1060.	6.6	6
295	Catalytic Peptides: the Challenge between Simplicity and Functionality. Israel Journal of Chemistry, 2022, 62, .	1.0	6
296	Ultrahighâ€Throughput Screening of an Artificial Metalloenzyme using Double Emulsions**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
297	Ultrahighâ€Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angewandte Chemie, 0, , .	1.6	0
298	Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving–Williams Behavior. Journal of the American Chemical Society, 2022, 144, 18090-18100.	6.6	6
299	In Vivo Olefin Metathesis in Microalgae Upgrades Lipids to Building Blocks for Polymers and Chemicals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
300	In Vivo Olefin Metathesis in Microalgae Upgrades Lipids to Building Blocks for Polymers and Chemicals. Angewandte Chemie, 2022, 134, .	1.6	0
301	Synthesis of cycloparaphenylene under spatial nanoconfinement. Chinese Chemical Letters, 2023, 34, 107912.	4.8	0
302	In vivo Biocatalytic Cascades Featuring an Artificialâ€Enzymeâ€Catalyzed Newâ€ŧoâ€Nature Reaction. Angewandte Chemie, 0, , .	1.6	0
303	A De Novoâ€Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
304	In Vivo Biocatalytic Cascades Featuring an Artificialâ€Enzyme atalysed Newâ€ŧoâ€Nature Reaction**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
305	A De Novoâ€Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angewandte Chemie, 0, , .	1.6	1
306	Reshaping the 2â€Pyrone Synthase Active Site for Chemoselective Biosynthesis of Polyketides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
307	Reshaping the 2â€₽yrone Synthase Active Site for Chemoselective Biosynthesis of Polyketides. Angewandte Chemie, 0, , .	1.6	1
308	A Membrane-Embedded Macromolecular Catalyst with Substrate Selectivity in Live Cells. Journal of the American Chemical Society, 2023, 145, 1262-1272.	6.6	11

#	Article	IF	CITATIONS
309	<i>In Cellulo</i> Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. Nano Letters, 2023, 23, 804-811.	4.5	4
310	Tapping into abiological reaction chemistries in biocatalysis. Chem Catalysis, 2023, , 100493.	2.9	0
311	Mechanistic and structural characterization of an iridium-containing cytochrome reveals kinetically relevant cofactor dynamics. Nature Catalysis, 2023, 6, 39-51.	16.1	4
312	Expanding the Synthetic Toolbox through Metal–Enzyme Cascade Reactions. Chemical Reviews, 2023, 123, 5297-5346.	23.0	19
313	Ruthenium Catalysis in Biological Habitats. Helvetica Chimica Acta, 2023, 106, .	1.0	3
314	A primer to directed evolution: current methodologies and future directions. RSC Chemical Biology, 2023, 4, 271-291.	2.0	12
315	Bioorthogonal catalysis in complex media: Consequences of using polymeric scaffold materials on catalyst stability and activity. Catalysis Today, 2023, 418, 114116.	2.2	9
316	Towards a synthetic macromolecular platform for biocompatible organometallic catalysis: From controlled polymer synthesis to catalysis in complex biological media. Giant, 2023, 14, 100148.	2.5	1
317	Kinetic Protection of a Waterâ€ s oluble Olefin Metathesis Catalyst for Potential Use under Biological Conditions. ChemCatChem, 2023, 15, .	1.8	4
318	Dual-Bioorthogonal Catalysis by a Palladium Peptide Complex. Journal of Medicinal Chemistry, 2023, 66, 3301-3311.	2.9	4
319	Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. Journal of the American Chemical Society, 0, , .	6.6	1
320	Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade. ACS Nano, 2023, 17, 5808-5820.	7.3	8
321	An Artificial In Vitro Metabolism to Angiopterlactone B Inspired by Traditional Retrosynthesis. Angewandte Chemie - International Edition, 0, , .	7.2	1
322	An Artificial In Vitro Metabolism to Angiopterlactone B Inspired by Traditional Retrosynthesis. Angewandte Chemie, 0, , .	1.6	1
323	Copper-based nanomaterials as peroxidase candidates for intelligent colorimetric detection and antibacterial applications. Particuology, 2024, 84, 126-135.	2.0	5
327	Nucleic acids as templates and catalysts in chemical reactions: target-guided dynamic combinatorial chemistry and <i>in situ</i> click chemistry and DNA/RNA induced enantioselective reactions. Chemical Society Reviews, 2023, 52, 4248-4291.	18.7	2
330	Transforming an esterase into an enantioselective catecholase through bioconjugation of a versatile metal-chelating inhibitor. Chemical Communications, 0, , .	2.2	1
340	Metal complex catalysts broaden bioorthogonal reactions. Science China Chemistry, 2024, 67, 428-449.	4.2	1

#	Article	IF	CITATIONS
344	Novel enzymatic tools for C–C bond formation through the development of new-to-nature biocatalysis. Advances in Catalysis, 2023, , .	0.1	0
347	Bioorthogonal chemistry for prodrug activation <i>in vivo</i> . Chemical Society Reviews, 2023, 52, 7737-7772.	18.7	3
352	Carbon–Carbon Bond Formation Via Biocatalytic Transformations. , 2023, , .		0
361	Strategies for designing biocatalysts with new functions. Chemical Society Reviews, 2024, 53, 2851-2862.	18.7	1