Overview of microalgal extracellular polymeric substan

Biotechnology Advances 34, 1225-1244 DOI: 10.1016/j.biotechadv.2016.08.004

Citation Report

#	Article	IF	CITATIONS
1	Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential. Marine Drugs, 2016, 14, 191.	4.6	128
2	Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis. Bioresource Technology, 2017, 233, 326-331.	9.6	53
3	Responses of the Microalga <i>Chlorophyta</i> sp. to Bacterial Quorum Sensing Molecules (<i>N</i> -Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation. Environmental Science & Technology, 2017, 51, 3490-3498.	10.0	102
4	Potential Anti-proliferative and Immunomodulatory Effects of Marine Microalgal Exopolysaccharide on Various Human Cancer Cells and Lymphocytes In Vitro. Marine Biotechnology, 2017, 19, 136-146.	2.4	41
5	Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge. Water Research, 2017, 115, 220-228.	11.3	62
6	Biofouling in photobioreactors for marine microalgae. Critical Reviews in Biotechnology, 2017, 37, 1006-1023.	9.0	50
7	The remediation of extremely acidic and moderate pH soil leachates containing Cu (II) and Cd (II) by native periphytic biofilm. Journal of Cleaner Production, 2017, 162, 846-855.	9.3	13
8	Biofilm based attached cultivation technology for microalgal biorefineries—A review. Bioresource Technology, 2017, 244, 1245-1253.	9.6	99
9	Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renewable and Sustainable Energy Reviews, 2017, 76, 493-506.	16.4	189
10	Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01. Bioresource Technology, 2017, 227, 214-220.	9.6	13
11	GEOCHEMISTRY ARTICLES – October 2016. Organic Geochemistry, 2017, 103, e1-e38.	1.8	0
12	A time-space model for the growth of microalgae biofilms for biofuel production. Journal of Theoretical Biology, 2017, 432, 55-79.	1.7	17
13	Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 2017, 10, 1017-1024.	4.2	272
14	Characterization of extracellular polymeric substance (EPS) fractions produced by Microcystis aeruginosa under the stress of linoleic acid sustained-release microspheres. Environmental Science and Pollution Research, 2017, 24, 21091-21102.	5.3	42
15	The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160406.	4.0	101
16	Enhanced extracellular polysaccharide production and growth by microalga Netrium digitus in a porous substrate bioreactor. Algal Research, 2017, 28, 184-191.	4.6	15
17	Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnology Advances, 2017, 35, 772-781.	11.7	218
18	Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 2017, 245, 10-17.	9.6	67

#	Article	IF	CITATIONS
19	Optimization of EPS Production and Characterization by a Halophilic Bacterium, Kocuria rosea ZJUQH from Chaka Salt Lake with Response Surface Methodology. Molecules, 2017, 22, 814.	3.8	25
20	Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology, 2018, 258, 240-246.	9.6	47
21	Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 2018, 36, 1255-1273.	11.7	254
22	Bioflocculants from isolated stains: A research update. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 211-215.	5.3	19
23	Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 2018, 32, 150-161.	4.6	152
24	Inhibition of Nitzschia ovalis biofilm settlement by a bacterial bioactive compound through alteration of EPS and epiphytic bacteria. Electronic Journal of Biotechnology, 2018, 33, 1-10.	2.2	15
25	Preparation of Immobilized Sulfate-Reducing Bacteria-Microalgae Beads for Effective Bioremediation of Copper-Containing Wastewater. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	28
26	Benthic diatoms from Potter Cove, 25 de Mayo (King George) Island, Antarctica: Mucilage and glucan storage as a C-source for limpets. Polar Science, 2018, 15, 39-48.	1.2	6
27	Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 2018, 36, 380-396.	11.7	64
28	Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydrate Polymers, 2018, 195, 515-524.	10.2	38
29	UVĨ [°] pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environmental Science and Pollution Research, 2018, 25, 16729-16742.	5.3	35
30	Effective bioremediation of Cu(II) contaminated waters with immobilized sulfateâ€reducing bacteriaâ€microalgae beads in a continuous treatment system and mechanism analysis. Journal of Chemical Technology and Biotechnology, 2018, 93, 1453-1461.	3.2	15
31	Bio-Based Products from Microalgae Cultivated in Digestates. Trends in Biotechnology, 2018, 36, 819-833.	9.3	138
32	Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor: Influence of inoculation ratios. Chemical Engineering Journal, 2018, 343, 455-459.	12.7	55
33	Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 2018, 429, 19-34.	3.7	116
34	Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Critical Reviews in Biotechnology, 2018, 38, 690-703.	9.0	115
35	Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Frontiers in Plant Science, 2018, 9, 1782.	3.6	184
36	Effects of Medium Composition and Gas Superficial Velocity on Mass Transfer during Microalgae Culturing in a Bubble Column Photobioreactor. Industrial & Engineering Chemistry Research, 2018, 57, 17058-17063.	3.7	2

#	Article	IF	CITATIONS
37	Enzyme production by a fungoid marine protist, Thraustochytrium striatum. European Journal of Protistology, 2018, 66, 136-148.	1.5	6
38	Graphene oxide–silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. Nanoscale, 2018, 10, 19603-19611.	5.6	41
39	Extraction of sludge protein enhanced by electron beam irradiation and calcium oxide. Journal of Environmental Chemical Engineering, 2018, 6, 6290-6296.	6.7	9
40	Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina. Journal of Environmental Chemical Engineering, 2018, 6, 6870-6880.	6.7	36
41	Searching for microalgal species producing extracellular biopolymers. Chemical Papers, 2018, 72, 2673-2678.	2.2	10
42	Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Critical Reviews in Biotechnology, 2018, 38, 1244-1260.	9.0	71
43	Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for Biofuels, 2018, 11, 185.	6.2	172
44	Emulsifying properties of ruptured microalgae cells: Barriers to lipid extraction or promising biosurfactants?. Colloids and Surfaces B: Biointerfaces, 2018, 170, 438-446.	5.0	28
45	Chlorella zofingiensis as a promising strain in wastewater treatment. Bioresource Technology, 2018, 268, 286-291.	9.6	18
46	Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE, 2018, 13, e0193335.	2.5	77
47	Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Science of the Total Environment, 2019, 647, 973-980.	8.0	45
48	The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. Science of the Total Environment, 2019, 692, 784-790.	8.0	35
49	Potential Applications of Algae-Based Bio-fertilizer. Soil Biology, 2019, , 41-65.	0.8	20
50	Fatty acids and proteins from marine cold adapted microalgae for biotechnology. Algal Research, 2019, 42, 101604.	4.6	36
51	The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances, 2019, 37, 107419.	11.7	142
52	The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Frontiers in Microbiology, 2019, 10, 385.	3.5	12
53	High-value chemicals from Botryococcus braunii and their current applications – A review. Bioresource Technology, 2019, 291, 121911.	9.6	33
54	The effect of culture salinity on the harvesting of microalgae biomass using pilot-scale tangential-flow-filter membrane. Bioresource Technology, 2019, 293, 122057.	9.6	27

#	Article	IF	CITATIONS
55	Isolation of microalgal strain from algal-bacterial aerobic granular sludge and examination on its contribution to granulation process during wastewater treatment in respect of nutrients removal, auto-aggregation capability and EPS excretion. Bioresource Technology Reports, 2019, 8, 100330.	2.7	10
56	Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 2019, 39, 981-998.	9.0	98
57	Relating nitrogen concentration and light intensity to the growth and lipid accumulation of Dunaliella viridis in a photobioreactor. Journal of Applied Phycology, 2019, 31, 3397-3409.	2.8	10
58	Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresources and Bioprocessing, 2019, 6, .	4.2	25
59	Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bulletin of the National Research Centre, 2019, 43, .	1.8	13
60	Autonomous cell sorting using self-secreted macromolecules. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	3
61	Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environmental Science: Nano, 2019, 6, 315-324.	4.3	54
62	Effects of microphytobenthos Cylindrotheca closterium on the fate of di-n-butyl phthalate in an aquatic microcosm. Marine Pollution Bulletin, 2019, 140, 101-106.	5.0	6
63	Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science and Engineering C, 2019, 99, 685-695.	7.3	83
64	Enhanced denitrification by nano É'-Fe2O3 induced self-assembled hybrid biofilm on particle electrodes of three-dimensional biofilm electrode reactors. Environment International, 2019, 125, 142-151.	10.0	41
65	Microalgae Culturing To Produce Biobased Diesel Fuels: An Overview of the Basics, Challenges, and a Look toward a True Biorefinery Future. Industrial & Engineering Chemistry Research, 2019, 58, 15724-15746.	3.7	17
66	Viscoelastic and shear-thinning effects of aqueous exopolymer solution on disk and sphere settling. Scientific Reports, 2019, 9, 7897.	3.3	37
67	Influence of Nitrogen Source and Growth Phase on Extracellular Biosynthesis of Silver Nanoparticles Using Cultural Filtrates of Scenedesmus obliquus. Applied Sciences (Switzerland), 2019, 9, 1465.	2.5	42
68	Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules, 2019, 24, 1564.	3.8	37
69	Differential sensitivity of marine algae Dunaliella salina and Chlorella sp. to P25 TiO2 NPs. Environmental Science and Pollution Research, 2019, 26, 21394-21403.	5.3	23
70	Pseudomonas sp. strain WJ04 enhances current generation of Synechocystis sp. PCC6803 in photomicrobial fuel cells. Algal Research, 2019, 40, 101490.	4.6	6
71	Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. International Journal of Biological Macromolecules, 2019, 134, 976-983.	7.5	64
72	Terrestrial Microorganisms: Cell Factories of Bioactive Molecules with Skin Protecting Applications. Molecules, 2019, 24, 1836.	3.8	21

#	Article	IF	CITATIONS
73	Foam fractionator as a tool to remove dissolved organic matter and improve the flocculation of the marine microalga Nannochloropsis oceanica. Journal of Applied Phycology, 2019, 31, 2911-2919.	2.8	3
74	Microalgal-bacterial aggregates for wastewater treatment: A mini-review. Bioresource Technology Reports, 2019, 8, 100199.	2.7	29
75	Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1769-1802.	12.8	102
76	Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt) Tj ETQq1 1 0.7	784314 rg 8.2	BT/Overloc 21
77	Microalgal–Bacterial Flocs and Extracellular Polymeric Substances: Two Essential and Valuable Products of Integrated Algal Pond Systems. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	22
78	Spatially Resolved Chemical Analysis of <i>Geobacter sulfurreducens</i> Cell Surface. ACS Nano, 2019, 13, 4834-4842.	14.6	10
79	Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International Journal of Biological Macromolecules, 2019, 128, 761-767.	7.5	76
80	Algal culture and biofuel production using wastewater. , 2019, , 167-198.		7
81	Influence of growth phase on the harvesting of Scenedesmus acuminatus using ultrafiltration. Science of the Total Environment, 2019, 660, 25-31.	8.0	15
82	Microalgae as healthy ingredients for functional foods. , 2019, , 103-137.		6
83	The Architecture of Monospecific Microalgae Biofilms. Microorganisms, 2019, 7, 352.	3.6	28
84	A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. Environmental Science and Technology Letters, 2019, 6, 732-738.	8.7	15
85	What Is in Store for EPS Microalgae in the Next Decade?. Molecules, 2019, 24, 4296.	3.8	64
86	The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Marine Drugs, 2019, 17, 674.	4.6	135
87	Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions. International Journal of Environmental Science and Technology, 2019, 16, 6671-6684.	3.5	23
88	Extracellular polymeric substances immobilized on microspheres for removal of heavy metals from aqueous environment. Biochemical Engineering Journal, 2019, 143, 202-211.	3.6	26
89	Extracellular biopolymers produced by Dictyosphaerium family - Chemical and immunomodulative properties. International Journal of Biological Macromolecules, 2019, 121, 1254-1263.	7.5	16
90	The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: An overview. Bioresource Technology Reports, 2019, 5, 28-42.	2.7	77

τιων Ρ

#	Article	IF	CITATIONS
91	Pilot-scale isolation and characterization of extracellular polymeric substances (EPS) from cell-free medium of Spirulina sp. LEB-18 cultures under outdoor conditions. International Journal of Biological Macromolecules, 2019, 124, 1106-1114.	7.5	30
92	Effect of living cells of microalgae or their extracts on soil enzyme activities. Archives of Agronomy and Soil Science, 2019, 65, 712-726.	2.6	33
93	Whole genome sequence analysis of Geitlerinema sp. FC II unveils competitive edge of the strain in marine cultivation system for biofuel production. Genomics, 2019, 111, 465-472.	2.9	5
94	Performance and microbial community analysis of an algal-activated sludge symbiotic system: Effect of activated sludge concentration. Journal of Environmental Sciences, 2019, 76, 121-132.	6.1	32
95	Microalgae for saline wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1224-1265.	12.8	54
96	Effective valorization of microalgal biomass for the production of nutritional fish-feed supplements. Journal of Cleaner Production, 2020, 243, 118697.	9.3	34
97	Removal of metronidazole from aqueous media by C. vulgaris. Journal of Hazardous Materials, 2020, 384, 121400.	12.4	65
98	Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. Journal of Hazardous Materials, 2020, 385, 121615.	12.4	27
99	Resilience and self-regulation processes of microalgae under UV radiation stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 43, 100322.	11.6	40
100	Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research, 2020, 92, 766-778.	2.7	45
101	Nitrogen Availability and the Nature of Extracellular Organic Matter of Microalgae. Industrial & Engineering Chemistry Research, 2020, 59, 6795-6805.	3.7	14
102	Boost carbon availability and value in algal cell for economic deployment of biomass. Bioresource Technology, 2020, 300, 122640.	9.6	27
103	Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresource Technology Reports, 2020, 9, 100366.	2.7	6
104	Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. International Journal of Biological Macromolecules, 2020, 145, 646-654.	7.5	32
105	Unsterilized sewage treatment and carbohydrate accumulation in Tetradesmus obliquus PF3 with CO2 supplementation. Algal Research, 2020, 45, 101741.	4.6	28
106	Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 2020, 118, 109563.	16.4	210
107	Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Research, 2020, 172, 115475.	11.3	158
108	Effects of electron beam irradiation on proteins and exopolysaccharide production and changes in <i>Microcystis aeruginosa</i> . International Journal of Radiation Biology, 2020, 96, 689-696.	1.8	4

#	Article	IF	CITATIONS
109	Inhibition and removal of trichloroacetaldehyde by biological acidification with glucose co-metabolism. Journal of Hazardous Materials, 2020, 386, 121796.	12.4	14
110	Glycoprotein Prompted Plausible Bactericidal and Antibiofilm Outturn of Extracellular Polymers fromNostoc microscopicum. Applied Biochemistry and Biotechnology, 2020, 191, 284-298.	2.9	5
111	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. Nanotoxicology, 2020, 14, 310-325.	3.0	18
112	Anaerobic microbial communities can influence algal growth and nutrient removal from anaerobic digestate. Bioresource Technology, 2020, 297, 122445.	9.6	16
113	Microalgal Biorefinery. , 2020, , 163-185.		8
114	Design and application of a newly generated bio/synthetic cryogel column for DNA capturing. Polymer Bulletin, 2021, 78, 6011-6028.	3.3	7
115	Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renewable and Sustainable Energy Reviews, 2020, 134, 110306.	16.4	64
116	A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess and Biosystems Engineering, 2020, 43, 2117-2129.	3.4	33
117	Emerging investigator series: quaternary treatment with algae-assisted oxidation for antibiotics removal and refractory organics degradation in livestock wastewater effluent. Environmental Science: Water Research and Technology, 2020, 6, 3262-3275.	2.4	12
118	Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants. , 2020, , 81-118.		16
119	Isolation and identification of a novel strain of Heveochlorella sp. and presentation of its capacity as biodiesel feedstock. Algal Research, 2020, 51, 102029.	4.6	8
120	The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris. Environmental Pollution, 2020, 263, 114102.	7.5	63
121	Underestimated methane production triggered by phytoplankton succession in river-reservoir systems: Evidence from a microcosm study. Water Research, 2020, 185, 116233.	11.3	31
122	Microalgal–Bacterial Synergistic Interactions and Their Potential Influence in Wastewater Treatment: a Review. Bioenergy Research, 2021, 14, 723-738.	3.9	37
123	Concentrations differences of microalgal extracellular polymeric substances as edible coating in shelf-life extension of Fragaria spp AIP Conference Proceedings, 2020, , .	0.4	1
124	Turning defence into offence? Intrusion of cladoceran brood chambers by a green alga leads to reproductive failure. Royal Society Open Science, 2020, 7, 200249.	2.4	1
125	The impact of particulate and soluble organic matter on physicochemical properties of extracellular polymeric substances in a microalga Neocystis mucosa SX. Algal Research, 2020, 51, 102064.	4.6	7
126	Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection?. Frontiers in Microbiology, 2020, 11, 596374.	3.5	22

	CHAID	N REPORT	
#	Article	IF	CITATIONS
127	Strategy for the Removal of Satellite Bacteria from the Cultivated Diatom. Diversity, 2020, 12, 382.	1.7	1
128	Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides from Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Marine Drugs, 2020, 18, 534.	4.6	22
129	Loofah-based microalgae and cyanobacteria biocomposites for intensifying carbon dioxide capture. Journal of CO2 Utilization, 2020, 42, 101348.	6.8	28
130	Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology, 2020, 81, 1797-1827.	2.5	49
131	Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. Bioresource Technology, 2020, 312, 123605.	9.6	56
132	Marine Microalgae Biomolecules and Their Adhesion Capacity to Salmonella enterica sv. Typhimurium. Applied Sciences (Switzerland), 2020, 10, 2239.	2.5	4
133	Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition. Renewable Energy, 2020, 157, 83-89.	8.9	41
134	Recovery of microalgae from its broth solution using kaolin based tubular ceramic membranes prepared with different binders. Separation and Purification Technology, 2020, 250, 117212.	7.9	22
135	Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Research, 2020, 183, 115974.	11.3	70
136	Concepts and Trends for Extraction and Application of Microalgae Carbohydrates. , 0, , .		1
137	Metabolomic modulations in a freshwater microbial community exposed to the fungicide azoxystrobin. Journal of Environmental Sciences, 2020, 97, 102-109.	6.1	9
138	Experimental formation of clay-coated sand grains using diatom biofilm exopolymers. Geology, 2020, 48, 1012-1017.	4.4	19
139	Chlorella vulgaris biomass production using brewery wastewater with high chemical oxygen demand. Journal of Applied Phycology, 2020, 32, 2773-2783.	2.8	9
140	Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Research, 2020, 175, 115686.	11.3	99
141	Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16. Energies, 2020, 13, 964.	3.1	4
142	Can Water Constituents Be Used as Proxy to Map Microplastic Dispersal Within Transitional and Coastal Waters?. Frontiers in Environmental Science, 2020, 8, .	3.3	10
143	Chlorella vulgaris α-L-arabino-α-L-rhamno-α,β-D-galactan structure and mechanisms of its anti-inflammatory and anti-remodelling effects. International Journal of Biological Macromolecules, 2020, 162, 188-198.	7.5	16
144	Physiological Limitations and Solutions to Various Applications of Microalgae. , 2020, , .		1

#	Article	IF	CITATIONS
145	Attachment Efficiency of Nanomaterials to Algae as an Important Criterion for Ecotoxicity and Grouping. Nanomaterials, 2020, 10, 1021.	4.1	14
146	Characterization and antitumor activity of novel exopolysaccharide APS of Lactobacillus plantarum WLPL09 from human breast milk. International Journal of Biological Macromolecules, 2020, 163, 985-995.	7.5	26
147	Isolation and characterization of an exopolymer produced by Bacillus licheniformis: In vitro antiviral activity against enveloped viruses. Carbohydrate Polymers, 2020, 248, 116737.	10.2	10
148	Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp Environmental Research, 2020, 188, 109842.	7.5	76
149	Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems. Environmental Pollution, 2020, 262, 114268.	7.5	44
150	Live and lyophilized fungi-algae pellets as novel biosorbents for gold recovery: Critical parameters, isotherm, kinetics and regeneration studies. Bioresource Technology, 2020, 306, 123041.	9.6	24
151	Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology, 2020, 104, e21658.	1.5	19
152	Characterization of a novel herbicide and antibiotic-resistant Chlorella sp. with an extensive extracellular matrix. Photosynthesis Research, 2020, 143, 315-334.	2.9	5
153	Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism. Bioresource Technology, 2020, 303, 122877.	9.6	28
154	Achieving partial nitrification and high lipid production in an algal-bacterial granule system when treating low COD/NH4–N wastewater. Chemosphere, 2020, 248, 126106.	8.2	46
155	Utilization of microalgae for self-regulation of extracellular polymeric substance production. Biochemical Engineering Journal, 2020, 159, 107616.	3.6	13
156	A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 2020, 41, 107545.	11.7	271
157	Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Science of the Total Environment, 2020, 723, 138146.	8.0	125
158	Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR). Science of the Total Environment, 2020, 725, 138524.	8.0	67
159	Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichenâ€forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environmental Microbiology, 2020, 22, 3096-3111.	3.8	13
160	Does electrolysis facilitate simultaneous nitrogen removal and toxicity reduction of low C/N dyeing wastewater by sulfur-based denitrification biofilter?. Science of the Total Environment, 2020, 722, 137898.	8.0	12
161	Extracellular polymeric substances with high radical scavenging ability produced in outdoor cultivation of the thermotolerant chlorophyte Graesiella sp Journal of Applied Phycology, 2021, 33, 357-369.	2.8	11
162	Production of exopolymer substances from the thermophilic chlorophyte Graesiella: industrial and ecological applications. Journal of Applied Phycology, 2021, 33, 343-356.	2.8	3

#	Article	IF	CITATIONS
163	Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. Science of the Total Environment, 2021, 765, 142721.	8.0	96
164	The Under-explored Extracellular Proteome of Aero-Terrestrial Microalgae Provides Clues on Different Mechanisms of Desiccation Tolerance in Non-Model Organisms. Microbial Ecology, 2021, 81, 437-453.	2.8	9
165	Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant-assisted flocculation through pH adjustment. Bioresource Technology, 2021, 319, 124224.	9.6	29
166	Production of waterâ€soluble sulfated exopolysaccharide with anticancer activity from <i>Anoxybacillus gonensis</i> <scp>YK25</scp> . Journal of Chemical Technology and Biotechnology, 2021, 96, 1258-1266.	3.2	16
168	Periphyton as an important source of methylmercury in Everglades water and food web. Journal of Hazardous Materials, 2021, 410, 124551.	12.4	12
169	Longâ€term biofouling formation mediated by extracellular proteins in <i>Nannochloropsis gaditana</i> microalga cultures at different medium N/P ratios. Biotechnology and Bioengineering, 2021, 118, 1152-1165.	3.3	14
170	New insights into the facilitated dissolution and sulfidation of silver nanoparticles under simulated sunlight irradiation in aquatic environments by extracellular polymeric substances. Environmental Science: Nano, 2021, 8, 748-757.	4.3	15
171	Bioactive polysaccharides and their derivatives from microalgae: biosynthesis, applications, and challenges. Studies in Natural Products Chemistry, 2021, 71, 67-85.	1.8	11
172	Microbial EPS as Immunomodulatory Agents. Springer Series on Polymer and Composite Materials, 2021, , 235-264.	0.7	0
173	Environmental Impacts of Recovery of Resources From Industrial Wastewater. , 2021, , 121-162.		5
174	Microalgal applications toward agricultural sustainability: Recent trends and future prospects. , 2021, , 339-379.		2
175	Ampicillin used in aseptic processing influences the production of pigments and fatty acids in Chlorella sorokiniana. World Journal of Microbiology and Biotechnology, 2021, 37, 3.	3.6	0
176	Categories of various plant biostimulants $\hat{a} \in \hat{~}$ mode of application and shelf-life. , 2021, , 1-60.		6
177	Biochemical and Morphological Characterization of Heterotrophic <i>Crypthecodinium cohnii</i> and <i>Chlorella vulgaris</i> Cell Walls. Journal of Agricultural and Food Chemistry, 2021, 69, 2226-2235.	5.2	29
178	Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production. Frontiers of Chemical Science and Engineering, 2021, 15, 1257-1268.	4.4	14
179	The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Frontiers in Pharmacology, 2020, 11, 618836.	3.5	15
180	Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Critical Reviews in Food Science and Nutrition, 2022, 62, 4929-4950.	10.3	40
181	The first record of genus Neocystis from Kamchatka volcano soils, confirmed by genetic data. IOP Conference Series: Earth and Environmental Science, 2021, 663, 012009.	0.3	1

#	Article	IF	CITATIONS
182	Role of Microalgae in Sustainable Energy and Environment. IOP Conference Series: Materials Science and Engineering, 2021, 1051, 012059.	0.6	11
183	Bacteria enhance the production of extracellular polymeric substances by the green dinoflagellate Lepidodinium chlorophorum. Scientific Reports, 2021, 11, 4795.	3.3	10
184	Scenedesmus acutus extracellular polysaccharides produced under increased concentration of sulphur and phosphorus exhibited enhanced proliferation of peripheral blood mononuclear cells. 3 Biotech, 2021, 11, 171.	2.2	9
185	Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: A comprehensive review. Environmental Research, 2021, 194, 110669.	7.5	36
186	Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Research, 2021, 54, 102213.	4.6	29
187	Immobilising Microalgae and Cyanobacteria as Biocomposites: New Opportunities to Intensify Algae Biotechnology and Bioprocessing. Energies, 2021, 14, 2566.	3.1	29
188	A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna. NanoImpact, 2021, 22, 100303.	4.5	11
189	Microalgal bio-flocculation: present scenario and prospects for commercialization. Environmental Science and Pollution Research, 2021, 28, 26294-26312.	5.3	19
190	Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 2021, 54, 102200.	4.6	122
191	Valorization of Wastewater Resources Into Biofuel and Value-Added Products Using Microalgal System. Frontiers in Energy Research, 2021, 9, .	2.3	53
192	Pollutants affect algae-bacteria interactions: A critical review. Environmental Pollution, 2021, 276, 116723.	7.5	57
193	Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. Algal Research, 2021, 55, 102260.	4.6	26
195	Bioactive Compounds Isolated from Defatted Microalgal Biomasses of Botryococcus Braunii and Dunaliella Tertiolecta showing a Tyrosinase Inhibitory Activity. Current Bioactive Compounds, 2021, 17, 234-245.	0.5	1
196	Extraction of Chlorophylls and Carotenoids from Microalgae: COSMOâ€5ACâ€Assisted Solvent Screening. Chemical Engineering and Technology, 2021, 44, 1227-1232.	1.5	9
197	Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Research, 2021, 55, 102267.	4.6	13
198	Unveiling the different faces of chlortetracycline in fermentative volatile fatty acid production from waste activated sludge. Bioresource Technology, 2021, 329, 124875.	9.6	9
199	Quantitative assessment of extraction methods for bound extracellular polymeric substances (B-EPSs) produced by Microcystis sp. and Scenedesmus sp Algal Research, 2021, 56, 102289.	4.6	12
200	Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of the Total Environment, 2021, 772, 144918.	8.0	73

		CITATION RE	PORT	
# 201	ARTICLE Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS Nano, 2021, 1	5, 12237-12248.	IF 14.6	CITATIONS 33
202	Environmental applications of microbial extracellular polymeric substance (EPS): A revie Environmental Management, 2021, 287, 112307.	ew. Journal of	7.8	120
203	Microalgae biomass dewatering by forward osmosis: Review and critical challenges. Alg 2021, 56, 102323.	al Research,	4.6	14
204	Comparison on characterization and antioxidant activity of exopolysaccharides from tv Porphyridium strains. Journal of Applied Phycology, 2021, 33, 2983-2994.	vo	2.8	20
205	A critical review of the recovery of rare earth elements from wastewater by algae for re- recycling technologies. Resources, Conservation and Recycling, 2021, 169, 105519.	sources	10.8	54
206	The stochastic association of nanoparticles with algae at the cellular level: Effects of No size and particle shape. Ecotoxicology and Environmental Safety, 2021, 218, 112280.	DM, particle	6.0	7
207	Effects of microbial inactivation approaches on quantity and properties of extracellular substances in the process of wastewater treatment and reclamation: A review. Journal Materials, 2021, 413, 125283.	polymeric of Hazardous	12.4	24
208	A review on anaerobic digestion of energy and cost effective microalgae pretreatment production. Bioresource Technology, 2021, 332, 125055.	for biogas	9.6	35
209	Feasibility and comparative analysis of cadmium biosorption by living scenedesmus obl biofilms. Chemosphere, 2021, 275, 130125.	iquus FACHB-12	8.2	15
210	Development of microalgal biofilm for wastewater remediation: from mechanism to pra application. Journal of Chemical Technology and Biotechnology, 2021, 96, 2993-3008.	ictical	3.2	26
212	Phycoremediation mechanisms of heavy metals using living green microalgae: physicoc molecular approaches for enhancing selectivity and removal capacity. Heliyon, 2021, 7	hemical and e07609.	3.2	88
213	Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factor EPS Synthesis and Application in Flocculation Processes. Energies, 2021, 14, 4007.	s Affecting	3.1	65
214	Enhanced Secretions of Algal Cell-Adhesion Molecules and Metal Ion-Binding Exoprotei Self-Flocculation of <i>Chlorella</i> sp. Cultivated in Municipal Wastewater. Environme & Technology, 2021, 55, 11916-11924.		10.0	51
215	A review on green technologies for the rejuvenation of polluted surface water bodies: F feasibility, challenges, and future perspectives. Journal of Environmental Chemical Engi 9, 105763.		6.7	23
216	Beneficial impacts of natural biopolymers during surface water purification by membrain nanofiltration. Water Research, 2021, 201, 117330.	10	11.3	23
217	Microalgae and bio-polymeric adsorbents: an integrative approach giving new direction wastewater treatment. International Journal of Phytoremediation, 2022, 24, 536-556.	s to	3.1	3
218	Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data. Science of the Total Environment, 2021, 784, 147048.		8.0	6
219	Acidification inhibition, biodechlorination, and biotransformation of chlorinated acetald acidogenic sludge and microbial community changes. Chemosphere, 2021, 277, 1302		8.2	6

#	Article	IF	CITATIONS
220	Production and characterization of microalgal exopolysaccharide as a reducing and stabilizing agent for green synthesis of gold-nanoparticle: a case study with a Chlorella sp. from Himalayan high-altitude psychrophilic habitat. Journal of Applied Phycology, 2021, 33, 3899-3914.	2.8	4
221	Gibberellic acids promote growth and exopolysaccharide production in Tetraselmis suecica under reciprocal nitrogen concentration: an assessment on antioxidant properties and nutrient removal efficacy of immobilized iron-magnetic nanoparticles. Archives of Microbiology, 2021, 203, 5647-5659.	2.2	0
222	Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Marine Drugs, 2021, 19, 522.	4.6	23
223	Adaptation of autotrophic to heterotrophic culture of Porphyridium purpureum (Bory) K.M. Drew & R.Ross: characterization of biomass and production of exopolysaccharides. Journal of Applied Phycology, 2021, 33, 3603-3615.	2.8	4
224	Potential of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants. Plants, 2021, 10, 1836.	3.5	3
225	Insight into the rapid biogranulation for suspended single-cell microalgae harvesting in wastewater treatment systems: Focus on the role of extracellular polymeric substances. Chemical Engineering Journal, 2021, , 132631.	12.7	6
226	Exopolysaccharides fromÂmicroalgae: production, characterization, optimization and techno-economic assessment. Brazilian Journal of Microbiology, 2021, 52, 1779-1790.	2.0	17
227	The role of substrates towards marine diatom Cylindrotheca fusiformis adhesion and biofilm development. Journal of Applied Phycology, 2021, 33, 2845-2862.	2.8	17
228	Biodegradable, metal-chelating compounds as alternatives to EDTA for cultivation of marine microalgae. Journal of Applied Phycology, 2021, 33, 3519-3537.	2.8	3
229	Iron foam coupled hydrolysis acidification for trichloroacetaldehyde treatment: Strengthening characteristics and mechanism. Bioresource Technology, 2021, 342, 126047.	9.6	7
230	Deciphering the effect of light intensity on microalgal-bacterial granular sludge process for non-aerated municipal wastewater treatment. Algal Research, 2021, 58, 102437.	4.6	28
231	Ageing with algal EPS reduces the toxic effects of polystyrene nanoplastics in freshwater microalgae Scenedesmus obliquus. Journal of Environmental Chemical Engineering, 2021, 9, 105978.	6.7	30
232	Novel environment-friendly grease-infused porous surface exhibiting long-term cycle effective antifouling performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127196.	4.7	8
233	Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 2021, 155, 106594.	10.0	102
234	Pigment modulation in response to irradiance intensity in the fast-growing alga Picochlorum celeri. Algal Research, 2021, 58, 102370.	4.6	12
235	Effect of calcium peroxide pretreatment on the remediation of sulfonamide antibiotics (SMs) by Chlorella sp Science of the Total Environment, 2021, 793, 148598.	8.0	10
236	Towards a general kinetic microalgae model: Extending a semi-deterministic green microalgae model for the cyanobacterium Arthrospira platensis and red alga Porphyridium purpureum. Bioresource Technology, 2021, 342, 125993.	9.6	0
237	Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. Bioresource Technology, 2021, 341, 125816.	9.6	4

#	Article	IF	CITATIONS
238	Interactions between periphytic biofilms and dissolved organic matter at soil-water interface and the consequent effects on soil phosphorus fraction changes. Science of the Total Environment, 2021, 801, 149708.	8.0	14
239	Extracellular polymeric substances in green alga facilitate microplastic deposition. Chemosphere, 2022, 286, 131814.	8.2	33
240	Role of microalgae in degradation of pharmaceutical compounds from water. , 2022, , 75-102.		1
241	The Use of Micro-Algal Technologies for Soil and Agronomic Improvements. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 491-509.	0.4	0
242	Uranium adsorption and oil emulsification by extracellular polysaccharide (EPS) of a halophilic unicellular marine cyanobacterium Synechococcus elongatus BDU130911. Current Research in Green and Sustainable Chemistry, 2021, 4, 100051.	5.6	11
243	Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. Algal Research, 2020, 48, 101883.	4.6	18
244	Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere, 2018, 194, 67-75.	8.2	57
245	Can Microalgae Remove Pharmaceutical Contaminants from Water?. Trends in Biotechnology, 2018, 36, 30-44.	9.3	376
246	Using Simulated Flue Gas to Rapidly Grow Nutritious Microalgae with Enhanced Settleability. ACS Omega, 2020, 5, 27269-27277.	3.5	7
247	Leeuwenhoekiella aestuarii sp. nov., isolated from salt-water sediment and first insights in the genomes of Leeuwenhoekiella species. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1706-1719.	1.7	24
248	Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water (Switzerland), 2021, 13, 27.	2.7	108
249	Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered, 2021, 12, 7577-7599.	3.2	57
250	Mutual Supply of Carbon and Nitrogen Sources in the Co-Culture of Aerial Microalgae and Nitrogen-Fixing Bacteria. SSRN Electronic Journal, 0, , .	0.4	1
251	Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions. Science of the Total Environment, 2022, 806, 150707.	8.0	39
252	The Response of Extracellular Polymeric Substances Production by Phototrophic Biofilms to a Sequential Disturbance Strongly Depends on Environmental Conditions. Frontiers in Microbiology, 2021, 12, 742027.	3.5	8
253	Composition, cultivation and potential applications of Chlorella zofingiensis – A comprehensive review. Algal Research, 2021, 60, 102508.	4.6	11
254	The Effects for Extracellular Polymeric Sustances of Cladophora glomerata under Different Culture pH and Salinities. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2019, 9, 150-157.	0.2	0
255	Comparison of EPS Extraction Efficiences from Spirogyra fluviatilis by Chemical and Physical Extraction Methods. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2019, 9, 202-209.	0.2	4

	Сітаті	on Report	
#	Article	IF	CITATIONS
256	Comparison of EPS Extraction Efficiences from Cladophora Glomerata by Two Chemical Extraction Methods. International Journal of Chemical Engineering and Applications (IJCEA), 2019, 10, 126-129.	0.3	0
257	Characterization of Extracellular Polymeric Substance (EPS) from Cladophora Glomerata under Different Culture Salinities. International Journal of Chemical Engineering and Applications (IJCEA), 2019, 10, 110-113.	0.3	0
258	Sulfated exopolysaccharides from Porphyridium cruentum: A useful strategy to extend the shelf life of minced beef meat. International Journal of Biological Macromolecules, 2021, 193, 1215-1225.	7.5	12
259	Physiological and transcriptional responses of Dictyosphaerium sp. under co-exposure of a typical microplastic and nonylphenol. Environmental Research, 2022, 204, 112287.	7.5	6
260	Developments in enzyme and microalgae based biotechniques to remediate micropollutants from aqueous systems—A review. Critical Reviews in Environmental Science and Technology, 0, , 1-46.	12.8	7
261	Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater – A review. Journal of Environmental Management, 2022, 302, 113998.	7.8	24
262	Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production. , 2022, , 63-82.		2
263	Aquatic Chemical Ecology—A Focus on Algae. , 2020, , 244-267.		1
264	Microalgae as Nutraceutical for Achieving Sustainable Food Solution in Future. Environmental and Microbial Biotechnology, 2020, , 91-125.	0.7	4
265	Treatment of broad bean seeds with algal suspensions to study their effects on certain growth and yield parameters. Journal of Environmental Sciences Mansoura University, 2020, 49, 1-7.	0.1	3
266	Real-Time 3D Framework Tracing of Extracellular Polymeric Substances by an AlE-Active Nanoprobe. ACS Sensors, 2021, 6, 4206-4216.	7.8	1
267	Cyanobacterial Extracellular Polymeric Substances (EPS). , 2021, , 1-28.		2
268	Biofilm mediated bioremediation and other applications. , 2022, , 449-459.		0
269	Microalgal–bacterial consortia for biomass production and wastewater treatment. , 2022, , 477-501.		4
270	Synthetic Biology-Based Approaches for Microalgal Bio-Removal of Heavy Metals From Wastewater Effluents. Frontiers in Environmental Science, 2021, 9, .	3.3	5
271	Nitrogen concentration acting as an environmental signal regulates cyanobacterial EPS excretion. Chemosphere, 2022, 291, 132878.	8.2	8
272	Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresource Technology, 2022, 344, 126397.	9.6	29
273	Isolation and Culturing Axenic Microalgae: Mini–Review. Open Microbiology Journal, 2021, 15, 111-119.	. 0.7	3

# 274	ARTICLE Inhibition of biological acidification and mechanism of crotonaldehyde removal with glucose cometabolism. Journal of Environmental Management, 2022, 303, 114090.	IF 7.8	Citations
275	Simultaneous recovery of phosphorus and alginate-like exopolysaccharides from two types of aerobic granular sludge. Bioresource Technology, 2022, 346, 126411.	9.6	16
276	Characterization of biodegradable films based on extracellular polymeric substances extracted from the thermophilic microalga Graesiella sp Algal Research, 2021, 61, 102565.	4.6	3
277	Microalgae Mediated Sludge Treatment. , 2022, , 159-174.		0
278	"Nature-like―Cryoimmobilization of Phototrophic Microorganisms: New Opportunities for Their Long-Term Storage and Sustainable Use. Sustainability, 2022, 14, 661.	3.2	9
279	Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. Journal of Plant Growth Regulation, 2023, 42, 1-20.	5.1	14
280	Removal of levofloxacin by an oleaginous microalgae Chromochloris zofingiensis in the heterotrophic mode of cultivation: Removal performance and mechanism. Journal of Hazardous Materials, 2022, 425, 128036.	12.4	23
281	Application of Aspergillus niger F5 as an alternative technique to harvest microalgae and as a phosphorous removal treatment for cassava biogas effluent wastewater. Journal of Water Process Engineering, 2022, 46, 102524.	5.6	7
283	Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production. Journal of Applied Phycology, 2022, 34, 745-756.	2.8	2
284	Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS2. Journal of Hazardous Materials, 2022, 429, 128361.	12.4	13
285	Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia. Resources, 2022, 11, 15.	3.5	3
286	Exopolysaccharides from the Energy Microalga Strain BotryococcusÂbraunii: Purification, Characterization, and Antioxidant Activity. Foods, 2022, 11, 110.	4.3	11
287	Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro―and microphytes. Journal of Basic Microbiology, 2022, 62, 260-278.	3.3	25
288	A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. Journal of Applied Microbiology, 2022, 132, 3490-3514.	3.1	38
289	Bioproducts from high-protein algal biomass: an economic and environmental sustainability review and risk analysis. Sustainable Energy and Fuels, 2022, 6, 2398-2422.	4.9	6
290	Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Archives of Microbiology, 2022, 204, 149.	2.2	16
291	Growth and nutrients removal characteristics of attached Chlorella sp. using synthetic municipal secondary effluent with varied hydraulic retention times and biomass harvest intervals. Algal Research, 2022, 61, 102600.	4.6	19
292	Ultrasound-Assisted Extracellular Polymeric Substance Removal from the Diatom <i>Navicula</i> sp.: A Route to Functional Polysaccharides and More Efficient Algal Biorefineries. ACS Sustainable Chemistry and Engineering, 2022, 10, 1795-1804.	6.7	2

#	Article	IF	CITATIONS
293	Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chemistry: X, 2022, 13, 100233.	4.3	19
294	Accumulation of proteins in the medium of the various naturally occurring Chlorella and Scenedesmus microalgae containing and not-containing algaenan. Algal Research, 2022, 62, 102598.	4.6	0
295	Simultaneous water reclamation and nutrient recovery of aquaculture wastewater using membrane distillation. Journal of Water Process Engineering, 2022, 46, 102573.	5.6	14
296	Anti-biofouling functional surfaces for marine aquaculture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128313.	4.7	2
297	Marine Biogeochemical Cycles. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 623-671.	0.6	1
298	Use in Products. , 2022, , 127-205.		0
299	Construction of Microalgae-Bacteria Symbiosis for the Enhanced Treatment of Biogas Slurry. SSRN Electronic Journal, 0, , .	0.4	0
300	Cyanobacterial Extracellular Polymeric Substances (EPS). , 2022, , 139-165.		6
301	Cell-based biocomposite engineering directed by polymers. Lab on A Chip, 2022, 22, 1042-1067.	6.0	8
302	Algal Metabolites Can Be an Immune Booster against COVID-19 Pandemic. Antioxidants, 2022, 11, 452.	5.1	7
303	Functional, rheological, and antioxidant properties of extracellular polymeric substances produced by a thermophilic cyanobacterium Leptolyngbya sp Journal of Applied Phycology, 2022, 34, 1423-1434.	2.8	14
304	Extracellular Polymeric Substances Produced by the Thermophilic Cyanobacterium Gloeocapsa gelatinosa: Characterization and Assessment of Their Antioxidant and Metal-Chelating Activities. Marine Drugs, 2022, 20, 227.	4.6	7
305	Recent Advances of Microalgae Exopolysaccharides for Application as Bioflocculants. Polysaccharides, 2022, 3, 264-276.	4.8	11
306	The seed primer and biofertilizer performances of living Chlorella pyrenoidosa on Chenopodium quinoa under saline-alkali condition. Journal of Applied Phycology, 2022, 34, 1621-1634.	2.8	6
307	Salinity-induced chemical, mechanical, and behavioral changes in marine microalgae. Journal of Applied Phycology, 2022, 34, 1293-1309.	2.8	12
308	High cobalt exposure facilitates bioactive exopolysaccharides production with a novel molecular structure in Botryococcus braunii. Chemical Engineering Journal, 2022, 442, 136294.	12.7	4
309	Understanding photosynthetic biofilm productivity and structure through 2D simulation. PLoS Computational Biology, 2022, 18, e1009904.	3.2	5
310	Role of rotating speed on the stability of a self-sustaining algal-bacterial photo-granules process. Bioresource Technology, 2022, 353, 127134.	9.6	2

ARTICLE IF CITATIONS # The role of microplastics in microalgae cells aggregation: A study at the molecular scale using atomic 311 8.0 21 force microscopy. Science of the Total Environment, 2022, 832, 155036. Emerging Ecotone and Microbial Community of a Sulfidic Spring in the Reka River near Åkocjanske 1.7 Jame, Slovenia. Diversity, 2021, 13, 655. Study of a green algae Lobochlamys segnis Strain-019 from peatland. IOP Conference Series: Earth and 313 0.3 0 Environmental Science, 2021, 948, 012024. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Phytochemistry Reviews, 2023, 22, 969-991. 314 Effect of biofilm colonization on Pb(II) adsorption onto poly(butylene succinate) microplastic during 315 8.0 24 its biodegradation. Science of the Total Environment, 2022, 833, 155251. Binding characteristics of Hg(II) with extracellular polymeric substances: implications for Hg(II) reactivity within periphyton. Environmental Science and Pollution Research, 2022, , 1. 5.3 Synergy of cyano groups and cobalt single atoms in graphitic carbon nitride for enhanced 317 11.3 19 bio-denitrification. Water Research, 2022, 218, 118465. Microalgae for bioremediation of pesticides: Overview, challenges, and future trends., 2022, , 63-78. 326 Valorization of wastewater through microalgae as a prospect for generation of biofuel and 327 9.3 31 high-value products. Journal of Cleaner Production, 2022, 362, 132114. Microalgae-bacteria consortium for wastewater treatment and biomass production. Science of the 8.0 Total Environment, 2022, 838, 155871. Employment of algae-based biological soil crust to control desertification for the sustainable 330 4.6 9 development: A mini-review. Algal Research, 2022, 65, 102747. A comparative study on simultaneous recovery of phosphorus and alginate-like exopolymers from bacterial and algal-bacterial aerobic granular sludges: Effects of organic loading rate. Bioresource 9.6 Technology, 2022, 357, 127343. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse 332 2.7 11 intercellular bonds. Biophysics Reviews, 2022, 3, . Performance and mechanism of Chlorella in swine wastewater treatment: Roles of nitrogen-phosphorus ratio adjustment and indigenous bacteria. Bioresource Technology, 2022, 358, 127402. 24 Characteristics of EPS from Pseudomonas aeruginosa and Alcaligenes faecalis under Cd(II) stress: 334 changes in chemical components and adsorption performance. Environmental Science and Pollution 9 5.3Research, 2022, 29, 75883-75895. Structural features of biologically active extracellular polysaccharide produced by green microalgae Dictyosphaerium chlorelloides. International Journal of Biological Macromolecules, 2022, 214, 152-161. Bacterial extracellular polymeric substances: Impact on soil microbial community composition and 336 their potential role in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 2022, 6.0 11 240, 113701. Encapsulation of bacteria in different stratified extracellular polymeric substances and its 11.3 implications for performance enhancement and resource recovery. Water Research, 2022, 220, 118684.

ARTICLE IF CITATIONS Effect of carbon source conditions on response of nitrifying sludge to 3,5-dichlorophenol. Journal 338 7.8 4 of Environmental Management, 2022, 317, 115196. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses, 2022, 14, 1337. 3.3 Influence of abiotic conditions on the biofouling formation of flagellated microalgae culture. 340 2.2 3 Biofouling, 2022, 38, 507-520. Relationship of Phosphorus Removal, Extracellular Polymeric Substances Characteristics, and Microbial Community Diversity in an Aerobic Moving Bed Biofilm Reactor: Effect of Carbon Sources. 341 SSRN Electronic Journal, 0, , . Multi-species biofilms: Friends or foe to the human?., 2022, , 327-359. 342 0 Microalgal applications in biomedicine and healthcare., 2022, , 133-156. Mechanical testing of particle streaming and intact extracellular mucilage nanofibers reveal a role 344 1.8 5 of elastic force in diatom motility. Physical Biology, 2022, 19, 056002. Bacterial exudates as growth $\hat{a} \in promoting agents$ for the cultivation of commercially relevant marine 345 2.4 microalgal strains. Journal of the World Aquaculture Society, 2022, 53, 1101-1119. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 346 3.0 10 pandemic: What do we know?. Journal of Hazardous Materials Advances, 2022, 7, 100121. The potential and challenge of microalgae as promising future food sources. Trends in Food Science 347 15.1 and Technology, 2022, 126, 99-112. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms. 348 11.3 66 Water Research, 2022, 221, 118834. Novel 3D-printed buoyant structures for improvement in flue gas CO2-derived microalgal biomass production by enhancing anti-biofouling on vertical polymeric photobioreactor. Journal of Cleaner Production, 2022, 366, 133030. Green Agriculture: a Review of the Application of Micro- and Macroalgae and Their Impact on Crop 350 3.4 13 Production on Soil Quality. Journal of Soil Science and Plant Nutrition, 2022, 22, 4627-4641. Influence of nitrogen species and biomass retention time on nutrient removal and biomass productivity in a microalgae-based bioreactor. Environmental Technology and Innovation, 2022, 28, 6.1 102880. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for 352 5.08 Microplastics Detection. Journal of Polymers and the Environment, 2022, 30, 4738-4748. Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: 6.1 Circular bioeconomy approach. Environmental Technology and Innovation, 2022, 28, 102872. Biochar facilitates ferrihydrite reduction by Shewanella oneidensis MR-1 through stimulating the 354 8.0 13 secretion of extracellular polymeric substances. Science of the Total Environment, 2022, 848, 157560. Extracellular polymeric substance profiling and biophysical analysis reveal influence factors of spontaneous flocculation in rich lipid alga Heveochlorella sp. Yu. Science of the Total Environment, 2022, 847, 157655.

#	Article	IF	CITATIONS
356	Efficiency of a multi-barrier household system for surface water treatment combining a household slow sand filter to a Mesita Azul® ultraviolet disinfection device. Journal of Environmental Management, 2022, 321, 115948.	7.8	3
357	Toxicity alleviation and metabolism enhancement of nonylphenol in green algae Dictyosphaerium sp. by NaHCO3. Science of the Total Environment, 2022, 848, 157698.	8.0	1
358	Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 2023, 13, 100205.	13.5	103
359	Algae biofilm as a renewable resource for production of biofuel and value-added products: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102749.	2.7	5
360	Removal of H2S in an extremely acidic-biotrickling filter: Evaluation of removal performance and characterization of microbial communities. Journal of Environmental Chemical Engineering, 2022, 10, 108504.	6.7	3
361	Potential applications of Botryococcus terribilis: A review. Biomass and Bioenergy, 2022, 165, 106582.	5.7	7
362	Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatalysis and Agricultural Biotechnology, 2022, 45, 102491.	3.1	12
363	A review on recovery of extracellular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. Bioresource Technology, 2022, 363, 127854.	9.6	20
364	The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. Bioresource Technology, 2022, 363, 127912.	9.6	10
365	Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms. Journal of Environmental Management, 2022, 321, 116028.	7.8	14
366	Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: A critical review. Bioresource Technology, 2022, 363, 127916.	9.6	11
367	The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it's phycoremediation performance for the removal of sulfacetamide. Environmental Research, 2022, 215, 114314.	7.5	8
368	Relationship of phosphorus removal, extracellular polymeric substances characteristics, and microbial community diversity in an aerobic moving bed biofilm reactor: Effect of carbon sources. Journal of Environmental Chemical Engineering, 2022, 10, 108555.	6.7	1
369	Removal and Concurrent Reduction of Cr(Vi) by Thermoacidophilic Cyanidiales: A Novel Extreme Biomaterial Enlightened for Acidic and Neutral Conditions. SSRN Electronic Journal, 0, , .	0.4	0
370	Role of Microalgae as Biofertilizer for Sustainable Plant and Soil Health. , 2022, , 221-236.		0
371	Zero-Waste Biorefinery. , 2022, , 21-41.		0
372	Microalgal Phycoremediation: A Glimpse into a Sustainable Environment. Toxics, 2022, 10, 525.	3.7	10
373	High robustness of attached Chlorella sp. on semi-continuous low strength effluent polishing under axenic and xenic conditions. Algal Research, 2022, 67, 102836.	4.6	6

		CITATION REPORT	
# 374	ARTICLE Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bio-remove ammonia nitrogen from high turbidity wastewater. Water Research, 2022, 223, 119041.	IF 11.3	Citations
375	Extracellular Metabolites of Heterotrophic Auxenochlorella protothecoides: A New Source of Bio-Stimulants for Higher Plants. Marine Drugs, 2022, 20, 569.	4.6	1
376	The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal — A review. Algal Research, 2022, 68, 102849.	4.6	12
377	Parabens removal from wastewaters by microalgae – Ecotoxicity, metabolism and pathways. Chemical Engineering Journal, 2023, 453, 139631.	12.7	14
378	The application of exopolysaccharides (EPS) can prevent viral disease of fish. , 0, , .		0
379	Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. Bioresource Technology, 2022, 364, 128049.	9.6	30
380	Changes of the physicochemical properties of extracellular polymeric substances (EPS) from Microcystis aeruginosa in response to microplastics. Environmental Pollution, 2022, 315, 120354.	7.5	21
381	Effects of nutrient limitation on cell growth, exopolysaccharide secretion and TEP production of Phaeocystis globosa. Marine Environmental Research, 2023, 183, 105801.	2.5	2
382	Growth-promoting effects of phytohormones on capillary-driven attached Chlorella sp. biofilm. Bioresource Technology, 2022, 364, 128117.	9.6	5
383	Structural and physicochemical characterization of an aminosugar-rich exopolysaccharide isolated from a Chlorella sp Algal Research, 2022, 68, 102881.	4.6	1
384	Flocculation kinetics and mechanisms of microalgae- and clay-containing suspensions in different microalgal growth phases. Water Research, 2022, 226, 119300.	11.3	7
385	Evaluating the role of algae in algal-bacterial granular sludge: Nutrient removal, microbial community and granular characteristics. Bioresource Technology, 2022, 365, 128165.	9.6	14
386	Small peptide glutathione-induced bioflocculation for enhancing the food application potential of Chlorella pyrenoidosa. Bioresource Technology, 2022, 365, 128138.	9.6	4
387	Effect of live and inactivated Chlamydomonas reinhardtii on the removal of tetracycline in aquatic environments. Chemosphere, 2022, 309, 136666.	8.2	8
388	A high-efficiency mixotrophic photoelectroactive biofilm reactor (MPBR) for enhanced simultaneous removal of nutrients and antibiotics by integrating light intensity regulation and microbial extracellular electron extraction. Journal of Environmental Management, 2023, 325, 116520.	7.8	3
389	Molecular characteristics of microalgal extracellular polymeric substances were different among phyla and correlated with the extracellular persistent free radicals. Science of the Total Environment, 2023, 857, 159704.	8.0	2
390	Biogas conditioning and digestate recycling by microalgae: Acclimation of Chlorella vulgaris to H2S-containing biogas and high NH4-N digestate and effect of biogas: Digestate ratio. Chemical Engineering Journal, 2023, 453, 139788.	12.7	14
391	Dissecting the molecular mechanisms of producing biofuel and value-added products by cadmium tolerant microalgae as sustainable biorefinery approach. Chemical Engineering Journal, 2023, 454, 140068.	12.7	12

ARTICLE IF CITATIONS Comprehensive modeling and predicting light transmission in microalgal biofilm. Journal of 392 7.8 10 Environmental Management, 2023, 326, 116757. Diversity of monosaccharides and glycosidic linkages on extracellular polysaccharides of the microalga <i>Ankistrodesmus</i> (Chlorophyceae). Phycologia, 0, , 1-12. 1.4 394 Microalgae as Soft Permeable Particles. Langmuir, 2022, 38, 14044-14052. 3.5 3 Removal and concurrent reduction of Cr(VI) by thermoacidophilic Cyanidiales: a novel extreme biomaterial enlightened for acidic and neutral conditions. Journal of Hazardous Materials, 2023, 445, 130334. Dynamics of extracellular polymeric substances and soil organic carbon with mangrove zonation 396 2.5 1 along a continuous tidal gradient. Frontiers in Marine Science, 0, 9, . Biomineral Flocculation of Kaolinite and Microalgae: Laboratory Experiments and Stochastic Modeling. Journal of Geophysical Research: Oceans, 2022, 127, . 2.6 Peridotite dissolution in the presence of green microalgae: Implications for a geoengineering strategy 398 2.3 2 of CO2 sequestration. Journal of Asian Earth Sciences, 2023, 241, 105486. Microalgae-based wastewater treatment for micropollutant removal in swine effluent: High-rate 4.6 algal ponds performance under different zinc concentrations. Algal Research, 2023, 69, 102930. Colony formation of Phaeocystis globosa: A case study of evolutionary strategy for competitive 400 5.0 3 adaptátion. Marine Pollution Bulletin, 2023, 186, 114453. Stability and mobility of zinc oxide nanoparticles in aquatic environment: Influence of extracellular polymeric substances from cyanobacteria and microalgae. Journal of Environmental Chemical 6.7 Engineering, 2023, 11, 109069. Study on the Bioconversion of Curcumin to Calebin-A Using Spirulina subsalsa and Its Taxonomic 402 0 2.9 Resolution Using 16S rRNA Analysis. Applied Biochemistry and Biotechnology, 0, , . Inside out <i>Porphyridium cruentum</i>: Beyond the Conventional Biorefinery Concept. ACS 6.7 Sustainable Chemistry and Engineering, 0, , . Extraction of extracellular polymeric substances (EPS) from indigenous bacteria of rare earth tailings and application to removal of thorium ions (Th4+). Water Science and Technology, 2023, 87, 404 2.5 1 83-98. Ultrasound stimulated production of exopolysaccharide with anti-UV radiation activity by increasing cell permeability of Paenibacillus polymyxa. Process Biochemistry, 2023, 126, 252-259. 3.7 Elaboration and Characterization of a New Heavy Metal Sensor Functionalized by Extracellular Polymeric Substances Isolated from a Tunisian Thermophilic Microalga Strain Graesiella sp.. Sensors, 406 3.8 4 2023, 23, 803. Closed loop bioeconomy opportunities through the integration of microalgae cultivation with anaerobic digestion: A critical review. Bioresource Technology Reports, 2023, 21, 101336. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers 408 2.7 2 in Chemical Engineering, 0, 4, . Effect of salinity on the biochemical characteristics and antioxidant activity of exopolysaccharide of Porphyridium purpureum FACHB 806. Frontiers in Marine Science, 0, 9, .

ARTICLE IF CITATIONS # Life Cycle Assessment for Microalgal Biocomposites. Composites Science and Technology, 2023, 410 0.6 1 203-227. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous 411 8.2 membranes. Chemosphere, 2023, 315, 137712. 412 Marine polymers and their antioxidative perspective., 2023, , 379-393. 1 Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiology, 2023, 9, 55-74. Algal extracellular polymeric substances (algal-EPS) for mitigating the combined toxic effects of polystyrene nanoplastics and nano-TiO₂ in <i>Chlorella</i> sp.. Nanotoxicology, 2023, 17, 414 3.0 4 143-156. Mutual supply of carbon and nitrogen sources in the co-culture of aerial microalgae and nitrogen-fixing bacteria. Algal Research, 2023, 70, 103001. 4.6 Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An 416 8.2 13 overview. Chemosphere, 2023, 320, 137921. Mechanistic behaviour of Chlorella vulgaris biofilm formation onto waste organic solid support used to treat palm kernel expeller in the recent Anthropocene. Environmental Research, 2023, 222, 115352. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and 418 physico-chemical characteristics of four bloom-forming algae species. Journal of Environmental 7.8 1 Management, 2023, 336, 117559. The characteristic evolution and formation mechanism of hybrid microalgae biofilm and its application in mariculture wastewater treatment. Journal of Environmental Chemical Engineering, 2023, 11, 109645. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. International Journal of Biological 420 7.5 5 Macromolecules, 2023, 240, 124217. Microalgae and cyanobacteria polysaccharides: Important link for nutrient recycling and 4.0 revalorization of ágro-industrial wástewater. Applied Food Research, 2023, 3, 100296. The leaf of Agapanthus africanus (L.) Hoffm.: A physical-chemical perspective of terrestrialization in 422 4.2 3 the cuticle. Environmental and Experimental Botany, 2023, 208, 105240. Structural characterization of exopolysaccharides obtained from Porphyridium cruentum exhausted culture medium. Food and Bioproducts Processing, 2023, 138, 162-171. 3.6 The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant 424 2.7 1 Light Conditions. Water (Switzerland), 2023, 15, 621. Development of a bench-scale photobioreactor with a novel recirculation system for continuous 425 cultivation of microalgae. Journal of Environmental Management, 2023, 332, 117418. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in 426 4.6 2 artificial mariculture effluent. Algal Research, 2023, 70, 103008. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. 3.1 International Journal of Phytoremediation, 2023, 25, 1596-1613.

#	Article	IF	CITATIONS
428	Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210: Production, characterization, and biological properties. Algal Research, 2023, 70, 103014.	4.6	0
429	Phyco-remediation: Role of Microalgae in Remediation of Emerging Contaminants. Emerging Contaminants and Associated Treatment Technologies, 2023, , 163-192.	0.7	0
430	Structural properties of the extracellular biopolymer (β-D-xylo-α-D-mannan) produced by the green microalga Gloeocystis vesiculosa NÃ g eli. Carbohydrate Research, 2023, 525, 108766.	2.3	4
431	Immobilization of phototroph-derived extracellular polymer for simultaneous removal of antibiotics and heavy metals: A sustainable approach for advanced treatment of secondary effluent. Journal of Cleaner Production, 2023, 396, 136495.	9.3	14
432	Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001T, which originated from Permian ground water. Marine Life Science and Technology, 2023, 5, 12-27.	4.6	0
433	Nano α-Fe ₂ O ₃ Self-Assembled Hybrid Biofilm Boosts Hydrogen Autotrophic Denitrification in a Three-Dimensional Biofilm Electrode Reactor. ACS ES&T Engineering, 2023, 3, 557-567.	7.6	0
434	Beneficial insights into postbiotics against colorectal cancer. Frontiers in Nutrition, 0, 10, .	3.7	6
435	A new microalgae community — epimicroplastic microalgae (EMP-MA). Algal Research, 2023, 71, 103059.	4.6	1
436	The role of algal EPS in reducing the combined toxicity of BPA and polystyrene nanoparticles to the freshwater algae Scenedesmus obliquus. Plant Physiology and Biochemistry, 2023, 197, 107664.	5.8	9
437	Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World Journal of Microbiology and Biotechnology, 2023, 39, .	3.6	5
438	Technological readiness of commercial microalgae species for foods. Critical Reviews in Food Science and Nutrition, 0, , 1-25.	10.3	5
439	Microalgae as a key tool in achieving carbon neutrality for bioproduct production. Algal Research, 2023, 72, 103096.	4.6	13
441	Exploring resistomes and microbiomes in pilot-scale microalgae-bacteria wastewater treatment systems for use in low-resource settings. Science of the Total Environment, 2023, 882, 163545.	8.0	3
442	Exploring Nanotechnology as a Strategy to Circumvent Antimicrobial Resistance in Bone and Joint Infections. ACS Omega, 2023, 8, 15865-15882.	3.5	0
443	Effects of thermal and enzymatic pre-treatments on the solubilisation of extracellular polymeric substances (EPS) and subsequent anaerobic digestion of microalgae-bacterial biomass. Algal Research, 2023, 72, 103130.	4.6	5
444	Bioremediation of propylbenzenes by a novel marine microalga Rhinomonas reticulata S6A isolated from Daya Bay: acute toxicity, growth kinetics and biodegradation performance. Frontiers in Marine Science, 0, 10, .	2.5	0
445	Antibiotic removal efficiency by microalgae: A systematic analysis combined with meta-analysis. Chemical Engineering Research and Design, 2023, 174, 912-920.	5.6	5
446	Enhancing arsenate metabolism in Microcystis aeruginosa and relieving risks of arsenite and microcystins by nano-Fe2O3 under dissolved organic phosphorus conditions. Environmental Pollution, 2023, 330, 121801.	7.5	2

#	Article	IF	CITATIONS
447	The Impact of Nutrient Limitation and Harvest Method on the Wet Preservation of Chlorella vulgaris Biomass. Bioengineering, 2023, 10, 600.	3.5	0
448	Impact of disposable mask microplastics pollution on the aquatic environment and microalgae growth. Environmental Science and Pollution Research, 2023, 30, 77453-77468.	5.3	1
449	Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regulation, 2023, 101, 53-65.	3.4	8
450	Phytoplankton Carbon Utilization Strategies and Effects on Carbon Fixation. Water (Switzerland), 2023, 15, 2137.	2.7	3
451	Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater. Environmental Research, 2023, 232, 116342.	7.5	2
452	Controlled mechanism and removal performance of phosphorus in black and odorous water bodies by Fe-based layered double hydroxides. Journal of Environmental Chemical Engineering, 2023, 11, 110323.	6.7	0
453	Cellular Damage of Bacteria Attached to Senescent Phytoplankton Cells as a Result of the Transfer of Photochemically Produced Singlet Oxygen: A Review. Microorganisms, 2023, 11, 1565.	3.6	0
454	Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds. Frontiers in Pharmacology, 0, 14, .	3.5	2
456	Cell destruction level and metabolites green-extraction of Tetraselmis suecica by low and intermediate frequency ultrasound. Ultrasonics Sonochemistry, 2023, 98, 106492.	8.2	3
457	Unraveling the intracellular and extracellular self-defense of Chlorella sorokiniana toward highly toxic pyridine stress. Bioresource Technology, 2023, 385, 129366.	9.6	1
458	Flocculation of oleaginous green algae with Mortierella alpina fungi. Bioresource Technology, 2023, 385, 129391.	9.6	4
459	Intracellular and extracellular carbohydrates in microalgae. , 2023, , 87-102.		1
460	Algal Hydrogen Production and Exopolysaccharide Patterns in Chlorella–Bacillus Inter-Kingdom Co-Cultures. Fermentation, 2023, 9, 424.	3.0	1
461	Microalgal biofilms: Towards a sustainable biomass production. Algal Research, 2023, 72, 103124.	4.6	13
462	<i>Chlorococcum</i> sp. biofilm growth on biochar from olive kernels solid support. Journal of Chemical Technology and Biotechnology, 2023, 98, 1986-1994.	3.2	1
463	Ship Hull-Fouling Diatoms on Korean Research Vessels Revealed by Morphological and Molecular Methods, and Their Environmental Implications. Journal of Microbiology, 2023, 61, 615-626.	2.8	Ο
464	Gravity-driven membrane coupled with oxidation technology to modify the surface properties and biofilm formation: Biofouling mitigation. Journal of Environmental Management, 2023, 345, 118444.	7.8	2
465	Aerobic granulation in an oxidation ditch using the residual sludge after extracting slime-extracellular polymer substances. Journal of Water Process Engineering, 2023, 54, 103978.	5.6	2

#	Article	IF	CITATIONS
466	Shaping the phycosphere: Analysis of the EPS in diatomâ€bacterial coâ€cultures. Journal of Phycology, 2023, 59, 791-797.	2.3	3
467	The extracellular matrix of green algae. Plant Physiology, 2023, 194, 15-32.	4.8	6
468	Hybrid planktonic-biofilm cultivation of a Nordic mixed-species photosynthetic consortium: A pilot study on carbon capture and nutrient removal. Chemical Engineering Journal, 2023, 471, 144585.	12.7	4
469	Watershed characteristics and chemical properties govern methyl mercury concentrations within headwater streams of boreal forests in Ontario, Canada. Journal of Environmental Management, 2023, 345, 118526.	7.8	0
470	Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. Food Science and Technology International, 0, , .	2.2	0
471	Microalgae-based wastewater treatment system: current state, antibiotic resistant bacteria and antibiotic resistance genes reduction potentials. International Journal of Environmental Science and Technology, 0, , .	3.5	1
472	Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention. Frontiers in Microbiology, 0, 14, .	3.5	0
473	The rhizosphere soil properties and bacteria community of poplar are affected by magnetic field under salt condition. Rhizosphere, 2023, 27, 100747.	3.0	1
474	Effects of dissolved organic matter from sediment and soil samples on the growth and physiology of four bloom-forming algal species. Ecotoxicology and Environmental Safety, 2023, 263, 115266.	6.0	1
475	Green synthesis of titanium nanoparticles using a sustainable microalgal metabolite solution for potential biotechnological activities. Asia-Pacific Journal of Chemical Engineering, 2023, 18, .	1.5	1
476	Effect of micronutrient iron on bioactive compounds isolated from cryptophytes. Frontiers in Plant Science, 0, 14, .	3.6	0
477	Roles and regulation of quorum sensing in anaerobic granular sludge: Research status, challenges, and perspectives. Bioresource Technology, 2023, 387, 129644.	9.6	4
479	Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities. Journal of Water Process Engineering, 2023, 55, 104128.	5.6	12
480	A critical review on remediation of microplastics using microalgae from aqueous system. Science of the Total Environment, 2023, 898, 166425.	8.0	6
482	Factors and mechanisms regulating heavy metal phycoremediation in polluted water. Discover Water, 2023, 3, .	2.9	1
483	A microscale system for <i>in situ</i> investigation of immobilized microalgal cell resistance against liquid flow in the early inoculation stage. Lab on A Chip, 2023, 23, 4052-4066.	6.0	0
484	Microalgal-based bioremediation of emerging contaminants: Mechanisms and challenges. Environmental Pollution, 2023, 337, 122591.	7.5	6
486	Enhanced extracellular polymeric substances production defending microalgal cells against the stress of tetrabromobisphenol A. Journal of Applied Phycology, 2023, 35, 2945-2956.	2.8	1

#	Article	IF	CITATIONS
487	Enhancing crotonaldehyde biodegradation in petrochemical wastewater: Role of electron donors in microbial electron transfer systems. Chemical Engineering Research and Design, 2023, 178, 1161-1169.	5.6	2
488	Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. Environmental Pollution, 2023, 338, 122691.	7.5	1
489	Screening for tolerance to natural phenols of different algal species: Toward the phycoremediation of olive mill wastewater. Algal Research, 2023, 75, 103256.	4.6	1
490	Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae. Nanomaterials, 2023, 13, 2468.	4.1	0
491	The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. Science of the Total Environment, 2023, 905, 167129.	8.0	1
492	Can you see the algae for the slime? Temporal patterns of biofilm food quality and quantity in lowland rivers. Ecosphere, 2023, 14, .	2.2	1
493	Organic loads reduction efficiency using natural fiber reinforced polymer encapsulated microalgae macrocapsule for wastewater treatment. IOP Conference Series: Earth and Environmental Science, 2023, 1216, 012043.	0.3	0
494	The effect of free ammonia on ammonium removal and N2O production in a consortium of microalgae and partial nitritation cultures. Chemical Engineering Journal, 2023, 474, 145572.	12.7	3
495	Diatomite-Trichoderma viride composite microspheres for selective removal of anionic dyes and copper ions. Journal of Water Process Engineering, 2023, 55, 104235.	5.6	0
496	Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system. Environmental Pollution, 2023, 337, 122539.	7.5	0
497	Production and composition of extracellular polymeric substances by a unicellular strain and natural colonies of <i>Microcystis</i> : Impact of salinity and nutrient stress. Environmental Microbiology Reports, 2023, 15, 783-796.	2.4	0
498	Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. Science of the Total Environment, 2023, 905, 167045.	8.0	2
499	Evaluating the potential of exopolysaccharide extracted from the spent cultivation media of Spirulina sp. as plant biostimulant. Biomass Conversion and Biorefinery, 0, , .	4.6	0
500	Extracellular polymeric substances altered the physicochemical properties of molybdenum disulfide nanomaterials to mitigate its toxicity to Chlorella vulgaris. NanoImpact, 2023, 32, 100485.	4.5	0
501	Bio-coatings in permeated cultivation systems: Unprecedented impacts on microalgal monoculture growth and organic matter yield. Environmental Research, 2023, 239, 117403.	7.5	1
502	Revolutionizing wastewater treatment with microalgae: Unveiling resource recovery, mechanisms, challenges, and future possibilities. Ecological Engineering, 2023, 197, 107117.	3.6	2
504	Book: "Resource Recovery from Wastewater Through Biological Methods―Biofertilizers from Wastewater. Springer Water, 2023, , 249-276.	0.3	0
505	Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. Science of the Total Environment, 2023, , 167974.	8.0	0

#	Article	IF	CITATIONS
506	Harnessing Carbonaceous materials' multifaceted roles for enhanced anaerobic digestion performance. Chemical Engineering Journal, 2023, 477, 146931.	12.7	0
507	Bacterial Interactions with Nanoplastics and the Environmental Effects They Cause. Fermentation, 2023, 9, 939.	3.0	0
508	Time-course adaption strategy of Tetraselmis-based consortia in response to 17α-ethinylestradiol. Journal of Hazardous Materials, 2024, 463, 132854.	12.4	0
509	Biosafety of two-dimensional molybdenum disulfide nanomaterials: Natural and engineered transformation pathways and their role in the toxicity profile. Critical Reviews in Environmental Science and Technology, 2024, 54, 840-863.	12.8	1
510	Understanding the dynamics of Microcystis bloom: Unraveling the influence of suspended solids through proteomics and metabolomics approaches. Science of the Total Environment, 2024, 908, 168079.	8.0	1
511	CO2 Mineralized Sequestration and Assistance by Microorganisms in Reservoirs: Development and Outlook. Energies, 2023, 16, 7571.	3.1	1
512	Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. Water Research, 2024, 249, 120889.	11.3	0
513	Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. Chemosphere, 2024, 349, 140822.	8.2	0
514	The effect of bovine trypsin on dental biofilm dispersion: an in vitro study. Odontology / the Society of the Nippon Dental University, 0, , .	1.9	0
515	Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae. Biofouling, 2023, 39, 879-895.	2.2	0
516	The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO2 nanoparticles and polystyrene microplastics on Chlorella sp Environmental Science and Pollution Research, 2023, 30, 122700-122716.	5.3	1
517	Insight into coagulation/flocculation mechanisms on microalgae harvesting by ferric chloride and polyacrylamide in different growth phases. Bioresource Technology, 2024, 393, 130082.	9.6	1
519	EPS-corona formation on graphene family nanomaterials (GO, rGO and graphene) and its role in mitigating their toxic effects in the marine alga Chlorella sp Environmental Pollution, 2024, 341, 123015.	7.5	2
520	Microalgae's polysaccharides, are they potent antioxidants? Critical review. Archives of Microbiology, 2024, 206, .	2.2	0
521	Enhancing diversified extracellular electron transfer (EET) processes through N-MXene-modified non-adhesive hydrogel bioanodes. Bioprocess and Biosystems Engineering, 0, , .	3.4	0
523	Production of xylose polysaccharides using newly isolated Chlamydomonas sp. Xylok with nitrogen depletion. Algal Research, 2024, 77, 103374.	4.6	0
524	Exploring microalgal and cyanobacterial metabolites with antiprotozoal activity against Leishmania and Trypanosoma parasites. Acta Tropica, 2024, 251, 107116.	2.0	0
525	Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). International Journal of Biological Macromolecules, 2023, , 129089.	7.5	1

#	Article	IF	CITATIONS
526	Bicarbonate-assisted microalgae cultivation for drinking water RO reject recycling and bioproduct generation. Bioresource Technology Reports, 2023, , 101756.	2.7	0
527	Unraveling the impact of phytoplankton secretions on the behavior of metal-containing engineered nanoparticles in aquatic environment. Frontiers in Environmental Science, 0, 11, .	3.3	0
528	Engineered nanomaterials display a variable interaction with anoxygenic photoelectrogenic biofilm for pharmaceutical pollutants degradation. Chemical Engineering Journal, 2024, 482, 148823.	12.7	0
529	Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Environmental Pollution, 2024, 343, 123285.	7.5	1
530	Prevalence of Microbiome Reservoirs in Plants and Pathogen Outbreaks. , 2023, , 259-286.		0
531	Toxic effects of polystyrene nanoplastics and polycyclic aromatic hydrocarbons (chrysene and) Tj ETQq1 1 0.784 Aquatic Toxicology, 2024, 268, 106838.	314 rgBT / 4.0	Overlock 10 0
532	A novel alginate-embedded magnetic biochar-anoxygenic photosynthetic bacteria composite microspheres for multipollutant removal: Mechanisms of photo-bioelectrochemical enhancement and excellent reusability performance. Environmental Research, 2024, 247, 118158.	7.5	0
533	Research progress on methane emissions from tributaries of the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2024, 36, 17-33.	0.8	0
534	Biosorption process for antibiotics removal. , 2024, , 369-458.		0
536	Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater. Bioresource Technology, 2024, 395, 130372.	9.6	0
537	Sustainable microalgae extraction for proactive water bloom prevention. , 2024, 2, 172-182.		1
538	Exploring the molecular mechanism of Chlorella vulgaris in response to androstenedione exposure based on genes continuously up-regulated in transcription analysis. Ecotoxicology and Environmental Safety, 2024, 271, 115996.	6.0	0
539	High Salinity Alters the Adsorption Behavior of Microplastics towards Typical Pollutants and the Phytotoxicity of Microplastics to Synechococcus. Sustainability, 2024, 16, 1107.	3.2	0
540	Triclosan in sludge: Exploring its journey from the sewage treatment plants to land application and potential impacts on the environment. Critical Reviews in Environmental Science and Technology, 0, , 1-24.	12.8	0
541	Promotion of anaerobic biodegradation of azo dye RR2 by different biowaste-derived biochars: Characteristics and mechanism study by machine learning. Bioresource Technology, 2024, 396, 130383.	9.6	0
542	Bioprospecting of microalgae from agricultural fields and developing consortia for sustainable agriculture. Algal Research, 2024, 78, 103428.	4.6	0
543	Terrestrial algae: pioneer organisms of carbonate rock solutional weathering in South China karst. Frontiers in Microbiology, 0, 15, .	3.5	0
544	Different biological responses of Skeletonema costatum and Prorocentrum donghaiense to polymetallic nodules from seawaters. Aquatic Toxicology, 2024, 269, 106871.	4.0	0

#	Article	IF	CITATIONS
545	Chlorella-Bacillus biofertilizers interact with varying nitrate addition amounts to increase soil phosphorus bioavailability. Plant and Soil, 0, , .	3.7	0
546	Effects of Norflurazon and UV Radiation on Symbiotic and Free-Living Hydra. Water (Switzerland), 2024, 16, 645.	2.7	0
547	Enhancing microalgae biomass production: Exploring improved scraping frequency in a hybrid cultivation system. Journal of Environmental Management, 2024, 355, 120505.	7.8	0
548	One-step bioremediation of hypersaline and nutrient-rich food industry process water with a domestic microbial community containing diatom Halamphora coffeaeformis. Water Research, 2024, 254, 121430.	11.3	0
549	Cyanobacterial blooms control with CaO2 in different stages: Inhibition efficiency, water quality optimization and microbial community changes. Chemosphere, 2024, 353, 141655.	8.2	0
551	Waste biomass-derived rubber composite additives: Review of current research and future investigations into biowaste tire formulation. Biomass and Bioenergy, 2024, 183, 107149.	5.7	0
552	Atmospheric Carbon Sequestration Using Microalgae. UÄenye Zapiski Kazanskogo Gosudarstvennogo Universiteta: Seriâ Estestvennye Nauki, 2024, 166, 82-125.	0.3	0
554	Improved microalgae carbon fixation and microplastic sedimentation in the lake through in silico method. Science of the Total Environment. 2024. 924. 171623.	8.0	0