Microencapsulation of Oils: A Comprehensive Review o Applications

Comprehensive Reviews in Food Science and Food Safety 15, 143-182

DOI: 10.1111/1541-4337.12179

Citation Report

#	Article	IF	Citations
1	Neem Oil and Crop Protection: From Now to the Future. Frontiers in Plant Science, 2016, 7, 1494.	1.7	112
3	Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers, 2016, 152, 548-557.	5.1	188
4	Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 2016, 94, 413-423.	2.5	99
5	Ecocompatible Halloysite/Cucurbit[8]uril Hybrid as Efficient Nanosponge for Pollutants Removal. ChemistrySelect, 2016, 1, 1773-1779.	0.7	38
6	Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage. Journal of Food Science and Technology, 2016, 53, 2597-2605.	1.4	8
7	Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC Complementary and Alternative Medicine, 2017, 17, 82.	3.7	29
8	Encapsulation as a tool for bioprocessing of functional foods. Current Opinion in Food Science, 2017, 13, 31-37.	4.1	77
9	Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Structure, 2017, 12, 26-32.	2.3	29
10	Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 2017, 83, 86-94.	2.5	73
11	Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 180-198.	5.9	350
12	Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT - Food Science and Technology, 2017, 83, 292-297.	2.5	47
13	Functional Properties and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Legume Proteins in Combination with Soluble Fiber or Trehalose. Food and Bioprocess Technology, 2017, 10, 1374-1386.	2.6	42
14	Influence of soy lecithin concentration on the physical properties of whey protein isolate-stabilized emulsion and microcapsule formation. Journal of Food Engineering, 2017, 207, 73-80.	2.7	74
15	Is it possible to produce a low-fat burger with a healthy n \hat{a} of \hat{a} of PUFA ratio without affecting the technological and sensory properties?. Meat Science, 2017, 130, 16-25.	2.7	139
16	Improvement of Aroma and Shelf-Life of Non-alcoholic Beverages Through Cyclodextrins-Limonene Inclusion Complexes. Food and Bioprocess Technology, 2017, 10, 1297-1309.	2.6	22
17	Design of experiments for microencapsulation applications: A review. Materials Science and Engineering C, 2017, 77, 1327-1340.	3.8	157
18	Investigation of Antibacterial 1,8-Cineole-Derived Thin Films Formed via Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36548-36560.	4.0	19
19	Effect of the type of carbohydrate on the DVS critical relative humidity in spray-dried fat-filled pea protein-based powders: Comparison with monolayer coverage and Tg values. Food Hydrocolloids, 2017, 73, 335-343.	5.6	5

#	Article	IF	Citations
20	Microwave Assisted Extraction of Avocado Oil from Avocado Skin and Encapsulation Using Spray Drying. Key Engineering Materials, 2017, 737, 341-346.	0.4	7
21	Preparation and characterization of PHMB-based multifunctional microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 76-84.	2.3	12
22	Spray-dried encapsulated starch and subsequent synthesis of carbon-silica core-shell micro-granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 696-704.	2.3	6
23	Preharvest Food Safetyâ€"Potential Use of Plant-Derived Compounds in Layer Chickens. , 2017, , 347-372.		3
24	Proposing Novel Encapsulating Matrices for Spray-Dried Ginger Essential Oil from the Whey Protein Isolate-Inulin/Maltodextrin Blends. Food and Bioprocess Technology, 2017, 10, 115-130.	2.6	55
25	Encapsulation of Oregano (Origanum onites L.) Essential Oil in \hat{l}^2 -Cyclodextrin (\hat{l}^2 -CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering, 2017, 4, 74.	1.6	71
26	Applications of recovered bioactive compounds in cosmetics and other products., 2017,, 195-220.		1
27	Food Wastes as Valuable Sources of Bioactive Molecules., 0,,.		15
28	Interpolymeric Complexes Formed Between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 792-805.	5.9	36
29	Innovative strategy based on combined microencapsulation technologies for food application and the influence of wall material composition. LWT - Food Science and Technology, 2018, 91, 345-352.	2.5	39
30	A two-tier modified starch-oxidation followed by n -octenyl succinylation as gum Arabic substitute: Process details and characterization. Journal of Food Engineering, 2018, 226, 96-104.	2.7	12
31	Effect of Dietary Essential Oils Supplementation on Growth Performance, Nutrient Utilization, and Protein Digestibility of Juvenile Gilthead Seabream Fed a Lowâ€Fishmeal Diet. Journal of the World Aquaculture Society, 2018, 49, 676-685.	1.2	6
32	A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. International Journal of Pharmaceutics, 2018, 538, 97-104.	2.6	28
33	Study of Different Wall Matrix Biopolymers on the Properties of Spray-Dried Pequi Oil and on the Stability of Bioactive Compounds. Food and Bioprocess Technology, 2018, 11, 660-679.	2.6	32
34	Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. Journal of Aerosol Science, 2018, 125, 2-31.	1.8	180
35	Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sciences, 2018, 203, 255-267.	2.0	719
36	Formulation of botanicals for the control of plant-pathogens: A review. Crop Protection, 2018, 110, 135-140.	1.0	59
37	Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion. Journal of Food Engineering, 2018, 231, 1-9.	2.7	50

#	Article	IF	CITATIONS
38	Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science and Technology, 2018, 71, 121-131.	7.8	115
39	Effect of carbohydrate type on the DVS isotherm-induced phase transitions in spray-dried fat-filled pea protein-based powders. Journal of Food Engineering, 2018, 222, 115-125.	2.7	8
40	A biocompatible betaine-functionalized polycation for coacervation. Soft Matter, 2018, 14, 387-395.	1.2	9
41	Photochromic textile materials. IOP Conference Series: Materials Science and Engineering, 2018, 459, 012053.	0.3	3
42	Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement. Plant Pathology Journal, 2018, 34, 459-469.	0.7	27
43	Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials. RSC Advances, 2018, 8, 37136-37145.	1.7	13
44	Microencapsulation of Cypermethrin Via Interfacial Polymerization for Controlled Release Application. Materials Today: Proceedings, 2018, 5, 22621-22629.	0.9	11
45	Physical Properties of PHB/VMF2 Nanocomposite Microcapsules in Water. Materials Science Forum, 0, 930, 190-194.	0.3	1
46	The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil. Polymers, 2018, 10, 1355.	2.0	9
47	Microencapsulation of Conjugated Linoleic Acid (CLA)â€Rich Oil with Skimmed Milk Components Protects against Polymerization. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1399-1408.	0.8	3
48	Emulsion-templated pullulan monoliths as phase change materials encapsulating matrices. Materials Today Communications, 2018, 17, 466-473.	0.9	26
49	Characterization of ethyl cellulose (EC) microcapsules for lime oil encapsulation. Journal of Physics: Conference Series, 2018, 1080, 012038.	0.3	5
50	Microencapsulation of a Model Oil in Wall System Consisting of Wheat Proteins Isolate (WHPI) and Lactose. Applied Sciences (Switzerland), 2018, 8, 1944.	1.3	8
51	Microencapsulação e liberação controlada por difusão de ingredientes alimentÃcios produzidos através da secagem por atomização: revisão. Brazilian Journal of Food Technology, 2018, 21, .	0.8	11
52	Control of mycotoxigenic fungi with microcapsules of essential oils encapsulated in chitosan. Food Science and Technology, 2018, 38, 335-340.	0.8	13
53	Formation of essential oil containing microparticles comprising a hydrogenated vegetable oil matrix and characterisation thereof. Journal of Microencapsulation, 2018, 35, 513-521.	1.2	11
54	Preparation and application of flavor and fragrance capsules. Polymer Chemistry, 2018, 9, 4926-4946.	1.9	76
55	\hat{l}^2 -Cyclodextrins as Encapsulating Agents of Essential Oils. , 2018, , .		9

#	ARTICLE	IF	CITATIONS
56	Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. European Journal of Medicinal Chemistry, 2018, 157, 1326-1345.	2.6	108
57	Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 2018, 78, 34-60.	7.8	416
58	Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. Journal of Food Science and Technology, 2018, 55, 2850-2861.	1.4	59
59	Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology and Innovation, 2018, 11, 299-307.	3.0	101
60	Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Materials Science and Engineering C, 2018, 92, 245-253.	3.8	57
61	Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. Journal of Functional Foods, 2018, 47, 491-502.	1.6	24
62	Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride. Macromolecules, 2018, 51, 5798-5805.	2.2	45
63	Current Status and Recent Developments in Biopesticide Use. Agriculture (Switzerland), 2018, 8, 13.	1.4	201
64	Potential use of polymers and their complexes as media for storage and delivery of fragrances. Journal of Controlled Release, 2018, 285, 81-95.	4.8	86
65	Self-Assembly of TiO ₂ Nanofiber-Based Microcapsules by Spontaneously Evolved Multiple Emulsions. Langmuir, 2018, 34, 8785-8791.	1.6	10
66	Antifungal Activity of Chitosan Nanoparticles Encapsulated With Cymbopogon martinii Essential Oil on Plant Pathogenic Fungi Fusarium graminearum. Frontiers in Pharmacology, 2018, 9, 610.	1.6	141
67	Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydrate Polymers, 2018, 200, 15-24.	5.1	75
68	Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chemistry, 2018, 263, 283-291.	4.2	24
69	Current Processing Methods in the Development of Micro- and Nanoencapsulation from Edible Polymers. , 2018, , 423-445.		0
70	The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells. Antioxidants, 2018, 7, 110.	2.2	39
71	Preparation and characterization of squalene microcapsules by complex coacervation. Journal of Food Process Engineering, 2018, 41, e12847.	1.5	6
72	Microencapsulation of pequi pulp oil by complex coacervation. Revista Brasileira De Fruticultura, 2018, 40, .	0.2	1
73	Microencapsulation of different oils rich in unsaturated fatty acids using dairy industry waste. Journal of Cleaner Production, 2018, 196, 665-673.	4.6	14

#	Article	IF	Citations
74	Novel Packaging Systems in Food., 2019,, 484-491.		2
75	Spray-dried novel structured lipids enriched with medium-and long-chain triacylglycerols encapsulated with different wall materials: Characterization and stability. Food Research International, 2019, 116, 538-547.	2.9	38
76	Omega–3 encapsulation by PGSS-drying and conventional drying methods. Particle characterization and oxidative stability. Food Chemistry, 2019, 270, 138-148.	4.2	38
77	Microencapsulation of winter squash (Cucurbita moschata Duchesne) seed oil by spray drying. Journal of Food Processing and Preservation, 2019, 43, e14136.	0.9	7
78	Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: oxidative stabilisation. Journal of Microencapsulation, 2019, 36, 459-473.	1.2	33
79	Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environmental Science and Pollution Research, 2019, 26, 25414-25431.	2.7	60
80	Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 2019, 117, 183-193.	1.8	32
81	Antimicrobial Paper Coatings Containing Microencapsulated Cymbopogon citratus Oil. Coatings, 2019, 9, 470.	1.2	17
82	Improving the shelf-life of food products by nano/micro-encapsulated ingredients. , 2019, , 159-200.		8
83	Nanomaterials in nutraceutical and phytonutrient industries. , 2019, , 441-474.		4
84	Developing a mint yogurt enriched with omegaâ€3 oil: Physiochemical, microbiological, rheological, and sensorial characteristics. Journal of Food Processing and Preservation, 2019, 43, e14287.	0.9	32
85	Ultrasound assisted encapsulation of peppermint flavor in gum Arabic: Study of process parameters. Journal of Food Process Engineering, 2019, 42, e13269.	1.5	15
86	Encapsulation of Bioactive Ingredients by Extrusion with Vibrating Technology: Advantages and Challenges. Food and Bioprocess Technology, 2019, 12, 1472-1486.	2.6	26
87	Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. Journal of Dairy Science, 2019, 102, 9749-9762.	1.4	11
88	Encapsulation of menhaden oil structured lipid oleogels in alginate microparticles. LWT - Food Science and Technology, 2019, 116, 108566.	2.5	18
89	Microencapsulated Vegetable Oil Powder. , 0, , .		3
90	Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicology and Environmental Safety, 2019, 171, 863-870.	2.9	36
91	Formulation, characterization and antimicrobial activity of tablets of essential oil prepared by compression of spray-dried powder. Journal of Drug Delivery Science and Technology, 2019, 50, 226-236.	1.4	20

#	Article	IF	Citations
92	Contribution of Jojoba (Simmondsia chinensis) Products in Human Health., 2019, , 303-312.		3
93	Encapsulated Microparticles of $(1\hat{a}^{\dagger}\hat{b})$ - \hat{l}^2 -d-Glucan Containing Extract of Baccharis dracunculifolia: Production and Characterization. Molecules, 2019, 24, 2099.	1.7	9
94	Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 2019, 298, 125045.	4.2	40
95	Microspheres of essential oil in polylactic acid and poly(methyl methacrylate) matrices and their blends. Journal of Microencapsulation, 2019, 36, 305-316.	1.2	10
96	Effect of drying and interfacial membrane composition on the antimicrobial activity of emulsified citral. Food Chemistry, 2019, 298, 125079.	4.2	17
97	Material encapsulation in poly(methyl methacrylate) shell: A review. Journal of Applied Polymer Science, 2019, 136, 48039.	1.3	81
98	Improvement of the Oxidative Stability of Sprayâ€Dried Microencapsulated Chia Seed Oil Using Maillard Reaction Products (MRPs). European Journal of Lipid Science and Technology, 2019, 121, 1800516.	1.0	10
99	Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 2019, 31, 457-473.	1.3	56
100	Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents. Journal of Food Science, 2019, 84, 1281-1287.	1.5	13
101	Myofibrillar protein with \hat{l}^2 - or \hat{l} »-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocolloids, 2019, 96, 43-53.	5.6	52
102	Encapsulation of fish oil in protein aerogel micro-particles. Journal of Food Engineering, 2019, 260, 1-11.	2.7	39
103	Nanobiopesticides: An introduction. , 2019, , 1-15.		9
104	Microencapsulation of sea buckthorn oil with \hat{l}^2 -glucan from barley as coating material. International Journal of Biological Macromolecules, 2019, 131, 1014-1020.	3.6	22
105	Essential oils as vespid wasp repellents: Implications for their use as a management strategy. Journal of Applied Entomology, 2019, 143, 635-643.	0.8	4
106	SPI microgels applied to Pickering stabilization of O/W emulsions by ultrasound and high-pressure homogenization: rheology and spray drying. Food Research International, 2019, 122, 383-391.	2.9	54
107	Effect of processing conditions on the physiochemical properties and nutrients retention of spray-dried microcapsules using mixed protein system. CYTA - Journal of Food, 2019, 17, 25-35.	0.9	4
108	Effects of the drying method on the oxidative stability of the free and encapsulated fractions of microencapsulated sunflower oil. International Journal of Food Science and Technology, 2019, 54, 2520-2528.	1.3	12
109	Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 2019, 90, 183-257.	1.5	78

#	Article	IF	CITATIONS
110	Incorporation of Oregano Essential Oil Microcapsules in Starchâ€Poly (Butylene Adipate) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50,742 Td (1
111	Optimising chitosan–pectin hydrogel beads containing combined garlic and holy basil essential oils and their application as antimicrobial inhibitor. International Journal of Food Science and Technology, 2019, 54, 2064-2074.	1.3	30
112	Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 2019, 86, 230-251.	7.8	251
113	A Fluorescenceâ€based Method for Estimation of Oxygen Barrier Properties of Microspheres. Journal of Food Science, 2019, 84, 532-539.	1.5	7
114	Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: challenges and development strategies. Chemical Engineering Journal, 2019, 368, 88-114.	6.6	68
115	Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of \hat{l}^2 -carotene. Food Hydrocolloids, 2019, 93, 102-110.	5.6	100
116	Microencapsulation of Camelina sativa Oil Using Selected Soluble Fractions of Dietary Fiber as the Wall Material. Foods, 2019, 8, 681.	1.9	5
117	Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 2019, 87, 891-901.	5.6	125
118	Enhanced stability of redâ€fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 2019, 99, 3381-3390.	1.7	29
119	A review of liquid droplet impacting onto solid spherical particles: A physical pathway to encapsulation mechanisms. Journal of Industrial and Engineering Chemistry, 2019, 71, 50-64.	2.9	52
120	Microencapsulated duck oil diacylglycerol: Preparation and application as anti-obesity agent. LWT - Food Science and Technology, 2019, 101, 646-652.	2.5	16
121	Microencapsulated Food Ingredients. , 2019, , 446-450.		2
122	Microencapsulation technology for coating and laminating. , 2019, , 117-154.		2
123	Synthesis of melamine-formaldehyde microcapsules containing oil-based fragrances via intermediate polyacrylate bridging layers. Chinese Journal of Chemical Engineering, 2019, 27, 2574-2580.	1.7	13
124	Use of proteins for the delivery of flavours and other bioactive compounds. Food Hydrocolloids, 2019, 86, 62-69.	5.6	26
125	Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science and Emerging Technologies, 2019, 51, 12-19.	2.7	43
126	Novel Alginate Frankincense Oil Blend Films for Biomedical Applications. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 303-312.	0.4	7
127	Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering, 2020, 267, 109761.	2.7	66

#	Article	IF	Citations
128	Impact of nanoparticles on toxigenic fungi. , 2020, , 309-348.		4
129	Insecticidal activity of spray dried microencapsulated essential oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop Protection, 2020, 128, 104996.	1.0	31
130	High share granulation process affecting the quality and stability of spine date seed oil (SDSO) tablets. LWT - Food Science and Technology, 2020, 118, 108765.	2.5	0
131	Influence of oil droplet size on the oxidative stability of the free and encapsulated fractions of freezeâ€dried microencapsulated sunflower oil. International Journal of Food Science and Technology, 2020, 55, 833-840.	1.3	7
132	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab on A Chip, 2020, 20, 147-154.	3.1	45
133	A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition, 2020, 60, 3547-3572.	5.4	62
134	Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Research International, 2020, 128, 108791.	2.9	42
135	Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. Materials Science and Engineering C, 2020, 108, 110496.	3.8	27
136	Microencapsulation optimization of cinnamon essential oil in the matrices of gum Arabic, maltodextrin, and inulin by sprayâ€drying using mixture design. Journal of Food Process Engineering, 2020, 43, e13341.	1.5	30
137	In vitro antioxidant and antidiabetic activity of essential oils encapsulated in gelatinâ€pectin particles against sugar, lipid and protein oxidation and amylase and glucosidase activity. Food Science and Nutrition, 2020, 8, 6457-6466.	1.5	20
139	Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices, 2020, 5, 417-435.	1.5	79
140	Green Fabrication of Control-Released, Washable, and Nonadhesives Aromatic-Nanocapsules/Cotton Fabrics via Electrostatic-Adsorption/In Situ Immobilization. ACS Sustainable Chemistry and Engineering, 2020, 8, 15258-15267.	3.2	11
141	Microencapsulation Delivery System in Food Industryâ€"Challenge and the Way Forward. Advances in Polymer Technology, 2020, 2020, 1-14.	0.8	31
142	Microparticles. , 2020, , 431-451.		2
143	Formulation of an Essential Oil-Based Body Wash: Selection of Components and their Effects on Product Foamability and Emulsion Durability. Asian Journal of Chemistry, 2020, 32, 2495-2501.	0.1	1
144	Antimicrobial Activity of Encapsulated Mexican Oregano (Lippia berlandieri Schauer) Essential Oil Applied on Bagels. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
145	Effects of Dietary Supplementation of Garlic and Oregano Essential Oil on Biomarkers of Oxidative Status, Stress and Inflammation in Postweaning Piglets. Animals, 2020, 10, 2093.	1.0	15
146	Encapsulation of bioactive compounds by "extrusion―technologies: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 3100-3118.	5.4	77

#	ARTICLE	IF	CITATIONS
147	Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics, 2020, 12, 669.	2.0	94
148	Blend of renewable bio-based polymers for oil encapsulation: Control of the emulsion stability and scaffolds of the microcapsule by the gummy exudate of Prosopis nigra. European Polymer Journal, 2020, 140, 109991.	2.6	7
149	Design of biopolymer carriers enriched with natural emulsifiers for improved controlled release of thyme essential oil. Journal of Food Science, 2020, 85, 3833-3842.	1.5	4
150	Spray Drying for the Encapsulation of Oils—A Review. Molecules, 2020, 25, 3873.	1.7	104
151	Sustainable Preparation of Microcapsules with Desirable Stability and Bioactivity Using Phosphonium lonic Liquid as a Functional Additive. ACS Sustainable Chemistry and Engineering, 2020, 8, 13440-13448.	3.2	19
152	Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules, 2020, 25, 5878.	1.7	55
153	Influence of the Location of Ascorbic Acid in Walnut Oil Spray-Dried Microparticles with Outer Layer on the Physical Characteristics and Oxidative Stability. Antioxidants, 2020, 9, 1272.	2.2	2
154	Microencapsulation Enhances the <i>in vitro</i> Antibacterial Activity of a Citrus Essential Oil. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 985-997.	0.7	12
155	Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine Drugs, 2020, 18, 644.	2.2	66
156	Oregano essential oil encapsulated in alginate beads: Release kinetics as affected by electrostatic interaction with whey proteins and freezeâ€drying. Journal of Food Processing and Preservation, 2020, 44, e14947.	0.9	5
157	Encapsulated liquid sorbents for CO2 capture. , 2020, , 125-150.		4
158	Developing a thermo-regulative system for nonwoven textiles using microencapsulated organic coconut oil. Journal of Industrial Textiles, 2020, , 152808372092149.	1.1	2
159	Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	15
160	Preparation and characterization of <scp><i>β</i>â€eyclodextrin–oregano</scp> essential oil microcapsule and its effect on storage behavior of purple yam. Journal of the Science of Food and Agriculture, 2020, 100, 4849-4857.	1.7	41
161	Microencapsulation of rice bran oil using pea protein and maltodextrin mixtures as wall material. Heliyon, 2020, 6, e03615.	1.4	10
162	Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocolloids, 2020, 109, 106077.	5.6	81
163	Encapsulation efficiency and in vitro dissolution test of captopril microcapsule from polyblend poly(D-lactic acid) and polycaprolactone. AIP Conference Proceedings, 2020, , .	0.3	0
164	Development and Validation of a UPLC-DAD Method for Quantitative Analysis of Coumarin, <i>trans</i> -Cinnamic Acid, <i>trans</i> -Cinnamaldehyde, and Eugenol in Encapsulated Cinnamon Flavoring Powder. Journal of AOAC INTERNATIONAL, 2020, 103, 1394-1399.	0.7	5

#	Article	IF	CITATIONS
165	Electrospraying Technique and Its Recent Application Advances for Biological Macromolecule Encapsulation of Food Bioactive Substances. Food Reviews International, 2022, 38, 566-588.	4.3	26
166	Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 2020, 9, 365.	1.9	242
167	Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends in Food Science and Technology, 2020, 99, 244-256.	7.8	36
168	Fat powder can be a feasible lipid source in aquafeed for the carnivorous marine teleost golden pompano, Trachinotus ovatus. Aquaculture International, 2020, 28, 1153-1168.	1.1	8
169	Study of chia oil microencapsulation in soy protein microparticles using supercritical Co2-assisted impregnation. Journal of CO2 Utilization, 2020, 40, 101221.	3.3	24
170	Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics, 2020, 12, 628.	2.0	11
171	Encapsulation of wheat germ oil in alginateâ€gelatinized corn starch beads: Physicochemical properties and tocopherols' stability. Journal of Food Science, 2020, 85, 2124-2133.	1.5	12
172	Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Frontiers in Bioengineering and Biotechnology, 2020, 8, 563.	2.0	35
173	The competitive release kinetics and synergistic antibacterial characteristics of tea polyphenols/εâ€polyâ€ <scp>l</scp> â€lysine hydrochloride core–shell microcapsules against <i>Shewanella putrefaciens</i> . International Journal of Food Science and Technology, 2020, 55, 3542-3552.	1.3	21
174	Modeling <i>Salmonella</i> (<i>S</i> . Typhimurium ATCC14028, ATCC 13311, <i>S</i> . Typhi ATCC 19430,) To lournal of Food Processing and Preservation, 2020, 44, e14718.	j ETQq1 0.9	1 0.784314 rg
175	Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas― Journal of the American Chemical Society, 2020, 142, 4223-4234.	6.6	53
176	Solvent free microwave extraction followed by encapsulation of O.Âbasilicum L. essential oil for insecticide purpose. Journal of Stored Products Research, 2020, 86, 101575.	1.2	32
177	Technology, Science and Culture - A Global Vision, Volume II. , 2020, , .		2
178	Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology, 2020, 364, 654-663.	2.1	47
179	Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials, 2020, 10, 270.	1.9	30
180	Preparation of microencapsulated phase change materials (mPCMs) by using RAFT synthesized well-defined surfactants. Polymer, 2020, 190, 122215.	1.8	5
181	Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Reviews International, 2022, 38, 32-69.	4.3	26
182	Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules, 2020, 25, 334.	1.7	73

#	Article	IF	CITATIONS
183	An enzyme-controlled Janus nanomachine for on-command dual and sequential release. Chemical Communications, 2020, 56, 6440-6443.	2.2	9
184	Buttermilk as a wall material for microencapsulation of omega-3 oils by spray drying. LWT - Food Science and Technology, 2020, 127, 109320.	2.5	22
185	Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research, 2020, 492, 108004.	1.1	104
186	The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocolloids, 2020, 106, 105890.	5.6	71
187	Plant Bioactive Compounds in Pre- and Postharvest Management for Aflatoxins Reduction. Frontiers in Microbiology, 2020, 11, 243.	1.5	89
188	An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. European Food Research and Technology, 2020, 246, 1371-1382.	1.6	49
189	Microencapsulation of healthier oils: an efficient strategy to improve the lipid profile of meat products. Current Opinion in Food Science, 2021, 40, 6-12.	4.1	46
190	ESR spin trapping for in situ detection of radicals involved in the early stages of lipid oxidation of dried microencapsulated oils. Food Chemistry, 2021, 341, 128227.	4.2	17
191	The aplication of <i>Pistacia khinjuk</i> extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Science and Nutrition, 2021, 9, 920-928.	1.5	17
192	Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 2021, 171, 208-216.	3.6	73
193	Evaluation of modified starch and rice protein concentrate as wall materials on the microencapsulation of flaxseed oil by freeze-drying. LWT - Food Science and Technology, 2021, 140, 110760.	2.5	20
194	Chitosan microparticles as entrapment system for trans- cinnamaldehyde: Synthesis, drug loading, and in vitro cytotoxicity evaluation. International Journal of Biological Macromolecules, 2021, 166, 322-332.	3.6	13
195	Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chemistry, 2021, 341, 128193.	4.2	12
196	Factors determining the surface oil concentration of encapsulated lipid particlesâ€"impact of the spray drying conditions. Drying Technology, 2021, 39, 173-186.	1.7	13
197	Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Reviews International, 2021, 37, 1-45.	4.3	56
198	Recent Trends in the Nanoencapsulation Processes for Food and Nutraceutical Applications. , 2021 , , $532-545$.		3
199	Strategies to Improve Oral Delivery of Natural Anticancer Molecules. , 2021, , 25-50.		1
200	Sustainable development of mosquito-repellent, flame-retardant, antibacterial, fragrant and antioxidant linen using microcapsules containing Thymus vulgaris oil in in-situ generated chitosan-phosphate. Cellulose, 2021, 28, 2599-2614.	2.4	13

#	Article	IF	Citations
201	Seed wastes and byproducts: reformulation of meat products. , 2021, , 347-369.		0
202	Physicochemical properties and enzymatic activity of wheat germ extract microencapsulated with spray and freeze drying. Food Science and Nutrition, 2021, 9, 1192-1201.	1.5	9
203	A Narrative Review on Microencapsulation of Obligate Anaerobe Probiotics <i>Bifidobacterium, Akkermansia muciniphila</i> , and <i>Faecalibacterium prausnitzii</i> . Food Reviews International, 2022, 38, 373-402.	4.3	4
204	Cassia species: a potential source of biopesticides. Journal of Plant Diseases and Protection, 2021, 128, 339-351.	1.6	3
205	Secondary Metabolites of Higher Plants as Green Preservatives of Herbal Raw Materials and Their Active Principles During Postharvest Processing., 2021,, 261-277.		1
206	Recent updates on bioactive properties of linalool. Food and Function, 2021, 12, 10370-10389.	2.1	60
207	Biobased Materials as a Sustainable Potential for Edible Packaging. Environmental Footprints and Eco-design of Products and Processes, 2021, , 111-135.	0.7	4
208	Microencapsulation Methods for Food Antioxidants. Reference Series in Phytochemistry, 2021, , 1-37.	0.2	0
209	Active food packaging with nano/microencapsulated ingredients., 2021,, 171-210.		3
210	Spray-dried thyme essential oil microparticles using different polymeric matrices. Drying Technology, 2021, 39, 1883-1894.	1.7	7
211	Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals, 2021, 11, 180.	1.0	9
212	Concepts, processing, and recent developments in encapsulating essential oils. Chinese Journal of Chemical Engineering, 2021, 30, 255-271.	1.7	26
213	Application of Fluids in Supercritical Conditions in the Polymer Industry. Polymers, 2021, 13, 729.	2.0	22
214	Plant Allelochemicals as Sources of Insecticides. Insects, 2021, 12, 189.	1.0	58
215	Microencapsulation of Flaxseed Oilâ€"State of Art. Processes, 2021, 9, 295.	1.3	16
216	Nature-Derived Amphiphilic Polymers Crosslinked by Calcium Ions for Microencapsulation Applications. ACS Applied Polymer Materials, 2021, 3, 1415-1425.	2.0	4
217	Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 2021, 10, 330.	2.2	51
218	Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin-Tannic Acid and Pectin as Wall Materials. Food and Bioprocess Technology, 2021, 14, 817-830.	2.6	20

#	Article	IF	CITATIONS
219	Biodegradable Nanocomposite Microcapsules for Controlled Release of Urea. Polymers, 2021, 13, 722.	2.0	17
220	Effect of Interfacial Ionic Layers on the Food-Grade O/W Emulsion Physical Stability and Astaxanthin Retention during Spray-Drying. Foods, 2021, 10, 312.	1.9	3
221	In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chemical Engineering Research and Design, 2021, 166, 281-294.	2.7	15
222	Mosquitoâ€repellent controlledâ€release formulations for fighting infectious diseases. Malaria Journal, 2021, 20, 165.	0.8	33
223	Improving the oxygen barrier of microcapsules using cellulose nanofibres. International Journal of Food Science and Technology, 2021, 56, 4258-4267.	1.3	6
224	Amelioration of the stability of polyunsaturated fatty acids and bioactive enriched vegetable oil: blending, encapsulation, and its application. Critical Reviews in Food Science and Nutrition, 2022, 62, 6253-6276.	5.4	14
225	Encapsulation, release and insecticidal activity of Pongamia pinnata (L.) seed oil. Heliyon, 2021, 7, e06557.	1.4	6
226	Impact of specific essential oils blend on milk production, serum biochemical parameters and kid performance of goats. Animal Biotechnology, 2022, 33, 1344-1352.	0.7	10
227	Visibleâ€Lightâ€Driven and Selfâ€Hydrogenâ€Donated Nanofibers Enable Rapidâ€Deployable Antimicrobial Bioprotection. Small, 2021, 17, e2100139.	5.2	18
228	Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics, 2021, 13, 327.	2.0	100
229	Prospective study on microencapsulation of oils and its application in foodstuffs. Recent Patents on Nanotechnology, 2021, 15 , .	0.7	4
230	Optimization of drying parameters in the microencapsulation of volatile oil from Spiranthera odoratissima leaves. Research, Society and Development, 2021, 10, e57510414322.	0.0	1
231	Deformation and rupture of microcapsules flowing through constricted capillary. Scientific Reports, 2021, 11, 7707.	1.6	7
232	Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil. Molecules, 2021, 26, 2390.	1.7	5
234	Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon, 2021, 7, e06737.	1.4	30
236	Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability. Journal of Polymer Engineering, 2021, 41, 480-489.	0.6	3
237	Microencapsulation of Renealmia alpinia (Rottb.) Maas pulp pigment and antioxidant compounds by spray-drying and its incorporation in yogurt. Journal of Food Science and Technology, 2022, 59, 1162-1172.	1.4	13
238	Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. International Journal of Pharmaceutics, 2021, 600, 120465.	2.6	32

#	Article	IF	CITATIONS
239	Formulation of Nextâ€Generation Multicompartment Microcapsules by Reversible Electrostatic Attraction. Chemistry - A European Journal, 2021, 27, 9336-9341.	1.7	5
240	Preparation of Natural Composite Microcapsules Containing Orchid Black Currant Fragrance and its Sustained-Release Properties on Hair Bundle. Journal of Polymers and the Environment, 2022, 30, 136-150.	2.4	11
241	Assessment of polyethylene/Zn-ionic as a diesel fuel sulfur adsorbent: gamma radiation effect and response surface methodology. Environmental Science and Pollution Research, 2021, 28, 52993-53009.	2.7	2
242	Encapsulation of Nerol Oil in Polycaprolactone Polymer and Stability Evaluation. Journal of Polymers and the Environment, 0, , $1\cdot$	2.4	3
243	Mechanistic understanding and potential application of electrospraying in food processing: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 8288-8306.	5. 4	13
244	Development of ecofriendly active food packaging materials based on blends of crossâ€linked poly (vinyl alcohol) and <scp><i>Piper betle</i></scp> Linn. leaf extract. Journal of Applied Polymer Science, 2021, 138, 50974.	1.3	7
245	Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. Food Engineering Reviews, 2021, 13, 769-811.	3.1	13
246	Yeast Particle Encapsulation of Scaffolded Terpene Compounds for Controlled Terpene Release. Foods, 2021, 10, 1207.	1.9	6
247	Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT - Food Science and Technology, 2021, 143, 111106.	2.5	14
248	Impact of vacuum spray drying on encapsulation of fish oil: Oxidative stability and encapsulation efficiency. Food Research International, 2021, 143, 110283.	2.9	30
249	Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. Journal of Food Quality, 2021, 2021, 1-15.	1.4	20
250	Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. Innovative Food Science and Emerging Technologies, 2021, 72, 102739.	2.7	20
251	Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study. Food Bioscience, 2021, 41, 100929.	2.0	16
252	Mechanical characterization of fish oil microcapsules by a micromanipulation technique. LWT - Food Science and Technology, 2021, 144, 111194.	2.5	11
253	Improving the emulsifying property of potato protein by hydrolysis: an application as encapsulating agent with maltodextrin. Innovative Food Science and Emerging Technologies, 2021, 70, 102696.	2.7	14
254	Fish oil encapsulated in soy protein particles by lyophilization. Effect of drying process. Journal of the Science of Food and Agriculture, 2022, 102, 206-213.	1.7	9
255	The effect of cassava and wheat starches complexation with selected fatty acids on their functional properties. Journal of Food Science and Technology, 2022, 59, 1440-1449.	1.4	3
256	Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3267-3283.	5.9	20

#	Article	IF	CITATIONS
257	Development of a gel-in-oil emulsion as a transdermal drug delivery system for successful delivery of growth factors. Journal of Bioscience and Bioengineering, 2021, 132, 95-101.	1.1	12
258	Oregano Essential Oil Micro- and Nanoencapsulation With Bioactive Properties for Biotechnological and Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 703684.	2.0	26
259	Influence of Wall Materials and Homogenization Pressure on Microencapsulation of Rice Bran Oil. Food and Bioprocess Technology, 2021, 14, 1885-1896.	2.6	6
260	A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics, 2021, 13, 1041.	2.0	17
261	Effect of Modifying the Membrane Surface with Microcapsules on the Flow Field for a Cross-Flow Membrane Setup: A CFD Study. Membranes, 2021, 11, 555.	1.4	1
262	A quantitative study of aggregation behaviour and integrity of spray-dried microcapsules using three deep convolutional neural networks with transfer learning. Journal of Food Engineering, 2021, 300, 110515.	2.7	10
263	Effects of Microencapsulated Organic Acid and Their Salts on Growth Performance, Immunity, and Disease Resistance of Pacific White Shrimp Litopenaeus vannamei. Sustainability, 2021, 13, 7791.	1.6	5
264	Microparticles loaded with fish oil: stability studies, food application and sensory evaluation. Journal of Microencapsulation, 2021, 38, 365-380.	1.2	3
265	Development of antioxidant materials based on Persian gum and Zataria essential oil: Modulation of superoxide-producing and nitric oxide-producing enzymes in wheat seedlings. Biocatalysis and Agricultural Biotechnology, 2021, 34, 102035.	1.5	1
266	ATR-FTIR-MIR Spectrometry and Pattern Recognition of Bioactive Volatiles in Oily versus Microencapsulated Food Supplements: Authenticity, Quality, and Stability. Molecules, 2021, 26, 4837.	1.7	4
267	A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews International, 2023, 39, 2594-2634.	4.3	20
268	Nanophytosome as a promising carrier for improving cumin essential oil properties. Food Bioscience, 2021, 42, 101079.	2.0	9
269	Future trends of processed meat products concerning perceived healthiness: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4739-4778.	5.9	47
270	Microcapsules Consisting of Whey Proteins-Coated Droplets of Lipids Embedded in Wall Matrices of Spray-Dried Microcapsules Consisting Mainly of Non-Fat Milk Solids. Foods, 2021, 10, 2105.	1.9	2
271	Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocolloids, 2021, 118, 106741.	5.6	36
272	Food-grade systems for delivery of DHA and EPA: Opportunities, fabrication, characterization and future perspectives. Critical Reviews in Food Science and Nutrition, 2023, 63, 2348-2365.	5.4	11
273	Microencapsulation of organosulfur compounds from garlic oil using \hat{I}^2 -cyclodextrin and complex of soy protein isolate and chitosan as wall materials: A comparative study. Powder Technology, 2021, 390, 103-111.	2.1	24
274	Microencapsulation of carotenoid-rich materials: A review. Food Research International, 2021, 147, 110571.	2.9	46

#	Article	IF	CITATIONS
275	The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Critical Reviews in Food Science and Nutrition, 2023, 63, 1822-1845.	5.4	7
276	Preparation and Characterization of Ginger Essential Oil Microcapsule Composite Films. Foods, 2021, 10, 2268.	1.9	18
277	Microencapsulation of <i>Zataria multiflora</i> Boiss. essential oil by complex coacervation using gelatin and gum arabic: Characterization, release profile, antimicrobial and antioxidant activities. Journal of Food Processing and Preservation, 2021, 45, e15823.	0.9	13
278	A bio-inspired exploration of eco-friendly bael gum and guar gum-based bioadhesive as tackifiers for packaging applications. International Journal of Adhesion and Adhesives, 2021, 110, 102946.	1.4	9
279	Synthesis and characterization of inclusion complexes of rosemary essential oil with various \hat{l}^2 -cyclodextrins and evaluation of their antibacterial activity against Staphylococcus aureus. Journal of Drug Delivery Science and Technology, 2021, 65, 102660.	1.4	13
280	A review on colloidal delivery vehicles using carvacrol as a model bioactive compound. Food Hydrocolloids, 2021, 120, 106922.	5.6	26
281	Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomedicine and Pharmacotherapy, 2021, 143, 112137.	2.5	11
282	Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127369.	2.3	5
283	Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technology, 2021, 394, 562-574.	2.1	34
284	Inhibitory effect of allyl and benzyl isothiocyanates on ochratoxin a producing fungi in grape and maize. Food Microbiology, 2021, 100, 103865.	2.1	16
285	Gelatin-based composite films and their application in food packaging: A review. Journal of Food Engineering, 2022, 313, 110762.	2.7	127
286	Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chemistry, 2022, 367, 130671.	4.2	115
287	Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chemistry, 2022, 369, 130879.	4.2	40
288	Recent advances in microencapsulation of drugs for veterinary applications. Journal of Veterinary Pharmacology and Therapeutics, 2021, 44, 298-312.	0.6	8
289	Future perspectives of microalgae in the food industry., 2021,, 387-433.		6
290	Microencapsulation of basil essential oil: utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. Journal of Food Measurement and Characterization, 2021, 15, 1865-1876.	1.6	31
291	Chitosan microcapsules: Methods of the production and use in the textile finishing. Journal of Applied Polymer Science, 2021, 138, 50482.	1.3	47
292	Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Research International, 2020, 137, 109326.	2.9	78

#	Article	IF	CITATIONS
293	Electrospun Gelatin Nanofibers Encapsulated with Peppermint and Chamomile Essential Oils as Potential Edible Packaging. Journal of Agricultural and Food Chemistry, 2019, 67, 2227-2234.	2.4	137
294	Microencapsulated Walnut Oil (Juglans neotropica Diels) by Spray Drying Technology and Determination of Fatty Acids Composition Stability. American Journal of Food Technology, 2017, 13, 8-16.	0.2	1
295	Efficiency of Micro and Nano Encapsulated Orange Peel Essential Oils on Quality of Sponge Cake. Journal of Environmental Science and Technology, 2018, 12, 26-37.	0.3	9
296	Preparation and Properties Nano-encapsulated Wheat Germ Oil and its Use in the Manufacture of Functional Labneh Cheese. Pakistan Journal of Biological Sciences, 2019, 22, 318-326.	0.2	15
297	Non-traditional Oils Encapsulation as Novel Food Additive Enhanced Yogurt Safety Against Aflatoxins. Pakistan Journal of Biological Sciences, 2019, 22, 51-58.	0.2	17
298	Effects of Carriers on Spray-dried Flavors and Their Functional Characteristics. Pakistan Journal of Biological Sciences, 2020, 23, 257-263.	0.2	3
299	Microencapsulation properties of wall systems consisting of WHPI and carbohydrates. AIMS Agriculture and Food, 2018, 3, 66-84.	0.8	5
300	Simulation of Microencapsulation Avocado Seeds Oil by Spray Drying. IOP Conference Series: Earth and Environmental Science, 2021, 830, 012061.	0.2	1
301	Effect of the Amount of Polysorbate 80 and Oregano Essential Oil on the Emulsion Stability and Characterization Properties of Sodium Alginate Microcapsules. Molecules, 2021, 26, 6304.	1.7	3
302	An integration study of microalgae bioactive retention: From microalgae biomass to microalgae bioactives nanoparticle. Food and Chemical Toxicology, 2021, 158, 112607.	1.8	20
303	Characterization, Density and In Vitro Controlled Release Properties of Mimosa (Acacia mearnsii) Tannin Encapsulated in Palm and Sunflower Oils. Animals, 2021, 11, 2919.	1.0	1
304	Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules, 2021, 26, 6387.	1.7	101
305	Experimental research of liquid droplets colliding with solid particles in a gaseous medium. Chemical Engineering Research and Design, 2022, 177, 200-209.	2.7	10
306	Omegaâ^'3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants, 2021, 10, 1627.	2.2	102
307	Changes in oxidative stability and phytochemical contents of microencapsulated wheat germ oil during accelerated storage. Food Bioscience, 2021, 44, 101415.	2.0	4
308	Frying Oil Chemistry. , 2017, , 279-312.		0
309	Standardization of microencapsulation process of volatile oil of Azadirachta indica. Asian Journal of Home Science, 2017, 12, 437-443.	0.0	0
310	Gingival Inflammatory Indices and Dental Stain Index after Using Aloe Vera-Green Tea Mouthwash, Matrica Mouthwash, or 0.2% Chlorhexidine Mouthwash Compared with Placebo in Patients with Gingival Inflammation. Open Dentistry Journal, 2019, 13, 214-220.	0.2	4

#	Article	IF	CITATIONS
311	Impact of the Encapsulation Process by Spray- and Freeze-Drying on the Properties and Composition of Powders Obtained from Cold-Pressed Seed Oils with Various Unsaturated Fatty Acids. Polish Journal of Food and Nutrition Sciences, 0, , 241-252.	0.6	7
312	Efeito de bioaditivos antioxidantes sobre a estabilidade oxidativa de óleo de linhaça (Linum) Tj ETQq1 1 0.7843	14.rgBT /0	Overlock 10
314	FACTORS AFFECTING ON THE RELEASE OF AROMA COMPOUNDS. Gıda, 2020, 45, 204-216.	0.1	4
315	Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation. Coatings, 2021, 11, 1370.	1.2	6
316	Efficacy of Bottle Gourd Seeds' Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites. Toxins, 2021, 13, 789.	1.5	13
317	Essential oils of Portuguese flavouring plants: potential as green biocides in cultural heritage. European Physical Journal Plus, 2021, 136, 1.	1.2	8
318	Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends in Food Science and Technology, 2022, 119, 36-44.	7.8	24
319	Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique. Foods, 2021, 10, 2923.	1.9	23
320	Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradabilityâ€"A Systematic Review. Coatings, 2021, 11, 1371.	1.2	23
321	Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review. Journal of Functional Foods, 2021, 87, 104812.	1.6	27
322	Basil oil-loaded electrospun biofibers: Edible food packaging material. Journal of Food Engineering, 2022, 319, 110914.	2.7	13
324	Encapsulation. , 2021, , 185-200.		1
325	Freeze-Drying Encapsulation as a Mechanism of Choice in Oils: Methods and Mechanism., 2021,, 91-101.		1
326	Physicochemical properties and Strength analysis of vitreous encapsulated solids for the safe delivery of \hat{l}^2 -Carotene. Food Research International, 2022, 151, 110877.	2.9	7
327	Spray Drying Encapsulation of Probiotics for Functional Food Formulation-A Review. Novel Techniques in Nutrition & Food Science, 2020, 5, .	0.1	0
328	Antibacterial Properties of Cymbopogon martinii essential Oil against Bacillus subtillis food industry pathogen. , 0, , .		O
329	Oregano essential oil encapsulation following the complex coacervation method: Influence of temperature, ionic strength, and pH on the release kinetics in aqueous medium. Ciencia E Agrotecnologia, 0, 45, .	1.5	1
330	Vegetable oils oxidation: mechanisms, consequences and protective strategies. Food Reviews International, 2023, 39, 4180-4197.	4.3	18

#	Article	IF	CITATIONS
331	Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during <i>in vitro</i> gastrointestinal digestion. Food and Function, 2022, 13, 1370-1379.	2.1	6
333	Eye Cosmeceutical Formulations with Roasted Coffee Oil in Free and Microencapsulated Forms: Development and Preliminary Stability Study. European Journal of Lipid Science and Technology, 0, , 2100168.	1.0	3
334	Microencapsulated sodium fusidate to impart antibacterial properties into cotton dressings for traumatic wounds. Journal of Wound Care, 2022, 31, 99-109.	0.5	2
335	Micro- and Nano-encapsulation as Tools for Essential Oils Advantages' Exploitation in Food Applications: the Case of Oregano Essential Oil. Food and Bioprocess Technology, 2022, 15, 949-977.	2.6	34
336	Building micro-capsules using water-in-water emulsion droplets as templates. Journal of Colloid and Interface Science, 2022, 613, 681-696.	5.0	27
337	Bio-based alternative for encapsulating fragrance oils in epoxy resin microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128387.	2.3	3
338	Alternative Oil Structuring Techniques: Oil Powders, Double Emulsions and Oil Foams. Food Chemistry, Function and Analysis, 2022, , 21-52.	0.1	1
339	Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. Horticulturae, 2022, 8, 144.	1.2	19
340	Potato protein: current review of structure, technological properties, and potential application on spray drying microencapsulation. Critical Reviews in Food Science and Nutrition, 2023, 63, 6564-6579.	5.4	4
341	Characterisation of melamine formaldehyde microspheres synthesised with prolonged microencapsulated reaction time. Journal of Polymer Engineering, 2022, 42, 288-297.	0.6	3
342	Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control, 2022, 136, 108883.	2.8	91
343	A Review: Uses of Chitosan in Pharmaceutical Forms. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 121-157.	0.9	5
344	Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.	2.6	11
345	Encapsulation techniques to increase lipid stability. , 2022, , 413-459.		3
346	Vegetable oils in emulsified meat products: a new strategy to replace animal fat. Food Science and Technology, 0, 42, .	0.8	8
347	Gastroprotective Effect of Microencapsulated Myrtus communis Essential Oil against Ethanol/HCl-Induced Acute Gastric Lesions. Molecules, 2022, 27, 1566.	1.7	6
348	Encapsulated Clove Bud Essential Oil: A New Perspective as an Eco-Friendly Biopesticide. Agriculture (Switzerland), 2022, 12, 338.	1.4	9
349	Biodegradable Polymers for Microencapsulation Systems. Advances in Polymer Technology, 2022, 2022, 1-43.	0.8	18

#	Article	IF	CITATIONS
350	Preparation, characterization and controlled release study of poly(urea–formaldehyde) microcapsules enclosing Pretilachlor herbicide. Iranian Polymer Journal (English Edition), 2022, 31, 691-704.	1.3	6
351	Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection. Research in Plant Disease, 2022, 28, 1-18.	0.3	1
352	Material Design for Enhancing Properties of 3D Printed Polymer Composites for Target Applications. Technologies, 2022, 10, 45.	3.0	11
353	Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Applied Microbiology and Biotechnology, 2022, 106, 2311-2335.	1.7	11
354	Repurposing of Marine Raw Materials in the Formulation of Innovative Plant Protection Products. Journal of Agricultural and Food Chemistry, 2022, 70, 4221-4242.	2.4	2
355	Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers, 2022, 14, 1146.	2.0	19
356	Effects of soy lecithin concentration on the physicochemical properties of whey protein isolate, caseinâ€stabilised simulated infant formula emulsion and their corresponding microcapsules. International Journal of Dairy Technology, 2022, 75, 513-526.	1.3	7
357	Novel encapsulation approaches for phytosterols and their importance in food products: A review. Journal of Food Process Engineering, 2022, 45, .	1.5	15
358	Encapsulated oil powder: Processing, properties, and applications. Journal of Food Process Engineering, 2022, 45, .	1.5	7
359	Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. Journal of Molecular Liquids, 2022, 354, 118862.	2.3	27
360	Fluidization of the spherocylindrical particles: Comparison of multi-sphere and bond-sphere models. Chemical Engineering Science, 2022, 253, 117540.	1.9	11
361	Bioactive constituents of saffron plant: Extraction, encapsulation and their food and pharmaceutical applications. Applied Food Research, 2022, 2, 100076.	1.4	16
362	Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chemistry, 2022, 386, 132749.	4.2	13
363	Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. Journal of Food Processing and Preservation, 2022, 46, .	0.9	12
364	Producción de leche de cabra en México y uso de aceites esenciales de plantas aromáticas en su producción. TECNOCIENCIA (México), 2021, 15, 234-245.	0.1	0
365	Microencapsulation of Natural Food Antimicrobials: Methods and Applications. Applied Sciences (Switzerland), 2022, 12, 3837.	1.3	7
367	Nutrition and Functional Foods. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0	0.1	1
368	Encapsulation of Arctium lappa L. root extracts by spray-drying and freeze-drying using maltodextrin and Gum Arabic as coating agents and it's application in synbiotic orange-carrot juice. Journal of Food Measurement and Characterization, 2022, 16, 2908-2921.	1.6	10

#	Article	IF	Citations
369	Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods, 2022, 11, 1215.	1.9	13
370	Microencapsulation of Essential Oils: A Review. Polymers, 2022, 14, 1730.	2.0	50
371	A review on the encapsulation of bioactive components using sprayâ€drying and freezeâ€drying techniques. Journal of Food Process Engineering, 2022, 45, .	1.5	43
372	Controlled-release chemicals in oilfield application: A review. Journal of Petroleum Science and Engineering, 2022, 215, 110616.	2.1	8
373	Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. LWT - Food Science and Technology, 2022, 163, 113550.	2.5	12
374	Biobased diglycidyl ether diphenolates: effect of the ester moiety on fragrance oil microencapsulation by interfacial polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129243.	2.3	2
375	Microencapsulation Methods for Food Antioxidants. Reference Series in Phytochemistry, 2022, , 799-835.	0.2	1
376	Self-healing Coatings Loaded by Nano/microcapsules: A Review. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 287-307.	0.3	11
377	Microencapsulation of Flaxseed Oil by Lentil Protein Isolate-κ-Carrageenan and -ι-Carrageenan Based Wall Materials through Spray and Freeze Drying. Molecules, 2022, 27, 3195.	1.7	7
378	The role of botanical treatments used in apiculture to control arthropod pests. Apidologie, 2022, 53, .	0.9	2
379	Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling. Food Reviews International, 2023, 39, 5528-5562.	4.3	3
380	Yeast Particles Hyper-Loaded with Terpenes for Biocide Applications. Molecules, 2022, 27, 3580.	1.7	4
381	Malodour of medical textiles: causes and control. , 2022, , 581-601.		0
382	PMMA Microcapsules for the Inactivation of SARS-CoV-2. ACS Omega, 2022, 7, 22383-22393.	1.6	2
383	Development of smart epoxy coating through click reaction using a vegetable oil. Progress in Organic Coatings, 2022, 170, 106985.	1.9	2
384	Hydrogel beads for designing future foods: Structures, mechanisms, applications, and challenges. Food Hydrocolloids for Health, 2022, 2, 100073.	1.6	15
386	Biocides and techniques for their encapsulation: a review. Soft Matter, 2022, 18, 5340-5358.	1.2	6
388	Novel mosquito repellent fiber mat containing nepeta essential oil prepared by coaxial electrospinning. Polymers for Advanced Technologies, 2022, 33, 2943-2951.	1.6	5

#	Article	IF	CITATIONS
389	Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. Journal of Agricultural and Food Chemistry, 2022, 70, 8165-8187.	2.4	12
390	Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals, 2022, 15, 793.	1.7	14
391	Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Critical Reviews in Food Science and Nutrition, 2023, 63, 11545-11560.	5.4	3
392	Preparation of temperatureâ€sensitive fragrance nanocapsules and its controllable release property. Flavour and Fragrance Journal, 2022, 37, 285-292.	1.2	4
393	Hydrogen bondâ€driven assembly of coralâ€like soy protein isolate–tannic acid microcomplex for encapsulation of limonene. Journal of the Science of Food and Agriculture, 2023, 103, 185-194.	1.7	1
394	Incorporation of hydroxytyrosol alkyl esters of different chain length as antioxidant strategy in walnut oil spray-dried microparticles with a sodium alginate outer layer. Food Chemistry, 2022, 395, 133595.	4.2	2
396	Influence of Extrusion on Food Bioactives. Food Bioactive Ingredients, 2022, , 247-275.	0.3	1
397	Proximate analysis of the high phytochemical activity of encapsulated Mandai cempedak (Artocarpus) Tj ETQq1 1865.	0.784314 0.8	1 rgBT /Over O
398	Evaluation of Guava Pulp Microencapsulated in Mucilage of Aloe Vera and Opuntia ficus-indica as a Natural Dye for Yogurt: Functional Characterization and Color Stability. Foods, 2022, 11, 2380.	1.9	4
399	Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Critical Reviews in Food Science and Nutrition, 2024, 64, 1139-1157.	5.4	9
400	Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods, 2022, 11, 2400.	1.9	7
401	Coacervation as a Novel Method of Microencapsulation of Essential Oils—A Review. Molecules, 2022, 27, 5142.	1.7	16
402	Advanced application of drying oils in smart self-healing coatings for corrosion protection: Feasibility for industrial application. Progress in Organic Coatings, 2022, 172, 107070.	1.9	1
403	Antimicrobial biofilms with microencapsulated citral and sodium caseinate to extend the shelf life of fresh cheese. Food Packaging and Shelf Life, 2022, 34, 100932.	3.3	3
404	Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. Journal of Food Engineering, 2023, 339, 111260.	2.7	30
405	Recent advances in the development of healthier meat products. Advances in Food and Nutrition Research, 2022, , 123-179.	1.5	1
406	Microencapsulated Phase Change Materials and their Applications for Passive Cooling in Buildings., 2022, , 1-21.		0
407	Lemongrass Oil Containing Chitosan Microcapsules by Ionotropic Gelation. Asian Journal of Chemistry, 2022, 34, 2337-2342.	0.1	O

#	Article	IF	CITATIONS
408	Chitosan Uses in Cosmetics. Engineering Materials and Processes, 2022, , 377-404.	0.2	1
409	The nutritional characteristics and health-oriented advances of meat and meat products. , 2023, , $111-144$.		1
410	Micro- and nanoencapsulation of omega-3 and other nutritional fatty acids: challenges and novel solutions., 2023,, 481-506.		0
411	New Trends in Clay-Based Nanohybrid Applications: Essential Oil Encapsulation Strategies to Improve Their Biological Activity. , 0, , .		1
412	Analytical design and finite element analysis of a microgripper for characterizing a single microcapsule. Measurement Science and Technology, 0 , $,$.	1.4	0
413	Review of Osteoarthritis- Related Medicinal Herbs. Current Traditional Medicine, 2022, 08, .	0.1	0
414	Amelioration for oxidative stability and bioavailability of N-3 PUFA enriched microalgae oil: an overview. Critical Reviews in Food Science and Nutrition, 0, , 1-22.	5.4	0
415	A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods, 2022, 11, 2826.	1.9	16
416	Optimization of agarose–alginate hydrogel bead components for encapsulation and transportation of stem cells. Journal of Taibah University Medical Sciences, 2023, 18, 104-116.	0.5	1
417	Linalool-encapsulated alginate microspheres as anti-virulence target against wound infections using In vitro and In vivo models. Journal of Drug Delivery Science and Technology, 2022, 77, 103848.	1.4	1
418	Microcapsule production by droplet microfluidics: A review from the material science approach. Materials and Design, 2022, 223, 111230.	3.3	14
419	Bioencapsulation for the functional foods and nutraceuticals. , 2022, , 125-156.		0
421	Biofunctional Textiles: Functional Polymer-Carriers with Antiviral, Antibacterial, Antifungal, and Repellent Activity., 2023,, 227-258.		1
422	Fluorescent melamine-formaldehyde/polyamine coatings for microcapsules enabling their tracking in composites. Journal of Microencapsulation, 2022, 39, 575-588.	1.2	1
423	Awareness and Expectations of Polish Consumers Regarding Edible Niche Oils as a Food Product. Sustainability, 2022, 14, 14239.	1.6	1
424	THE ROLE OF THE NEEDLE AS A BIOLOGICALLY ACTIVE SUBSTANCE OF PLANT ORIGIN IN FOOD PRODUCTION (PATENT REVIEW). Innovacii I Prodovolʹstvennaâ Bezopasnostʹ, 2022, , 36-43.	0.1	0
425	Fabrication of a dual <scp>pHâ€responsive</scp> and photothermal microcapsule pesticide delivery system for controlled release of pesticides. Pest Management Science, 2023, 79, 969-979.	1.7	17
426	Preparation Process Optimization and Performance Characterization of Feed Plant Essential Oil Microcapsules. Molecules, 2022, 27, 7096.	1.7	4

#	Article	IF	CITATIONS
427	Modification of Shellac with Clove (Eugenia caryophyllata) and Thyme (Satureja hortensis) Essential Oils: Compatibility Issues and Effect on the UV Light Resistance of Wood Coated Surfaces. Coatings, 2022, 12, 1591.	1.2	1
428	Effect of non-encapsulated and encapsulated mimosa (Acacia mearnsii) tannins on growth performance, nutrient digestibility, methane and rumen fermentation of South African mutton Merino ram lambs. Animal Feed Science and Technology, 2022, 294, 115502.	1.1	2
429	Comparison of Techniques for Drying Cellulose Nanocrystal Pickering Emulsions into Oil Powders. ACS Sustainable Chemistry and Engineering, 2022, 10, 14914-14925.	3.2	6
430	Biopolymer-based powders with encapsulated thyme oil: Characterization and comparison with free oil regarding thermal stability and antimicrobial activity. Food Bioscience, 2022, 50, 102100.	2.0	1
431	New food structures and their influence on nutrition, health and well-being., 2023, , 17-39.		1
432	Construction of consumer-friendly essential oil microcapsules with viscous cores to provide extra long-lasting release. Powder Technology, 2023, 413, 118040.	2.1	4
433	Design of functional foods with targeted health functionality and nutrition by using microencapsulation technologies., 2023, , 159-185.		0
434	Methods to Formulate Polymeric Nanoparticles. Environmental Chemistry for A Sustainable World, 2022, , 51-74.	0.3	0
435	Nanobiopesticides in sustainable agriculture: developments, challenges, and perspectives. Environmental Science: Nano, 2023, 10, 41-61.	2.2	16
436	Hemp protein isolate – gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate – gum Arabic system. Food Hydrocolloids, 2023, 136, 108284.	5. 6	13
437	Synthesis of Chitosan Microparticles Encapsulating Bacterial Cell-Free Supernatants and Indole Acetic Acid, and Their Effects on Germination and Seedling Growth in Tomato (Solanum) Tj ETQq0 0 0 rgBT /Over	rlo ok 410 Tf	[:] 5 9 337 Td (l
438	Recent industrials extraction of plants seeds oil used in the development of functional food products: A Review. International Journal of Food Properties, 2022, 25, 2530-2550.	1.3	6
439	Nanoencapsulation and bioaccessibility of polyphenols of aqueous extracts from Bauhinia forficata link. Food Chemistry Molecular Sciences, 2022, 5, 100144.	0.9	4
440	Microencapsulation for Food Applications: A Review. ACS Applied Bio Materials, 2022, 5, 5497-5512.	2.3	17
441	Advances in encapsulation strategies for bioactive phytochemicals., 2023,, 141-166.		2
442	Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydrate Polymers, 2023, 302, 120384.	5.1	15
443	Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions. International Journal of Biological Macromolecules, 2023, 227, 83-92.	3.6	8
444	Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils. Food Research International, 2023, 164, 112333.	2.9	2

#	Article	IF	CITATIONS
446	Ozonation of Non-Woven Ultrathin Fibrous Biomaterials for Medical and Packaging Implementations. , 0, , .		0
447	Formulation with sage tea-loaded fish oil-based microcapsules to delay oxidation. Journal of Food Science and Technology, 0, , .	1.4	0
448	Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Frontiers in Nutrition, $0, 9, .$	1.6	0
449	The Development of the Antibacterial Microcapsules of Citrus Essential Oil for the Cosmetotextile Application: A Review. Molecules, 2022, 27, 8090.	1.7	11
450	Technological Approaches to Microencapsulation of Fatty and Essential Oils in the Development of Herbal Medicines. Pharmaceutical Chemistry Journal, 2022, 56, 1272-1276.	0.3	0
451	Synthesis and characterization of hybrid shell microcapsules for anti-corrosion Ni-Co coating. , 2022, 32, 143-149.		0
452	Maltodextrin-Coated Peppermint and Caraway Essential Oils Effects on Soil Microbiota. Plants, 2022, 11, 3343.	1.6	1
454	Microencapsulation of fruit juices: Techniques, properties, application of fruit powder. Journal of Food Process Engineering, 0 , , .	1.5	1
455	Effects of dietary supplementation with purple garlic powder and oregano essential oil on intestinal health in post-weaning piglets from commercial farms. Veterinary Research Communications, 2023, 47, 901-909.	0.6	2
456	The use of extrusion technology for encapsulation of bioactive components for their improved stability and bioavailability. Nutrition and Food Science, 2022, ahead-of-print, .	0.4	0
457	Ozone therapy for skin diseases: Cellular and molecular mechanisms. International Wound Journal, 2023, 20, 2376-2385.	1.3	9
458	Efficient encapsulation of isocyanates in PCL/PLA biodegradable microcapsules for adhesives. Journal of Materials Science, 2023, 58, 2249-2267.	1.7	1
459	Algal Proteins. , 2023, , 173-194.		1
460	Pickering emulsions for functional food systems. Journal of Agriculture and Food Research, 2023, 11, 100510.	1.2	3
461	Novel devices and biomaterials for testing effective oviposition deterrence in Aedes aegypti. Industrial Crops and Products, 2023, 193, 116206.	2.5	0
462	Đ¯ÑĐ¿Đ¾Đ»ÑŒĐ∙Đ¾Đ²Đ°Đ½Đ¸Đμ Đ̃Ñ€ĐμĐ²ĐμÑĐ½Đ¾Đ¹ Đ∙ĐμĐ»ĐμĐ½Đ¸ Đ¿Đ¸ÑÑ,Ñ‹ (Đbies Sibirica) Đ²	 Ñ, Ð µØÐ	¹ ∕2 Ð ¾Ð»Ð¾
463	Effect of Emulsion Particle Size on the Encapsulation Behavior and Oxidative Stability of Spray Microencapsulated Sweet Orange Oil (Citrus aurantium var. dulcis). Foods, 2023, 12, 116.	1.9	2
464	Encapsulation of Thymol and Eugenol Essential Oils Using Unmodified Cellulose: Preparation and Characterization. Polymers, 2023, 15, 95.	2.0	6

#	Article	IF	CITATIONS
465	Microencapsulation: Solvent evaporation. , 2023, , 377-392.		1
466	Application of Antiviral, Antioxidant and Antibacterial Glycyrrhiza glabra L., Trifolium pratense L. Extracts and Myristica fragrans Houtt. Essential Oil in Microcapsules. Pharmaceutics, 2023, 15, 464.	2.0	4
467	Copper(I)-lodide Clusters as Carriers for Regulating and Visualizing Release of Aroma Molecules. ACS Applied Materials & Distriction (2023), 15, 5954-5962.	4.0	0
468	Yeast Particles for Encapsulation of Terpenes and Essential Oils. Molecules, 2023, 28, 2273.	1.7	3
469	Electrospun polyvinyl alcohol/chitosan nanofibers incorporated with 1,8-cineole/cyclodextrin inclusion complexes: Characterization, release kinetics and application in strawberry preservation. Food Chemistry, 2023, 418, 135652.	4.2	12
470	Combining antioxidants and processing techniques to improve oxidative stability of a Schizochytrium algal oil ingredient with application in yogurt. Food Chemistry, 2023, 417, 135835.	4.2	1
471	Antimicrobial food packaging application of angelica root (Angelica sylvestris) oil-loaded electrospun biofibers. Food Packaging and Shelf Life, 2023, 35, 101035.	3 . 3	5
472	Fortification of chocolate with microencapsulated fish oil: Effect of protein wall material on physicochemical properties of microcapsules and chocolate matrix. Food Chemistry: X, 2023, 17, 100583.	1.8	9
473	Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Roasted Coffee Oil Microcapsules. Cosmetics, 2023, 10, 24.	1.5	3
474	Core-shell micro/nanocapsules: from encapsulation to applications. Journal of Microencapsulation, 2023, 40, 125-156.	1.2	5
475	Production and characterization of <i>Ziziphus jujuba</i> extractâ€loaded composite whey protein and pea protein beads based on sodium alginateâ€" <scp>IFPG</scp> (insoluble fraction of Persian gum). Journal of the Science of Food and Agriculture, 2023, 103, 3674-3684.	1.7	5
476	Investigating the Effects of Various Surfactants on the Emulsion and Powder of Hazelnut Oil. Food and Bioprocess Technology, 0, , .	2.6	0
477	Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method. Food and Bioprocess Technology, 0, , .	2.6	3
478	Advances in encapsulation of organic compounds for biological protective textiles. , 2023, , 509-534.		0
479	Flavour encapsulation: A comparative analysis of relevant techniques, physiochemical characterisation, stability, and food applications. Frontiers in Nutrition, 0, 10 , .	1.6	4
480	Functional roles and novel tools for improvingâ€oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Science and Nutrition, 2023, 11, 2471-2482.	1.5	6
481	Nutmeg Essential Oil, Red Clover, and Liquorice Extracts Microencapsulation Method Selection for the Release of Active Compounds from Gel Tablets of Different Bases. Pharmaceutics, 2023, 15, 949.	2.0	2
482	Nano technology in sustainable agriculture: A step to turn around Indian rural economy. AIP Conference Proceedings, 2023, , .	0.3	1

#	Article	IF	Citations
483	Stabilization of water-in-water emulsion upon solvent shifting., 0, 3, .		0
484	Release of Fragrances from Polymer Coatings Triggered by Contact with Sweat. ACS Applied Polymer Materials, 2023, 5, 2374-2381.	2.0	0
485	Volatile Organic Compounds: A Review of Their Current Applications as Pest Biocontrol and Disease Management. Horticulturae, 2023, 9, 441.	1.2	7
486	Encapsulation of essential oils using hemp protein isolate–gum Arabic complex coacervates and evaluation of the capsules. , 2023, 1, 426-436.		2
487	A review on the synthesis and application of magnetic nanoadsorbents to the treatment of oilfield produced water. Brazilian Journal of Chemical Engineering, $0, \dots$	0.7	1
488	Chitosan-based coatings and films incorporated with essential oils: applications in food models. Journal of Food Measurement and Characterization, 0, , .	1.6	2
489	Microencapsulated Phase Change Materials and Their Applications for Passive Cooling in Buildings. , 2023, , 2111-2131.		0
496	Microencapsulation., 2023,, 222-258.		0
498	The Vital Uses of Jojoba Oil and Its Derivatives in Daily Life and the Petroleum Industry., 0,,.		0
504	Encapsulation of microalgae-based products for food and feed applications. , 2023, , 371-393.		0
512	Marine biotechnology: A One Health approach to linking life on land to life underwater. , 2023, , 149-180.		0
534	Nutritional composition, health-promoting effects, bioavailability, and encapsulation of tree peony seed oil: a review. Food and Function, 2023, 14, 10265-10285.	2.1	3
547	Spray drying encapsulation of probiotics and enzymes. , 2024, , 407-472.		0
549	Recent progress in the microencapsulation of essential oils for sustainable functional textiles. Polymer Bulletin, 0 , , .	1.7	0
552	Extraction and processing of essential oils and their application in food industries., 2024,, 9-23.		0
553	Nanostructured materials for the development of bio-based plastics for food applications. , 2024, , 23-50.		0
554	Spray drying of coffee., 2024, , 189-222.		0
555	Green nanoemulsions: Potential fungicides for the control of postharvest diseases., 2024,, 217-243.		0

#	Article	IF	CITATIONS
556	Spray-dryer and microencapsulationâ€"application of starch as a carrier. , 2024, , 271-294.		0
563	Encapsulated liquid sorbents for sweetening of natural gas. , 2024, , 153-184.		0
564	Advances in Microencapsulation and Nanoemulsion Techniques of Plant Pigments: Improving Stability, Bioavailability, and Bioactivity for Application in Food Industry. Reference Series in Phytochemistry, 2024, , 1-26.	0.2	0