Using high resolution tracer data to constrain water sto spatially distributed rainfallâ€runoff model

Hydrological Processes 30, 4761-4778 DOI: 10.1002/hyp.10902

Citation Report

#	Article	IF	CITATIONS
1	Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment. Hydrological Processes, 2016, 30, 4477-4493.	1.1	24
2	Visualization of spatial patterns of connectivity and runoff ages derived from a tracerâ€aided model. Hydrological Processes, 2016, 30, 4893-4895.	1.1	9
3	Using SAS functions and highâ€resolution isotope data to unravel travel time distributions in headwater catchments. Water Resources Research, 2017, 53, 1864-1878.	1.7	102
4	The essential value of longâ€ŧerm experimental data for hydrology and water management. Water Resources Research, 2017, 53, 2598-2604.	1.7	102
5	Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilisation. Journal of Hydrology, 2017, 549, 220-235.	2.3	28
6	Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrubland in a lowâ€energy humid environment. Hydrological Processes, 2017, 31, 4613-4621.	1.1	19
7	Using highâ€resolution isotope data and alternative calibration strategies for a tracerâ€aided runoff model in a nested catchment. Hydrological Processes, 2017, 31, 3962-3978.	1.1	17
8	Evaporation fractionation in a peatland drainage network affects stream water isotope composition. Water Resources Research, 2017, 53, 851-866.	1.7	92
9	Complex networks of functional connectivity in a wetland reconnected to its floodplain. Water Resources Research, 2017, 53, 6089-6108.	1.7	16
10	Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model. Hydrology and Earth System Sciences, 2017, 21, 5089-5110.	1.9	69
11	Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone. Hydrology and Earth System Sciences, 2017, 21, 3839-3858.	1.9	119
12	Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment. Journal of Hydrology, 2018, 558, 520-531.	2.3	32
13	EcH ₂ O-isoÂ1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model. Geoscientific Model Development, 2018, 11, 3045-3069.	1.3	88
14	Water Flux Tracking With a Distributed Hydrological Model to Quantify Controls on the Spatioâ€ŧemporal Variability of Transit Time Distributions. Water Resources Research, 2018, 54, 3081-3099.	1.7	59
15	Testing a spatially distributed tracerâ€aided runoff model in a snowâ€influenced catchment: Effects of multicriteria calibration on streamwater ages. Hydrological Processes, 2018, 32, 3089-3107.	1.1	12
16	Understanding snow hydrological processes through the lens of stable water isotopes. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1311.	2.8	76
17	Water ages in the critical zone of long-term experimental sites in northern latitudes. Hydrology and Earth System Sciences, 2018, 22, 3965-3981.	1.9	37
18	Effect of Observation Errors on the Timing of the Most Informative Isotope Samples for Event-Based Model Calibration. Hydrology, 2018, 5, 4.	1.3	3

#	Article	IF	CITATIONS
19	Using stable isotopes to estimate travel times in a dataâ€sparse Arctic catchment: Challenges and possible solutions. Hydrological Processes, 2018, 32, 1936-1952.	1.1	34
20	On the Use of StorAge Selection Functions to Assess Timeâ€Variant Travel Times in Lakes. Water Resources Research, 2018, 54, 5163-5185.	1.7	12
21	Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. Hydrological Processes, 2018, 32, 1720-1737.	1.1	52
22	Spatially distributed tracerâ€aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchment. Hydrological Processes, 2018, 32, 3206-3224.	1.1	27
23	Ageâ€Ranked Storageâ€Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems. Water Resources Research, 2019, 55, 7143-7165.	1.7	26
24	Technical note: A microcontroller-based automatic rain sampler for stable isotope studies. Hydrology and Earth System Sciences, 2019, 23, 2637-2645.	1.9	15
25	Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model. Hydrology and Earth System Sciences, 2019, 23, 3319-3334.	1.9	22
26	Groundwater recharge, flow and stable isotope attenuation in sedimentary and crystalline fractured rocks: Spatiotemporal monitoring from multi-level wells. Journal of Hydrology, 2019, 571, 178-192.	2.3	17
27	Assessing runoff generation in riparian wetlands: monitoring groundwater–surface water dynamics at the micro-catchment scale. Environmental Monitoring and Assessment, 2019, 191, 116.	1.3	12
28	A game-based production operation model for water resource management: An analysis of the South-to-North Water Transfer Project in China. Journal of Cleaner Production, 2019, 228, 1482-1493.	4.6	21
29	Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment. Hydrology and Earth System Sciences, 2019, 23, 2507-2523.	1.9	22
30	Ecohydrological modelling with <scp>EcH₂Oâ€iso</scp> to quantify forest and grassland effects on water partitioning and flux ages. Hydrological Processes, 2019, 33, 2174-2191.	1.1	40
31	The Demographics of Water: A Review of Water Ages in the Critical Zone. Reviews of Geophysics, 2019, 57, 800-834.	9.0	197
32	A tracer-based method for classifying groundwater dependence in boreal headwater streams. Journal of Hydrology, 2019, 577, 123762.	2.3	10
33	The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. Journal of Hydrology, 2019, 572, 805-819.	2.3	41
34	Validation and Over-Parameterization—Experiences from Hydrological Modeling. Simulation Foundations, Methods and Applications, 2019, , 811-834.	0.8	12
35	To what extent does hydrological connectivity control dynamics of faecal indicator organisms in streams? Initial hypothesis testing using a tracer-aided model. Journal of Hydrology, 2019, 570, 423-435.	2.3	12
36	Constraining hydrological model parameters using water isotopic compositions in a glacierized basin, Central Asia. Journal of Hydrology, 2019, 571, 332-348.	2.3	31

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Hydrology at Aberdeen – thinking about water locally and globally. Scottish Geographical Journal, 2019, 135, 267-286.	0.4	1
38	Using isotopes to understand the evolution of water ages in disturbed mixed landâ€use catchments. Hydrological Processes, 2020, 34, 972-990.	1.1	17
39	An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 1: Background and model description. Journal of Environmental Management, 2020, 270, 110903.	3.8	5
40	Contrasting storage-flux-age interactions revealed by catchment inter-comparison using a tracer-aided runoff model. Journal of Hydrology, 2020, 590, 125226.	2.3	7
41	Modelling nonâ€ s tationary water ages in a tropical rainforest: A preliminary spatially distributed assessment. Hydrological Processes, 2020, 34, 4776-4793.	1.1	12
42	Tracing Water Sources and Fluxes in a Dynamic Tropical Environment: From Observations to Modeling. Frontiers in Earth Science, 2020, 8, .	0.8	17
43	Tracerâ€Aided Modeling in the Lowâ€Relief, Wetâ€Dry Tropics Suggests Water Ages and DOC Export Are Driven by Seasonal Wetlands and Deep Groundwater. Water Resources Research, 2020, 56, e2019WR026175.	1.7	18
44	Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge. Hydrological Processes, 2020, 34, 2032-2047.	1.1	21
45	Multimodal water age distributions and the challenge of complex hydrological landscapes. Hydrological Processes, 2020, 34, 2707-2724.	1.1	12
46	Multiple-tracers-aided surface-subsurface hydrological modeling for detailed characterization of regional catchment water dynamics in Kumamoto area, southern Japan. Hydrogeology Journal, 2021, 29, 1885-1904.	0.9	7
47	The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau. Hydrology and Earth System Sciences, 2021, 25, 3653-3673.	1.9	18
48	Effects of streamflow isotope sampling strategies on the calibration of a tracerâ€∎ided rainfallâ€runoff model. Hydrological Processes, 2021, 35, e14223.	1.1	13
49	Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking. Water Resources Management, 2021, 35, 3755-3770.	1.9	19
50	Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. Water Resources Research, 2021, 57, e2020WR028719.	1.7	2
51	A meta-analysis based review of quantifying the contributions of runoff components to streamflow in glacierized basins. Journal of Hydrology, 2021, 603, 126890.	2.3	17
52	A comprehensive analysis method of spatial prioritization for urban flood management based on source tracking. Ecological Indicators, 2022, 135, 108565.	2.6	14
53	Critical Zone Response Times and Water Age Relationships Under Variable Catchment Wetness States: Insights Using a Tracerâ€Aided Ecohydrological Model. Water Resources Research, 2022, 58, .	1.7	5
54	Urban flood response analysis for designed rainstorms with different characteristics based on a tracer-aided modeling simulation. Journal of Cleaner Production, 2022, 355, 131797.	4.6	17

IF ARTICLE CITATIONS # An integrated quantitative framework to assess the impacts of disaster-inducing factors on causing 55 1.6 4 urban flood. Natural Hazards, 2022, 113, 1903-1924. Variability in flow and tracer-based performance metric sensitivities reveal regional differences in dominant hydrological processes across the Athabasca River basin. Journal of Hydrology: Regional 1.0 Studies, 2022, 41, 101088. Explicit simulation of environmental gas tracers with integrated surface and subsurface 57 1.0 3 hydrological models. Frontiers in Water, 0, 4, . Contribution of water rejuvenation induced by climate warming to evapotranspiration in a Siberian boreal forest. Frontiers in Earth Science, 0, 10, . Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape. Hydrology and Earth System Sciences, 2022, 59 1.9 2 26, 5515-5534. Using stable water isotopes to evaluate water flow and nonpoint source pollutant contributions in three southern Ontario agricultural headwater streams. Hydrological Processes, 2023, 37, . 1.1 Bridging the gap from hydrological to biogeochemical processes using tracer-aided hydrological 61 2.3 4 models in a tropical montane ecosystem. Journal of Hydrology, 2023, 619, 129328. Tracerâ€aided ecohydrological modelling across climate, land cover, and topographical gradients in 1.1 the tropics. Hydrological Processes, 2023, 37, .

CITATION REPORT