Midbrain-like Organoids from Human Pluripotent Sten Dopaminergic and Neuromelanin-Producing Neurons

Cell Stem Cell 19, 248-257 DOI: 10.1016/j.stem.2016.07.005

Citation Report

#	Article	IF	Citations
1	Are stem cellâ€derived neural cells physiologically credible?. Journal of Physiology, 2016, 594, 6569-6572.	1.3	6
2	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	1.4	29
3	The Future is The Past: Methylation QTLs in Schizophrenia. Genes, 2016, 7, 104.	1.0	26
4	Pluripotent stem cells: the last 10 years. Regenerative Medicine, 2016, 11, 831-847.	0.8	34
5	Neural Differentiation in the Third Dimension: Generating a Human Midbrain. Cell Stem Cell, 2016, 19, 145-146.	5.2	30
6	Mesoderm, Cooked Up Fast and Served to Order. Cell Stem Cell, 2016, 19, 146-148.	5.2	2
7	The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine, 2016, 22, 1220-1228.	15.2	224
8	Neural Subtype Specification from Human Pluripotent Stem Cells. Cell Stem Cell, 2016, 19, 573-586.	5.2	225
9	Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomaterialia, 2017, 53, 29-45.	4.1	45
10	Understanding Parkinson's Disease through the Use of Cell Reprogramming. Stem Cell Reviews and Reports, 2017, 13, 151-169.	5.6	26
11	Chromosome conformation and gene expression patterns differ profoundly in human fibroblasts grown in spheroids versus monolayers. Nucleus, 2017, 8, 383-391.	0.6	12
12	Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS Discovery, 2017, 22, 583-601.	1.4	55
13	Modeling neurodevelopmental and psychiatric diseases with human iPSCs. Journal of Neuroscience Research, 2017, 95, 1097-1109.	1.3	11
14	Derivation of Human Midbrain-Specific Organoids from Neuroepithelial StemÂCells. Stem Cell Reports, 2017, 8, 1144-1154.	2.3	321
15	Fused cerebral organoids model interactions between brain regions. Nature Methods, 2017, 14, 743-751.	9.0	574
16	Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease. Current Stem Cell Reports, 2017, 3, 98-111.	0.7	22
17	Drug discovery for remyelination and treatment of MS. Glia, 2017, 65, 1565-1589.	2.5	41
18	3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Advanced Healthcare Materials, 2017, 6, 1700175.	3.9	164

ATION REDO

#	Article	IF	CITATIONS
19	Deriving, regenerating, and engineering CNS tissues using human pluripotent stem cells. Current Opinion in Biotechnology, 2017, 47, 36-42.	3.3	7
20	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
21	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	4.1	27
22	Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge), 2017, 144, 952-957.	1.2	201
23	The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomaterialia, 2017, 54, 35-44.	4.1	51
24	Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends in Molecular Medicine, 2017, 23, 393-410.	3.5	575
25	Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons. Genome Research, 2017, 27, 1783-1794.	2.4	39
26	Lab-grown mini-brains upgraded. Nature Cell Biology, 2017, 19, 1010-1012.	4.6	4
27	The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18, 573-584.	4.9	528
28	Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. NeuroMolecular Medicine, 2017, 19, 241-255.	1.8	25
29	Generation of iPSC-derived Human Brain Organoids to Model Early Neurodevelopmental Disorders. Journal of Visualized Experiments, 2017, , .	0.2	23
30	A Scalable Approach for the Generation of Human Pluripotent Stem Cell-Derived Hepatic Organoids with Sensitive Hepatotoxicity Features. Stem Cells and Development, 2017, 26, 1490-1504.	1.1	40
31	Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell, 2017, 21, 383-398.e7.	5.2	508
32	Neural organoids for disease phenotyping, drug screening and developmental biology studies. Neurochemistry International, 2017, 106, 85-93.	1.9	36
33	Driver or Passenger: Epigenomes in Alzheimer's Disease. Epigenomes, 2017, 1, 5.	0.8	2
34	Connecting the Brain to Itself through an Emulation. Frontiers in Neuroscience, 2017, 11, 373.	1.4	7
35	Human iPSC Models in Drug Discovery: Opportunities and Challenges. , 2017, , 48-73.		4
36	Translational potential of human brain organoids. Annals of Clinical and Translational Neurology, 2018, 5, 226-235.	1.7	31

#	ARTICLE	IF	Citations
37	Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13, 565-580.	5.5	335
38	An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology, 2018, 36, 432-441.	9.4	826
39	Development of In Vitro Toxicology. , 2018, , 1-19.		5
40	Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biological Psychiatry, 2018, 83, 831-839.	0.7	47
41	Is Parkinson's Disease a Neurodevelopmental Disorder and Will Brain Organoids Help Us to Understand It?. Stem Cells and Development, 2018, 27, 968-975.	1.1	45
42	The rise of three-dimensional human brain cultures. Nature, 2018, 553, 437-445.	13.7	373
43	Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Translational Psychiatry, 2018, 8, 14.	2.4	50
44	Genome engineering for CNS injury and disease. Current Opinion in Biotechnology, 2018, 52, 89-94.	3.3	6
45	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	1.6	25
46	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
47	3D neural tissue models: From spheroids to bioprinting. Biomaterials, 2018, 154, 113-133.	5.7	207
48	Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders. Biological Psychiatry, 2018, 83, 558-568.	0.7	48
50	Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioengineering, 2018, 2, 041501.	3.3	43
51	Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS A Journal of Integrative Biology, 2018, 22, 733-748.	1.0	26
52	Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 413.	1.8	9
53	Modeling Parkinson's Disease and Atypical Parkinsonian Syndromes Using Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2018, 19, 3870.	1.8	10
54	Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Experimental Hematology and Oncology, 2018, 7, 30.	2.0	119
55	Synaptosomes. Neuromethods, 2018, , .	0.2	3

C	 D	
		DT
CILAD	NLFU	

#	Article	IF	CITATIONS
56	Using Patient-Derived Induced Pluripotent Stem Cells to Identify Parkinson's Disease-Relevant Phenotypes. Current Neurology and Neuroscience Reports, 2018, 18, 84.	2.0	34
57	The Use of Synaptosomes in Studying Autism Spectrum Disorder and Other Neurodevelopmental Disorders. Neuromethods, 2018, , 287-296.	0.2	0
58	Advances and Current Challenges Associated with the Use of Human Induced Pluripotent Stem Cells in Modeling Neurodegenerative Disease. Cells Tissues Organs, 2018, 205, 331-349.	1.3	42
59	3D Bioprinting Technologies for Tissue Engineering Applications. Advances in Experimental Medicine and Biology, 2018, 1078, 15-28.	0.8	63
60	Brain Organoids and the Study of Neurodevelopment. Trends in Molecular Medicine, 2018, 24, 982-990.	3.5	83
61	Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron, 2018, 100, 389-405.	3.8	237
62	Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death and Disease, 2018, 9, 1100.	2.7	72
63	Commentary: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Frontiers in Bioengineering and Biotechnology, 2018, 6, 138.	2.0	6
64	Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances. Stem Cells and Development, 2018, 27, 1674-1692.	1.1	14
65	Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids. Current Protocols in Stem Cell Biology, 2018, 47, e61.	3.0	21
66	Organoid technology and applications in cancer research. Journal of Hematology and Oncology, 2018, 11, 116.	6.9	196
67	Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biology, 2018, 8, .	1.5	126
68	Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab on A Chip, 2018, 18, 3172-3183.	3.1	108
69	Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in in inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2018, 41, 1103-1116.	1.7	3
71	Identifying genes in Parkinson disease: state of the art. Medical Journal of Australia, 2018, 208, 381-382.	0.8	0
72	Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development (Cambridge), 2018, 145, .	1.2	113
73	Induction of myelinating oligodendrocytes in human cortical spheroids. Nature Methods, 2018, 15, 700-706.	9.0	242
74	Rett Syndrome and Stem Cell Research. , 2018, , 27-41.		0

#	Article	IF	CITATIONS
75	Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Frontiers in Neuroscience, 2018, 12, 199.	1.4	19
76	Modeling Neurological Diseases With Human Brain Organoids. Frontiers in Synaptic Neuroscience, 2018, 10, 15.	1.3	136
77	Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicological Sciences, 2018, 165, 31-39.	1.4	56
78	Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Current Topics in Developmental Biology, 2018, 129, 99-122.	1.0	27
79	Studying tissue macrophages in vitro: are iPSC-derived cells the answer?. Nature Reviews Immunology, 2018, 18, 716-725.	10.6	92
80	Airflowâ€Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small, 2018, 14, e1802630.	5.2	71
81	Induced Pluripotent Stem Cells. Cell Transplantation, 2018, 27, 1588-1602.	1.2	26
82	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
83	Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Current Topics in Behavioral Neurosciences, 2019, 42, 159-183.	0.8	9
84	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622.	23.3	251
84 85	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258.	23.3 3.3	251 53
84 85 86	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91.	23.3 3.3 2.6	251 53 13
84 85 86 87	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350.	23.3 3.3 2.6 1.3	251 53 13 26
84 85 86 87 88	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582.	23.3 3.3 2.6 1.3 1.4	251 53 13 26 39
84 85 86 87 88 88	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582. Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Systems, 2019, 9, 167-186,e12.	23.3 3.3 2.6 1.3 1.4 2.9	 251 53 13 26 39 13
84 85 86 87 88 88 89 90	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582. Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Systems, 2019, 9, 167-186.e12. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment, Frontiers in Cellular and Infection Microbiology, 2019, 9, 223.	23.3 3.3 2.6 1.3 1.4 2.9 1.8	251 53 13 26 39 13
 84 85 86 87 88 89 90 91 	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258. Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582. Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Systems, 2019, 9, 167-186.e12. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Frontiers in Cellular and Infection Microbiology, 2019, 9, 223. Downâ®ulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB Journal, 2019, 33, 10577-10592.	23.3 3.3 2.6 1.3 1.4 2.9 1.8 0.2	 251 53 13 26 39 13 10 4

	CITATION R	EPORT	
#	Article	IF	Citations
93	The Emergence of Stem Cellâ€Based Brain Organoids: Trends and Challenges. BioEssays, 2019, 41, e1900011.	1.2	29
94	Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Frontiers in Cell and Developmental Biology, 2019, 7, 303.	1.8	58
95	Extracellular Nanomatrixâ€Induced Selfâ€Organization of Neural Stem Cells into Miniature Substantia Nigraâ€Like Structures with Therapeutic Effects on Parkinsonian Rats. Advanced Science, 2019, 6, 1901822.	5.6	9
96	Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Seminars in Cell and Developmental Biology, 2019, 95, 84-92.	2.3	4
97	Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. Materials, 2019, 12, 3218.	1.3	32
98	Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras. Cell Stem Cell, 2019, 25, 462-472.	5.2	62
99	Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Current Topics in Developmental Biology, 2019, 132, 177-220.	1.0	23
100	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	2.1	13
101	Induced pluripotent stem cellâ€based modeling of mutant <scp>LRRK</scp> 2â€associated Parkinson's disease. European Journal of Neuroscience, 2019, 49, 561-589.	1.2	20
102	Midbrain Dopaminergic Neurons Differentiated from Human-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1919, 97-118.	0.4	18
103	Differentiating human pluripotent stem cells into vascular smooth muscle cells in three dimensional thermoreversible hydrogels. Biomaterials Science, 2019, 7, 347-361.	2.6	7
104	Optogenetics in the Era of Cerebral Organoids. Trends in Biotechnology, 2019, 37, 1282-1294.	4.9	28
105	At the Intersection of Epigenetics and Regeneration: An Analysis of the Experimental Outlook of Organoid Technology. , 2019, , 385-402.		3
106	Human cerebral organoids and neural 3D tissues in basic research, and their application to study neurological diseases. Future Neurology, 2019, 14, FNL3.	0.9	6
107	Analysis of Synapses in Cerebral Organoids. Cell Transplantation, 2019, 28, 1173-1182.	1.2	12
108	3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin, 2019, 150, 240-249.	1.4	32
109	Cell death assays for neurodegenerative disease drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 901-913.	2.5	20
110	Induced pluripotent stem cells in multiple system atrophy: recent developments and scientific challenges. Clinical Autonomic Research, 2019, 29, 385-395.	1.4	2

#	Article	IF	CITATIONS
111	Engineering biomaterials to control the neural differentiation of stem cells. Brain Research Bulletin, 2019, 150, 50-60.	1.4	17
112	Biologically inspired approaches to enhance human organoid complexity. Development (Cambridge), 2019, 146, .	1.2	68
113	Cell diversity in the human cerebral cortex: from the embryo to brain organoids. Current Opinion in Neurobiology, 2019, 56, 194-198.	2.0	73
114	Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells International, 2019, 2019, 1-17.	1.2	25
115	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	1.2	385
116	Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Frontiers in Cellular Neuroscience, 2019, 13, 129.	1.8	66
117	Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages. Stem Cell Research, 2019, 38, 101441.	0.3	5
118	Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. Journal of Industrial and Engineering Chemistry, 2019, 74, 148-157.	2.9	6
119	Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. , 2019, 9, 565-611.		88
120	hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. Cell Stem Cell, 2019, 24, 487-497.e7.	5.2	305
121	Modeling Parkinson's disease in midbrain-like organoids. Npj Parkinson's Disease, 2019, 5, 5.	2.5	204
122	Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biology, 2019, 9, 180177.	1.5	59
123	Therapeutic Potential of Patient iPSC-Derived iMelanocytes in Autologous Transplantation. Cell Reports, 2019, 27, 455-466.e5.	2.9	32
124	Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7483-7492.	3.3	77
125	"Necessity Is the Mother of Invention―or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids. Biochemistry (Moscow), 2019, 84, 321-328.	0.7	8
126	Polarizing brain organoids. Nature Biotechnology, 2019, 37, 377-378.	9.4	16
127	Specification of positional identity in forebrain organoids. Nature Biotechnology, 2019, 37, 436-444.	9.4	226
128	Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12, 518-531.	2.3	223

#	Article	IF	CITATIONS
129	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	7.7	411
130	One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. Journal of Parkinson's Disease, 2019, 9, 265-281.	1.5	19
131	Experimental and Computational Methods for the Study of Cerebral Organoids: A Review. Frontiers in Neuroscience, 2019, 13, 162.	1.4	32
132	iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells, 2019, 8, 1438.	1.8	41
133	Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathologica Communications, 2019, 7, 208.	2.4	20
134	Disease modelling in human organoids. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	254
135	Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 400.	2.0	55
136	Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids. Scientific Reports, 2019, 9, 19162.	1.6	39
138	Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells. , 2019, , 249-296.		3
139	Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Reviews in the Neurosciences, 2019, 30, 261-277.	1.4	18
140	Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience, 2019, 399, 28-38.	1.1	17
141	Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports, 2019, 12, 84-97.	2.3	25
142	Neural Stem Cells. Methods in Molecular Biology, 2019, , .	0.4	0
143	Neuronal migration in the CNS during development and disease: insights from <i>in vivo</i> and <i>in vitro</i> models. Development (Cambridge), 2019, 146, .	1.2	110
144	Human brain development and its in vitro recapitulation. Neuroscience Research, 2019, 138, 33-42.	1.0	25
145	Organoids for Advanced Therapeutics and Disease Models. Advanced Therapeutics, 2019, 2, 1800087.	1.6	22
146	Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson's disease. Neurobiology of Disease, 2019, 122, 72-82.	2.1	48
147	Using brain organoids to study human neurodevelopment, evolution and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e347.	5.9	23

#	Article	IF	CITATIONS
148	Modeling genetic epilepsies in a dish. Developmental Dynamics, 2020, 249, 56-75.	0.8	27
149	Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein and Cell, 2020, 11, 45-59.	4.8	58
150	Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Developmental Dynamics, 2020, 249, 34-45.	0.8	33
151	Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165431.	1.8	22
152	Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Molecular Psychiatry, 2020, 25, 254-274.	4.1	78
153	Probing disrupted neurodevelopment in autism using human stem cellâ€derived neurons and organoids: An outlook into future diagnostics and drug development. Developmental Dynamics, 2020, 249, 6-33.	0.8	25
154	Organotypic Neurovascular Models: Past Results and Future Directions. Trends in Molecular Medicine, 2020, 26, 273-284.	3.5	11
155	3D cell culture models and organâ€onâ€aâ€chip: Meet separation science and mass spectrometry. Electrophoresis, 2020, 41, 56-64.	1.3	41
156	What we can learn from iPSC-derived cellular models of Parkinson's disease. Progress in Brain Research, 2020, 252, 3-25.	0.9	11
157	Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 427-441.	2.5	21
158	The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. International Journal of Biological Macromolecules, 2020, 146, 99-109.	3.6	87
159	Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Research, 2020, 1727, 146561.	1.1	12
160	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.2	2
161	Brain Organoids: Human Neurodevelopment in a Dish. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035709.	2.3	65
162	Reverse engineering human brain evolution using organoid models. Brain Research, 2020, 1729, 146582.	1.1	25
163	Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 1005.	1.1	26
164	Recent progress in translational engineered <i>in vitro</i> models of the central nervous system. Brain, 2020, 143, 3181-3213.	3.7	64
165	Engineered microtissue as an anatomicallyÂinspired model of Parkinson's disease. Current Opinion in Biomedical Engineering, 2020, 14, 75-83.	1.8	5

#	Article	IF	CITATIONS
166	The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 579659.	1.8	65
167	Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 594090.	1.8	21
168	Induced Pluripotency: A Powerful Tool for In Vitro Modeling. International Journal of Molecular Sciences, 2020, 21, 8910.	1.8	13
169	Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist, 2021, 27, 388-426.	2.6	11
170	Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell and Tissue Research, 2020, 382, 463-476.	1.5	30
171	Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 2020, 1746, 147028.	1.1	25
172	Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. Advanced Functional Materials, 2020, 30, 2002931.	7.8	7
173	Induced pluripotent stem cells as a platform to understand patientâ€specific responses to opioids and anaesthetics. British Journal of Pharmacology, 2020, 177, 4581-4594.	2.7	7
174	Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons. International Journal of Molecular Sciences, 2020, 21, 5705.	1.8	12
175	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.	23.0	62
175 176	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127. Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028.	23.0 3.8	62 55
175 176 177	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127. Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028. Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.	23.0 3.8 3.8	62 55 24
175 176 177 178	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127. Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028. Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.	23.0 3.8 3.8 2.6	62 55 24 125
175 176 177 178 179	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028.Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.Cerebral Organoids: A Model of Brain Development. Russian Journal of Developmental Biology, 2020, 51, 231-245.	23.0 3.8 3.8 2.6 0.1	62 55 24 125 1
175 176 177 178 179 180	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028.Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.Cerebral Organoids: A Model of Brain Development. Russian Journal of Developmental Biology, 2020, 51, 231-245.Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. International Journal of Molecular Sciences, 2020, 21, 5959.	23.0 3.8 3.8 2.6 0.1 1.8	62 55 24 125 1
175 176 177 178 179 180 181	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028.Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.Cerebral Organoids: A Model of Brain Development. Russian Journal of Developmental Biology, 2020, 51, 231-245.Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. International Journal of Molecular Sciences, 2020, 21, 5959.Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Frontiers in Oncology, 2020, 10, 604121.	23.0 3.8 3.8 2.6 0.1 1.8 1.3	 62 55 24 125 1 11 55
175 176 177 178 179 180 181	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127. Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028. Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69. Cerebral Organoids: A Model of Brain Development. Russian Journal of Developmental Biology, 2020, 51, 231-245. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. International Journal of Molecular Sciences, 2020, 21, 5959. Clioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Frontiers in Oncology, 2020, 10, 604121. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 580634.	23.0 3.8 3.8 2.6 0.1 1.8 1.3 1.8	 62 55 24 125 1 11 55 40

#	Article	IF	CITATIONS
184	Stem Cell-Based Therapies for Parkinson Disease. International Journal of Molecular Sciences, 2020, 21, 8060.	1.8	41
185	Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 590119.	1.8	31
186	Solving the Issue of Ionizing Radiation Induced Neurotoxicity by Using Novel Cell Models and State of the Art Accelerator Facilities. Frontiers in Physics, 2020, 8, .	1.0	4
187	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61
188	A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery, 2020, 87, 620-629.	0.6	7
189	Do not keep it simple: recent advances in the generation of complex organoids. Journal of Neural Transmission, 2020, 127, 1569-1577.	1.4	31
190	Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18, e3000705.	2.6	202
191	Cellular Localization of gdnf in Adult Zebrafish Brain. Brain Sciences, 2020, 10, 286.	1.1	3
192	Generating ventral spinal organoids from human induced pluripotent stem cells. Methods in Cell Biology, 2020, 159, 257-277.	0.5	13
193	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165.	2.1	189
193 194	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870.	2.1 0.3	189 68
193 194 195	 A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . 	2.1 0.3 0.2	189 68 26
193 194 195 196	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509.	2.10.30.24.7	 189 68 26 30
193 194 195 196 197	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632.	2.1 0.3 0.2 4.7	 189 68 26 30 17
193 194 195 196 197 198	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632. Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611.	 2.1 0.3 0.2 4.7 1.4 2.0 	 189 68 26 30 17 62
193 194 195 196 197 198 200	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Ceneration of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632. Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611. Toward Generating Subtype-Specific Mesencephalic Dopaminergic Neurons in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 443.	2.1 0.3 0.2 4.7 1.4 2.0	 189 68 26 30 17 62 6
 193 194 195 196 197 198 200 201 	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , . Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632. Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611. Toward Generating Subtype-Specific Mesencephalic Dopaminergic Neurons in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 443. Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 359.	2.1 0.3 0.2 4.7 1.4 2.0 1.8 1.8	 189 68 26 30 17 62 6 46

	CHAILON	KLPOKI	
#	Article	IF	CITATIONS
203	Building a Human Brain for Research. Frontiers in Molecular Neuroscience, 2020, 13, 22.	1.4	9
204	Unprecedented Potential for Neural Drug Discovery Based on Self-Organizing hiPSC Platforms. Molecules, 2020, 25, 1150.	1.7	7
205	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	7.8	50
206	Brainstem Organoids From Human Pluripotent Stem Cells. Frontiers in Neuroscience, 2020, 14, 538.	1.4	43
207	Induced pluripotent stem cells as models of human neurodevelopmental disorders. , 2020, , 99-127.		0
208	Three-dimensional culture systems in central nervous system research. , 2020, , 571-601.		2
209	Midbrain Dopaminergic Neuron Development at the Single Cell Level: In vivo and in Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 463.	1.8	34
210	3D Brain Organoids: Studying Brain Development and Disease Outside the Embryo. Annual Review of Neuroscience, 2020, 43, 375-389.	5.0	59
211	Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells and Development, 2020, 29, 1118-1130.	1.1	7
212	Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells, 2020, 9, 477.	1.8	24
213	Generation of homogeneous midbrain organoids with in vivo <i>-</i> like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells, 2020, 38, 727-740.	1.4	64
214	Modeling Down syndrome in cells: From stem cells to organoids. Progress in Brain Research, 2020, 251, 55-90.	0.9	14
215	Uncovering cell biology in the third dimension. Molecular Biology of the Cell, 2020, 31, 319-323.	0.9	1
216	Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 694.	1.8	58
217	Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell, 2020, 26, 172-186.e6.	5.2	177
218	Modeling Cell-Cell Interactions in Parkinson's Disease Using Human Stem Cell-Based Models. Frontiers in Cellular Neuroscience, 2019, 13, 571.	1.8	19
219	Advancement in the modelling and therapeutics of Parkinson's disease. Journal of Chemical Neuroanatomy, 2020, 104, 101752.	1.0	102
220	Brain Organoids: A Promising Living Biobank Resource for Neuroscience Research. Biopreservation and Biobanking, 2020, 18, 136-143.	0.5	15

#	Article	IF	CITATIONS
221	Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids. Journal of Neuroscience, 2020, 40, 1186-1193.	1.7	37
222	Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules, 2020, 25, 2000.	1.7	75
223	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie - International Edition, 2020, 59, 11984-11991.	7.2	13
224	Human organoids to model the developing human neocortex in health and disease. Brain Research, 2020, 1742, 146803.	1.1	12
225	Organoid technology for tissue engineering. Journal of Molecular Cell Biology, 2020, 12, 569-579.	1.5	38
226	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie, 2020, 132, 12082-12089.	1.6	0
227	Bioprinting Neural Systems to Model Central Nervous System Diseases. Advanced Functional Materials, 2020, 30, 1910250.	7.8	38
228	Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2020, 17, 747-757.	1.6	15
229	From cell lines to pluripotent stem cells for modelling Parkinson's Disease. Journal of Neuroscience Methods, 2020, 340, 108741.	1.3	26
230	Human in vitro models for understanding mechanisms of autism spectrum disorder. Molecular Autism, 2020, 11, 26.	2.6	18
231	Historical Perspective: Models of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 2464.	1.8	174
232	Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Annals of Biomedical Engineering, 2020, 48, 2002-2027.	1.3	33
233	Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death and Differentiation, 2021, 28, 52-67.	5.0	104
234	Cellular complexity in brain organoids: Current progress and unsolved issues. Seminars in Cell and Developmental Biology, 2021, 111, 32-39.	2.3	32
235	Deconstructing and reconstructing the human brain with regionally specified brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 40-51.	2.3	21
236	Bioengineering tissue morphogenesis and function in human neural organoids. Seminars in Cell and Developmental Biology, 2021, 111, 52-59.	2.3	22
237	<i>gdnf</i> affects early diencephalic dopaminergic neuron development through regulation of differentiationâ€associated transcription factors in zebrafish. Journal of Neurochemistry, 2021, 156, 481-498.	2.1	7
238	Rethinking embryology in vitro: A synergy between engineering, data science and theory. Developmental Biology, 2021, 474, 48-61.	0.9	15

#	Article	IF	CITATIONS
239	Using multi-organ culture systems to study Parkinson's disease. Molecular Psychiatry, 2021, 26, 725-735.	4.1	16
240	Brain organoids: A new frontier of human neuroscience research. Seminars in Cell and Developmental Biology, 2021, 111, 1-3.	2.3	3
241	Taming human brain organoids one cell at a time. Seminars in Cell and Developmental Biology, 2021, 111, 23-31.	2.3	14
242	Trends and challenges in modeling glioma using 3D human brain organoids. Cell Death and Differentiation, 2021, 28, 15-23.	5.0	29
243	Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Current Opinion in Neurobiology, 2021, 66, 166-177.	2.0	5
244	Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells. Cellular and Molecular Life Sciences, 2021, 78, 2081-2094.	2.4	8
245	From <scp>iPS</scp> Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Movement Disorders, 2021, 36, 832-841.	2.2	10
246	Human mini-brain models. Nature Biomedical Engineering, 2021, 5, 11-25.	11.6	49
247	Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nature Protocols, 2021, 16, 579-602.	5.5	123
248	Modeling brain development and diseases with human cerebral organoids. Current Opinion in Neurobiology, 2021, 66, 103-115.	2.0	15
249	Generation and Maintenance of Homogeneous Human Midbrain Organoids. Bio-protocol, 2021, 11, e4049.	0.2	4
250	Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS ONE, 2021, 16, e0245685.	1.1	55
251	Human Striatal Organoids Derived from Pluripotent Stem Cells Recapitulate Striatal Development and Compartments. SSRN Electronic Journal, 0, , .	0.4	0
252	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	10.6	35
253	Production of Phenotypically Uniform Human Cerebral Organoids from Pluripotent Stem Cells. Bio-protocol, 2021, 11, e3985.	0.2	4
254	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
255	Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Frontiers in Neuroscience, 2020, 14, 622137.	1.4	43
256	Use of induced pluripotent stem cells and cerebral organoids to profile Zika virus infection: Features and findings. , 2021, , 85-95.		0

#	Article	IF	CITATIONS
257	Use of human induced pluripotent stem cells (hiPSC)-derived neuronal models to study the neuropathogenesis of the protozoan parasite, Toxoplasma gondii. , 2021, , 215-237.		0
258	Studying non–cell-autonomous neurodegeneration in Parkinson's disease with induced pluripotent stem cells. , 2021, , 251-276.		0
259	The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Developmental Neuroscience, 2021, 43, 73-83.	1.0	40
260	Differentiation of Stem Cells into Neuronal Lineage: In Vitro Cell Culture and In Vivo Transplantation in Animal Models. Pancreatic Islet Biology, 2021, , 73-102.	0.1	0
261	Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson's disease modelling and drug screening. Analyst, The, 2021, 146, 2358-2367.	1.7	22
262	Induced pluripotent stem cells for modeling of Rett Syndrome. , 2021, , 171-216.		Ο
263	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	7
264	Engineering organoids. Nature Reviews Materials, 2021, 6, 402-420.	23.3	497
265	An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513.	1.8	2
266	Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked <i>DNAJC6</i> mutations. Science Advances, 2021, 7, .	4.7	52
267	The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Molecular Pharmacology, 2021, 99, 256-265.	1.0	9
268	How well do brain organoids capture your brain?. IScience, 2021, 24, 102063.	1.9	27
269	3D organotypic cell structures for drug development and Microorganism-Host interaction research. Research Results in Pharmacology, 2021, 7, 47-64.	0.1	0
270	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances, 2021, 7, .	4.7	128
271	Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sciences, 2021, 11, 373.	1.1	19
272	Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Engineering - Part C: Methods, 2021, 27, 213-224.	1.1	15
273	Mass spectrometry analysis of tau and amyloidâ€beta in iPSCâ€derived models of Alzheimer's disease and dementia. Journal of Neurochemistry, 2021, 159, 305-317.	2.1	8
274	Organoid As a Novel Technology for Disease Modeling. Journal of Basic and Clinical Health Sciences, 2021, 5, 94-101.	0.2	0

#	Article	IF	CITATIONS
275	Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. International Journal of Molecular Sciences, 2021, 22, 3381.	1.8	11
276	Enfermedad de Parkinson: actualización de estudios preclÃnicos con el uso de células troncales pluripotentes inducidas. NeurologÃa, 2021, , .	0.3	1
277	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	2.7	22
278	Regional specification and complementation with non-neuroectodermal cells in human brain organoids. Journal of Molecular Medicine, 2021, 99, 489-500.	1.7	14
279	Neurorepair and Regeneration of the Brain: A Decade of Bioscaffolds and Engineered Microtissue. Frontiers in Cell and Developmental Biology, 2021, 9, 649891.	1.8	21
280	3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomedical Engineering, 2021, 3, 6.	1.7	27
281	Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. International Journal of Molecular Sciences, 2021, 22, 4334.	1.8	14
283	Using organoids to study human brain development and evolution. Developmental Neurobiology, 2021, 81, 608-622.	1.5	5
284	Toward Studying Cognition in a Dish. Trends in Cognitive Sciences, 2021, 25, 294-304.	4.0	7
285	Patientâ€5pecific Organoid and Organâ€onâ€a hip: 3D Cell ulture Meets 3D Printing and Numerical Simulation. Advanced Biology, 2021, 5, e2000024.	1.4	31
286	Applications of brain organoids in neurodevelopment and neurological diseases. Journal of Biomedical Science, 2021, 28, 30.	2.6	44
287	Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants, 2021, 10, 824.	2.2	20
288	Three-dimensional in vitro tissue culture models of brain organoids. Experimental Neurology, 2021, 339, 113619.	2.0	11
289	Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 640212.	1.8	19
291	Emerging Brainâ€Pathophysiologyâ€Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brainsâ€onâ€aâ€Chip. Advanced Healthcare Materials, 2021, 10, e2002119.	3.9	27
292	Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell and Bioscience, 2021, 11, 99.	2.1	11
293	Organoids: A new approach in toxicity testing of nanotherapeutics. Journal of Applied Toxicology, 2022, 42, 52-72.	1.4	21
294	Unravelling Pathophysiology of Neurological and Psychiatric Complications of COVID-19 Using Brain Organoids. Neuroscientist, 2023, 29, 30-40.	2.6	24

#	Article	IF	CITATIONS
295	Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. Biophysics Reviews, 2021, 2, .	1.0	4
297	Defense of COVID-19 by Human Organoids. Phenomics, 2021, 1, 113-128.	0.9	8
298	Chemical and Biological Molecules Involved in Differentiation, Maturation, and Survival of Dopaminergic Neurons in Health and Parkinson's Disease: Physiological Aspects and Clinical Implications. Biomedicines, 2021, 9, 754.	1.4	10
299	Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells, 2021, 10, 1366.	1.8	9
300	From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Frontiers in Physiology, 2021, 12, 621970.	1.3	22
301	High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells. STAR Protocols, 2021, 2, 100463.	0.5	12
302	Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Research and Therapy, 2021, 12, 430.	2.4	22
303	Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 2022, 203, 465-477.	1.9	15
304	Application of Ex-Vivo/3D Organoid Models in COVID-19 Research. , 0, , .		0
305	3D organoids derived from the small intestine: An emerging tool for drug transport research. Acta Pharmaceutica Sinica B, 2021, 11, 1697-1707.	5.7	14
306	The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. International Journal of Molecular Sciences, 2021, 22, 7667.	1.8	34
307	Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Frontiers in Molecular Neuroscience, 2021, 14, 715054.	1.4	19
308	Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 682272.	1.8	23
309	The Gut-Brain Axis in Inflammatory Bowel Disease—Current and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 8870.	1.8	36
310	Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nature Communications, 2021, 12, 4730.	5.8	164
311	Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. International Journal of Molecular Sciences, 2021, 22, 9315.	1.8	17
312	Generation of caudal-type serotonin neurons and hindbrain-fate organoids from hPSCs. Stem Cell Reports, 2021, 16, 1938-1952.	2.3	29
313	Brain Organoids: Filling the Need for a Human Model of Neurological Disorder. Biology, 2021, 10, 740.	1.3	12

#	Article	IF	CITATIONS
314	The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biological Chemistry, 2022, 403, 3-26.	1.2	11
315	Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research. Translational Neurodegeneration, 2021, 10, 27.	3.6	14
316	The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Frontiers in Neuroscience, 2021, 15, 674563.	1.4	18
317	Generation of hiPSC-Derived Functional Dopaminergic Neurons in Alginate-Based 3D Culture. Frontiers in Cell and Developmental Biology, 2021, 9, 708389.	1.8	13
318	Lewy Body–like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and αâ€6ynuclein Mutations. Annals of Neurology, 2021, 90, 490-505.	2.8	43
319	Pre-clinical Investigation of Rett Syndrome Using Human Stem Cell-Based Disease Models. Frontiers in Neuroscience, 2021, 15, 698812.	1.4	10
320	Advancing models of neural development with biomaterials. Nature Reviews Neuroscience, 2021, 22, 593-615.	4.9	60
321	Next-Generation Human Cerebral Organoids as Powerful Tools To Advance NeuroHIV Research. MBio, 2021, 12, e0068021.	1.8	10
322	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
323	Deciphering and reconstitution of positional information in the human brain development. Cell Regeneration, 2021, 10, 29.	1.1	4
324	iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Molecular Psychiatry, 2021, , .	4.1	3
325	Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International, 2021, 2021, 1-16.	1.2	10
326	Midbrain organoids with an <i>SNCA</i> gene triplication model key features of synucleinopathy. Brain Communications, 2021, 3, fcab223.	1.5	37
328	The intracellular milieu of Parkinson's disease patient brain cells modulates alpha-synuclein protein aggregation. Acta Neuropathologica Communications, 2021, 9, 153.	2.4	2
329	Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biological Psychiatry, 2021, 90, 362-372.	0.7	23
330	Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. Advanced Materials, 2021, 33, e2101966.	11.1	60
331	Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease. Progress in Neurobiology, 2021, 204, 102086.	2.8	26
332	Advances in neural organoid systems and their application in neurotoxicity testing of environmental chemicals. Genes and Environment, 2021, 43, 39.	0.9	7

#	Article	IF	CITATIONS
333	Combining Automated Organoid Workflows with Artificial Intelligenceâ€Based Analyses: Opportunities to Build a New Generation of Interdisciplinary Highâ€Throughput Screens for Parkinson's Disease and Beyond. Movement Disorders, 2021, 36, 2745-2762.	2.2	10
334	Generating Cerebral Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2389, 177-199.	0.4	5
335	Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Frontiers in Cell and Developmental Biology, 2021, 9, 696668.	1.8	22
336	Applications of Brain Organoids for Infectious Diseases. Journal of Molecular Biology, 2022, 434, 167243.	2.0	17
337	Human neural organoids: Models for developmental neurobiology and disease. Developmental Biology, 2021, 478, 102-121.	0.9	18
338	Heart organoids and tissue models for modeling development and disease. Seminars in Cell and Developmental Biology, 2021, 118, 119-128.	2.3	23
339	Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiology of Disease, 2021, 159, 105494.	2.1	7
340	Velvet antler polypeptide-loaded polyvinyl alcohol-sodium alginate hydrogels promote the differentiation of neural progenitor cells in 3D towards oligodendrocytes in vitro. European Journal of Pharmaceutical Sciences, 2021, 167, 106003.	1.9	4
341	Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. Journal of Tissue Engineering, 2021, 12, 204173142098529.	2.3	6
342	Investigating the pathophysiology of anorexia nervosa using induced pluripotent stem cells. , 2021, , 293-323.		0
343	Human induced pluripotent stem cell-based studies; a new route toward modeling autism spectrum disorders. , 2021, , 37-81.		0
344	The construction of 3D cognitive networks from iPSCs through precise spatiotemporal specification. , 2021, , 45-76.		0
345	Pluripotent stem cell–derived brain-region-specific organoids. , 2021, , 1-43.		0
346	Types and Classification of Stem Cells. Pancreatic Islet Biology, 2021, , 25-49.	0.1	2
347	Vascularization of Human Brain Organoids. Stem Cells, 2021, 39, 1017-1024.	1.4	63
348	Three-Dimensional Models for Studying Neurodegenerative and Neurodevelopmental Diseases. Advances in Experimental Medicine and Biology, 2020, 1195, 35-41.	0.8	1
349	Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. Advances in Neurobiology, 2020, 25, 237-257.	1.3	6
356	Brain organoids and insights on human evolution. F1000Research, 2019, 8, 760.	0.8	7

#	Article	IF	CITATIONS
357	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	10
358	Past, Present, and Future of Brain Organoid Technology. Molecules and Cells, 2019, 42, 617-627.	1.0	63
359	A Cure for Sanfilippo Syndrome? A Summary of Current Therapeutic Approaches and their Promise. Medical Research Archives, 2020, 8, .	0.1	23
360	Drug discovery in psychopharmacology: from 2D models to cerebral organoids. Dialogues in Clinical Neuroscience, 2019, 21, 203-224.	1.8	9
361	Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regeneration Research, 2019, 14, 757.	1.6	48
362	Spinal cord organoids add an extra dimension to traditional motor neuron cultures. Neural Regeneration Research, 2019, 14, 1515.	1.6	17
363	Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. World Journal of Stem Cells, 2020, 12, 25-34.	1.3	22
364	Patient-specific pluripotent stem cell-based Parkinson's disease models showing endogenous alpha-synuclein aggregation. BMB Reports, 2019, 52, 349-359.	1.1	11
365	Addressing the ethical issues raised by synthetic human entities with embryo-like features. ELife, 2017, 6, .	2.8	77
366	Engineering induction of singular neural rosette emergence within hPSC-derived tissues. ELife, 2018, 7,	2.8	81
367	A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. ELife, 2020, 9, .	2.8	117
369	Unraveling Human Brain Development and Evolution Using Organoid Models. Frontiers in Cell and Developmental Biology, 2021, 9, 737429.	1.8	9
370	Analysis of signal components < 500ÂHz in brain organoids coupled to microelectrode arrays: A reliable test-bed for preclinical seizure liability assessment of drugs and screening of antiepileptic drugs. Biochemistry and Biophysics Reports, 2021, 28, 101148.	0.7	10
371	Three-dimensionalÂculture models to study glioblastoma — current trends and future perspectives. Current Opinion in Pharmacology, 2021, 61, 91-97.	1.7	11
373	Systems Biology Perspectives for Studying Neurodevelopmental Events. , 0, , .		0
376	Human Forebrain Organoids from Induced Pluripotent Stem Cells: A Novel Approach to Model Repair of Ionizing Radiation-Induced DNA Damage in Human Neurons. Radiation Research, 2020, 194, 191.	0.7	10
378	Methods for Controlled Induction of Singular Rosette Cytoarchitecture Within Human Pluripotent Stem Cell-Derived Neural Multicellular Assemblies. Methods in Molecular Biology, 2021, 2258, 193-203.	0.4	1
380	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31

#	Article	IF	CITATIONS
382	Generating CNS organoids from human induced pluripotent stem cells for modeling neurological disorders. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 101-111.	0.8	20
383	Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplantation, 2021, 30, 9636897211017829.	1.2	0
384	Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplantation, 2021, 30, 096368972110178.	1.2	5
385	Modeling mitochondrial encephalopathy due to MELAS/Leigh overlap syndrome using induced pluripotent stem cells. , 2022, , 111-125.		0
386	A proteinâ€centric view of in vitro biological model systems for schizophrenia. Stem Cells, 2021, 39, 1569-1578.	1.4	0
387	Organoid Technology: Current Standing and Future Perspectives. Stem Cells, 2021, 39, 1625-1649.	1.4	29
388	Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome. Biomedicines, 2021, 9, 1741.	1.4	2
389	Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 767457.	1.8	0
390	Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens, 2021, 10, 1510.	1.2	5
391	In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids. International Journal of Environmental Research and Public Health, 2021, 18, 12431.	1.2	5
392	Human brain organogenesis: Toward a cellular understanding of development and disease. Cell, 2022, 185, 42-61.	13.5	97
393	Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconjugate Journal, 2021, , 1.	1.4	1
394	Pluripotent Stem Cell Derived Neurons as In Vitro Models for Studying Autosomal Recessive Parkinson's Disease (ARPD): PLA2G6 and Other Gene Loci. Advances in Experimental Medicine and Biology, 2021, , 115-133.	0.8	3
395	Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports, 2022, 17, 14-34.	2.3	35
396	Engineered models for studying blood-brain-barrier-associated brain physiology and pathology. Organoid, 0, 1, e10.	0.0	2
397	è,è"类噓å®~çš"ç"ç©¶èį›å±•åŠåº"ç". Scientia Sinica Vitae, 2021, , .	0.1	0
399	Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cellular and Molecular Life Sciences, 2022, 79, 78.	2.4	12
400	Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life, 2022, 74, 812-825.	1.5	4

#	Article	IF	CITATIONS
401	Bioengineering of brain organoids: Advancements and challenges. , 2022, , 399-414.		2
402	Challenges of Organoid Research. Annual Review of Neuroscience, 2022, 45, 23-39.	5.0	59
403	Modeling Somatic Mutations Associated With Neurodevelopmental Disorders in Human Brain Organoids. Frontiers in Molecular Neuroscience, 2021, 14, 787243.	1.4	4
404	Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development—Current State-of-the-Art and Future Perspectives. Pharmacological Reviews, 2022, 74, 141-206.	7.1	23
405	Biomaterials-based strategies for <i>in vitro</i> neural models. Biomaterials Science, 2022, 10, 1134-1165.	2.6	7
406	Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders. Stem Cell Reports, 2022, 17, 187-210.	2.3	13
407	Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: techniques, drug discovery, and biomedical applications. , 2022, , 179-229.		0
408	A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
409	Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Frontiers in Neurology, 2021, 12, 786835.	1.1	3
410	Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Reviews and Reports, 2022, 18, 792-820.	1.7	25
411	Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids – Progress and Perspective. Journal of Molecular Biology, 2022, 434, 167386.	2.0	15
412	A review on 3D printing functional brain model. Biomicrofluidics, 2022, 16, 011501.	1.2	11
413	Spotting-based differentiation of functional dopaminergic progenitors from human pluripotent stem cells. Nature Protocols, 2022, , .	5.5	6
414	Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protocols, 2022, 3, 101173.	0.5	4
415	Toward Understanding Neurodegeneration Using Brain Organoids. Pancreatic Islet Biology, 2022, , 91-107.	0.1	0
416	Neural Organoids, a Versatile Model for Neuroscience. Molecules and Cells, 2022, 45, 53-64.	1.0	6
417	Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. International Journal of Stem Cells, 2022, 15, 41-59.	0.8	11
418	Region Specific Brain Organoids to Study Neurodevelopmental Disorders. International Journal of Stem Cells, 2022, 15, 26-40.	0.8	14

#	Article	IF	CITATIONS
419	Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells, 2022, 11, 1120.	1.8	5
420	Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids. International Journal of Molecular Sciences, 2022, 23, 3877.	1.8	8
421	Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia, 2022, 70, 1267-1288.	2.5	51
422	An approach to measuring protein turnover in human induced pluripotent stem cell organoids by mass spectrometry. Methods, 2022, 203, 17-27.	1.9	5
423	3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell and Bioscience, 2022, 12, 39.	2.1	23
424	Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicology and Environmental Safety, 2022, 235, 113429.	2.9	32
425	Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiology of Disease, 2022, 169, 105719.	2.1	12
426	Bioethics in human embryology: the double-edged sword of embryo research. Systems Biology in Reproductive Medicine, 2022, 68, 169-179.	1.0	3
427	Patterning of brain organoids derived from human pluripotent stem cells. Current Opinion in Neurobiology, 2022, 74, 102536.	2.0	13
428	Hydrogel Mechanics Influence the Growth and Development of Embedded Brain Organoids. ACS Applied Bio Materials, 2022, 5, 214-224.	2.3	23
429	Assessment of Normal Tissue Radiosensitivity by Evaluating DNA Damage and Repair Kinetics in Human Brain Organoids. International Journal of Molecular Sciences, 2021, 22, 13195.	1.8	3
430	Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nature Communications, 2021, 12, 7302.	5.8	39
431	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	1.4	5
432	Media portrayal of ethical and social issues in brain organoid research. Philosophy, Ethics, and Humanities in Medicine, 2022, 17, 8.	0.7	15
433	Current progress in brain organoid technology. Scientia Sinica Vitae, 2023, 53, 161-174.	0.1	1
461	Dysfunction of vesicular storage in young-onset Parkinson's patient-derived dopaminergic neurons and organoids revealed by single cell electrochemical cytometry. Chemical Science, 2022, 13, 6217-6223.	3.7	8
462	Advances in the Application of Induced Pluripotent Stem Cells in Alzheimer's Disease and Parkinson's Disease. Current Stem Cell Research and Therapy, 2023, 18, 154-162.	0.6	1
463	Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine. , 0, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
464	To Model Developmental Risk in a Dish. American Journal of Psychiatry, 2022, 179, 319	∂-321.	4.0	2
465	Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell 2022, 29, 722-743.	Stem Cell,	5.2	19
467	Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Mode and Muscle Regeneration. International Journal of Molecular Sciences, 2022, 23, 5108	l Myogenesis	1.8	10
468	The uses of 3D human brain organoids for neurotoxicity evaluations: A review. NeuroTo 2022, 91, 84-93.	oxicology,	1.4	18
469	Cell-line dependency in cerebral organoid induction: cautionary observations in Alzheir patient-derived induced pluripotent stem cells. Molecular Brain, 2022, 15, 46.	ner's disease	1.3	1
470	Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson Research and Therapeutic Development. Frontiers in Neuroscience, 2022, 16, .	's Disease	1.4	4
471	Redox modulation of stress resilience by Crocus sativus L. for potential neuroprotectiv anti-neuroinflammatory applications in brain disorders: From molecular basis to therap of Ageing and Development, 2022, 205, 111686.	e and y. Mechanisms	2.2	10
472	Across Dimensions: Developing 2D and 3D Human iPSC-Based Models of Fragile X Syn 11, 1725.	drome. Cells, 2022,	1.8	3
473	Understanding the interplay of membrane trafficking, cell surface mechanics, and sten differentiation. Seminars in Cell and Developmental Biology, 2023, 133, 123-134.	ı cell	2.3	3
474	Human organoids in basic research and clinical applications. Signal Transduction and T Therapy, 2022, 7, .	argeted	7.1	83
475	Application and prospects of high-throughput screening for <i>in vitro </i> neurogenes Journal of Stem Cells, 2022, 14, 393-419.	iis. World	1.3	1
476	Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Oppo Frontiers in Molecular Neuroscience, 0, 15, .	ortunities.	1.4	5
477	Promising Strategies for the Development of Advanced In Vitro Models with High Pred Ischaemic Stroke Research. International Journal of Molecular Sciences, 2022, 23, 714	ictive Power in 0.	1.8	4
478	Functional imaging of brain organoids using high-density microelectrode arrays. MRS E 47, 530-544.	Bulletin, 2022,	1.7	6
479	Modeling infectious diseases of the central nervous system with human brain organoic Translational Research, 2022, 250, 18-35.	łs.	2.2	2
480	Neuromelanin granules of the substantia nigra: proteomic profile provides links to tyrc hydroxylase, stress granules and lysosomes. Journal of Neural Transmission, 2022, 129	sine , 1257-1270.	1.4	10
481	Variations in in vitro toxicity of silica nanoparticles according to scaffold type in a 3D c using a micropillar/microwell chip platform. Sensors and Actuators B: Chemical, 2022,	ulture system 369, 132328.	4.0	3
482	Interfacing brain organoids with precision medicine and machine learning. Cell Reports Science, 2022, 3, 100974.	Physical	2.8	6

#	Article	IF	CITATIONS
483	Stem Cell Replacement Therapies in Parkinson's Disease. Annals of the Academy of Medicine, Singapore, 2019, 48, 112-114.	0.2	2
484	Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Frontiers in Virology, 0, 2,	0.7	3
485	CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research, 2022, 2022, .	2.8	3
486	Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells International, 2022, 2022, 1-20.	1.2	5
488	Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. Biochip Journal, 2022, 16, 246-254.	2.5	7
489	The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiology of Disease, 2022, 173, 105837.	2.1	8
491	Modeling Human Organ Development and Diseases With Fetal Tissue–Derived Organoids. Cell Transplantation, 2022, 31, 096368972211244.	1.2	2
492	Human Excitatory Cortical Neurospheroids Coupled to High-Density MEAs: A Valid Platform for Functional Tests. SSRN Electronic Journal, 0, , .	0.4	0
493	Glioblastoma organoid technology: an emerging preclinical models for drug discovery. Organoid, 0, 2, e7.	0.0	1
495	Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells. Current Protocols, 2022, 2, .	1.3	10
496	Micro/nano devices for integration with human brain organoids. Biosensors and Bioelectronics, 2022, 218, 114750.	5.3	3
497	Microfluidics for Neuronal Cell and Circuit Engineering. Chemical Reviews, 2022, 122, 14842-14880.	23.0	22
498	Immunocompetent brain organoids—microglia enter the stage. Progress in Biomedical Engineering, 2022, 4, 042002.	2.8	3
499	Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells, 2022, 11, 2803.	1.8	14
500	Sevoflurane promotes premature differentiation of dopaminergic neurons in hiPSC-derived midbrain organoids. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
501	Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. Fundamental Research, 2022, 2, 918-928.	1.6	1
503	The Brain Organoid Technology: Diversity of Protocols and Challenges. , 0, , .		0
505	Cerebral Organoids in Developmental Neuroscience. , 2022, , 551-567.		0

#	Article	IF	CITATIONS
506	Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics, 2022, 14, 2301.	2.0	14
507	Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	4.9	49
508	Targeting the inflammasome in Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	6
509	Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biological Psychiatry, 2023, 93, 642-650.	0.7	9
510	Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research. , 2022, 1, .		1
511	Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines, 2022, 10, 2649.	1.4	4
512	Brain organoids. , 2023, , 121-151.		2
513	Human models as new tools for drug development and precision medicine. , 2023, , 155-171.		0
514	Neural Stem Cells. , 2022, , 821-847.		0
515	High throughput 3D gel-based neural organotypic model for cellular assays using fluorescence biosensors. Communications Biology, 2022, 5, .	2.0	2
516	MAX: a simple, affordable, and rapid tissue clearing reagent for 3D imaging of wide variety of biological specimens. Scientific Reports, 2022, 12, .	1.6	0
517	Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and Neurodegeneration with Brain Iron Accumulation disorders. Neurobiology of Disease, 2022, 175, 105920.	2.1	25
518	Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biology, 2022, 20, e3001868.	2.6	8
519	Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. Advanced NanoBiomed Research, 2022, 2, .	1.7	9
520	Future regenerative medicine developments and their therapeutic applications. Biomedicine and Pharmacotherapy, 2023, 158, 114131.	2.5	10
521	A review of protocols for brain organoids and applications for disease modeling. STAR Protocols, 2023, 4, 101860.	0.5	14
522	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
523	The role of tyrosine hydroxylase–dopamine pathway in Parkinson's disease pathogenesis. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8

#	Article	IF	CITATIONS
524	Enhanced replication of SARS-CoV-2 Omicron BA.2 in human forebrain and midbrain organoids. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	13
525	Recent Development of Brain Organoids for Biomedical Application. Macromolecular Bioscience, 2023, 23, .	2.1	2
526	A Comprehensive Update of Cerebral Organoids between Applications and Challenges. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-10.	1.9	2
527	Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. Biomicrofluidics, 2022, 16, .	1.2	8
528	Recent Advances in Brain Organoid Technology for Human Brain Research. ACS Applied Materials & Interfaces, 2023, 15, 200-219.	4.0	6
529	Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. Reproductive Medicine, 2022, 3, 303-319.	0.3	0
530	Present and Future Modeling of Human Psychiatric Connectopathies With Brain Organoids. Biological Psychiatry, 2023, 93, 606-615.	0.7	5
531	Development and Application of Brain Region–Specific Organoids for Investigating Psychiatric Disorders. Biological Psychiatry, 2023, 93, 594-605.	0.7	10
532	Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
533	Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids. Organoids, 2023, 2, 20-36.	1.8	4
535	From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. International Journal of Molecular Sciences, 2023, 24, 2523.	1.8	5
536	Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. , 2023, 1, .		49
537	Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification. International Journal of Molecular Sciences, 2023, 24, 6645.	1.8	0
538	Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosensors and Bioelectronics, 2023, 225, 115100.	5.3	5
539	Functional bioengineered models of the central nervous system. , 2023, 1, 252-270.		7
540	Human Brain Organoids and Consciousness: Moral Claims and Epistemic Uncertainty. Organoids, 2023, 2, 50-65.	1.8	3
541	Embryoid Body Cells from Human Embryonic Stem Cells Overexpressing Dopaminergic Transcription Factors Survive and Initiate Neurogenesis via Neural Rosettes in the Substantia Nigra. Brain Sciences, 2023, 13, 329.	1.1	0
542	Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells, 2023, 12, 625.	1.8	6

#	Article	IF	CITATIONS
543	Generation and characterization of NGLY1 patient-derived midbrain organoids. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
544	Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	0
545	Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophrenia Research, 2023, , .	1.1	1
546	Human brain organoid code of conduct. Frontiers in Molecular Medicine, 0, 3, .	0.6	3
547	Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering, 2023, 10, 449.	1.6	0
548	Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nature Communications, 2023, 14, .	5.8	9
550	Human brain microphysiological systems in the study of neuroinfectious disorders. Experimental Neurology, 2023, 365, 114409.	2.0	2
551	The potential of in vitro neuronal networks cultured on micro electrode arrays for biomedical research. Progress in Biomedical Engineering, 2023, 5, 032002.	2.8	4
554	iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. Journal of NeuroVirology, 2023, 29, 121-134.	1.0	5
566	Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry, 2023, 13, .	2.4	3
570	Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery, 2023, 9, .	2.0	5
578	The dopamine hypothesis of autism spectrum disorder: A comprehensive analysis of the evidence. International Review of Neurobiology, 2023, , 1-42.	0.9	2
580	Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
599	Towards improved screening of toxins for Parkinson's risk. Npj Parkinson's Disease, 2023, 9, .	2.5	0
604	Genomic and transcriptomic applications in neural stem cell therapeutics. , 2024, , 215-230.		0
615	Gliomas: a reflection of temporal gliogenic principles. Communications Biology, 2024, 7, .	2.0	0
617	Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Molecular Neurobiology, 0, , .	1.9	0