Glycosaminoglycanâ€Based Biohybrid Hydrogels: A Sw Multifunctional Biomaterials

Advanced Materials 28, 8861-8891 DOI: 10.1002/adma.201601908

Citation Report

#	Article	IF	CITATIONS
1	StarPEGâ€Heparin Hydrogels to Protect and Sustainably Deliver ILâ€4. Advanced Healthcare Materials, 2016, 5, 3157-3164.	3.9	51
2	<i>50th Anniversary Perspective</i> : Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules, 2017, 50, 483-502.	2.2	55
3	Cell-instructive starPEG-heparin-collagen composite matrices. Acta Biomaterialia, 2017, 53, 70-80.	4.1	19
5	Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annual Review of Biomedical Engineering, 2017, 19, 1-26.	5.7	227
6	Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Science Translational Medicine, 2017, 9, .	5.8	239
7	Mechanical Adaptability of the MMPâ€Responsive Film Improves the Functionality of Endothelial Cell Monolayer. Advanced Healthcare Materials, 2017, 6, 1601410.	3.9	29
8	Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties. ACS Applied Materials & Interfaces, 2017, 9, 20895-20903.	4.0	136
9	Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. Journal of Materials Chemistry B, 2017, 5, 3103-3106.	2.9	19
10	Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules, 2017, 18, 316-330.	2.6	333
11	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
12	Solventâ€Assisted Micromolding of Biohybrid Hydrogels to Maintain Human Hematopoietic Stem and Progenitor Cells Ex Vivo. Advanced Materials, 2017, 29, 1703489.	11.1	21
13	In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials, 2017, 148, 54-68.	5.7	74
14	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Advanced Materials, 2017, 29, 1702243.	11.1	303
15	Bottomâ€Up Structuring and Siteâ€Selective Modification of Hydrogels Using a Twoâ€Photon [2+2] Cycloaddition of Maleimide. Advanced Materials, 2017, 29, 1603327.	11.1	15
16	4.25 Drug Delivery via Heparin Conjugates â~†. , 2017, , 464-471.		0
17	The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals, 2017, 10, 54.	1.7	30
18	Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials, 2018, 164, 22-37.	5.7	78
19	Supramolecular Platform Stabilizing Growth Factors. Biomacromolecules, 2018, 19, 2610-2617.	2.6	11

#	Article	IF	Citations
20	Microparticle-mediated sequestration of cell-secreted proteins to modulate chondrocytic differentiation. Acta Biomaterialia, 2018, 68, 125-136.	4.1	22
21	Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomaterialia, 2018, 74, 56-73.	4.1	65
22	Biosynthesis, Microstructural Characterisations and Investigation of In-Vitro Mutagenic and Eco-Toxicological Response of a Novel Microbial Exopolysaccharide Based Biopolymer. Journal of Polymers and the Environment, 2018, 26, 365-374.	2.4	6
23	Exploring Structure–Property Relationships of GAGs to Tailor ECM-Mimicking Hydrogels. Polymers, 2018, 10, 1376.	2.0	6
24	Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94.		2
25	Minimum structural requirements for BMP-2-binding of heparin oligosaccharides. Biomaterials, 2018, 184, 41-55.	5.7	38
26	E-Beam Nanostructuring and Direct Click Biofunctionalization of Thiol–Ene Resist. ACS Nano, 2018, 12, 9940-9946.	7.3	36
27	3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity. Developmental Cell, 2018, 46, 85-101.e8.	3.1	118
28	Multifunctional Hydrogels. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	0
29	Biomimetic tumor microenvironments based on collagen matrices. Biomaterials Science, 2018, 6, 2009-2024.	2.6	63
30	In situ-forming, cell-instructive hydrogels based on glycosaminoglycans with varied sulfation patterns. Biomaterials, 2018, 181, 227-239.	5.7	38
31	Multicomponent self-assembly: Supramolecular design of complex hydrogels for biomedical applications. , 2018, , 371-397.		8
32	Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials, 2018, 174, 17-30.	5.7	61
33	Covalent Binding of Maleic Anhydride Copolymer Monolayers to Polyacrylamide Hydrogels. Macromolecular Chemistry and Physics, 2018, 219, 1800206.	1.1	3
34	Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. Journal of Materials Chemistry B, 2018, 6, 4714-4730.	2.9	124
35	Synthetic Polymers. , 2019, , 559-590.		45
36	Elucidating the Ordering in Self-Assembled Glycocalyx Mimicking Supramolecular Copolymers in Water. Journal of the American Chemical Society, 2019, 141, 13877-13886.	6.6	47
37	Fully Synthetic Heparan Sulfate-Based Neural Tissue Construct That Maintains the Undifferentiated State of Neural Stem Cells. ACS Chemical Biology, 2019, 14, 1921-1929.	1.6	11

	CITATION REF	OKI	
#	Article	IF	CITATIONS
38	Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. Journal of Materials Chemistry B, 2019, 7, 5142-5155.	2.9	73
39	Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. Journal of Controlled Release, 2019, 313, 131-147.	4.8	80
40	Temperature-Induced Mechanomodulation of Interpenetrating Networks of Star Poly(ethylene) Tj ETQq0 0 0 rgBT 11, 41862-41874.	/Overlock 4.0	10 Tf 50 6 12
41	Bioinspired Self-assembling Peptide Hydrogel with Proteoglycan-assisted Growth Factor Delivery for Therapeutic Angiogenesis. Theranostics, 2019, 9, 7072-7087.	4.6	39
43	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	11.8	120
44	Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomaterials Science and Engineering, 2019, 5, 5128-5138.	2.6	10
45	Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 6320-6341.	2.6	33
46	Expanded skeletal stem and progenitor cells promote and participate in induced bone regeneration at subcritical BMP-2 dose. Biomaterials, 2019, 217, 119278.	5.7	29
47	High resolution bioprinting of multi-component hydrogels. Biofabrication, 2019, 11, 045008.	3.7	42
48	Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dental Materials, 2019, 35, 990-1006.	1.6	48
49	Emerging Trends in Informationâ€Ðriven Engineering of Complex Biological Systems. Advanced Materials, 2019, 31, 1806898.	11.1	11
50	Charge-tuning of glycosaminoglycan-based hydrogels to program cytokine sequestration. Faraday Discussions, 2019, 219, 244-251.	1.6	28
51	Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cells. Biomaterials, 2019, 193, 47-57.	5.7	71
52	Dextranâ€based hydrogel with enhanced mechanical performance via covalent and nonâ€covalent crossâ€linking units carrying adiposeâ€derived stem cells toward vascularized bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 1120-1131.	2.1	12
53	Multifunctional Hydrogels. Polymers and Polymeric Composites, 2019, , 375-403.	0.6	0
54	Bioinspired glycosaminoglycan hydrogels via click chemistry for 3D dynamic cell encapsulation. Journal of Applied Polymer Science, 2019, 136, 47212.	1.3	19
55	StarPEG/heparin-hydrogel based <i>in vivo</i> engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication, 2019, 11, 015001.	3.7	20
56	How Cross-Linking Mechanisms of Methacrylated Gellan Gum Hydrogels Alter Macrophage Phenotype. ACS Applied Bio Materials, 2019, 2, 217-225.	2.3	15

#	Article	IF	CITATIONS
57	Gelatinâ€polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering and Translational Medicine, 2019, 4, 96-115.	3.9	249
58	Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 442-451.	1.8	15
59	Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials, 2020, 228, 119557.	5.7	29
60	Biohybrid Design Gets Personal: New Materials for Patient‧pecific Therapy. Advanced Materials, 2020, 32, e1901969.	11.1	21
61	Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. ACS Applied Materials & amp; Interfaces, 2020, 12, 4343-4357.	4.0	107
62	Multiphasic <i>microgel-in-gel</i> materials to recapitulate cellular mesoenvironments <i>in vitro</i> . Biomaterials Science, 2020, 8, 101-108.	2.6	20
63	Glycosaminoglycans from fresh water fish processing discard - Isolation, structural characterization, and osteogenic activity. International Journal of Biological Macromolecules, 2020, 145, 558-567.	3.6	14
64	Fabrication of a Luminescent Supramolecular Hydrogel Based on the AIE Strategy of Gold Nanoclusters and their Application as a Luminescence Switch. Journal of Physical Chemistry C, 2020, 124, 23844-23851.	1.5	18
65	Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 159.	1.1	19
66	New gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization. International Journal of Biological Macromolecules, 2020, 162, 1653-1667.	3.6	13
67	CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials, 2020, 259, 120313.	5.7	43
68	Natural Materials. , 2020, , 361-375.		0
69	Biomatrices that mimic the cancer extracellular environment. , 2020, , 91-106.		2
70	A Novel Synthetic, Xenoâ€Free Biomimetic Surface for Serumâ€Free Expansion of Human Mesenchymal Stromal Cells. Advanced Biology, 2020, 4, 2000008.	3.0	7
71	Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomaterials Science, 2020, 8, 4997-5004.	2.6	15
72	Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 2020, 25, 5858.	1.7	93
73	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61
74	Tuning the Local Availability of VEGF within Glycosaminoglycanâ€Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis. Advanced Functional Materials, 2020, 30, 2000068.	7.8	27

#	Article	IF	CITATIONS
75	Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Advanced Science, 2020, 7, 1902980.	5.6	54
76	3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules, 2020, 21, 1968-1994.	2.6	297
77	Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 69.	2.0	37
78	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
79	Cellâ€Instructive Multiphasic Gelâ€inâ€Gel Materials. Advanced Functional Materials, 2020, 30, 1908857.	7.8	34
80	State-of-the-art in reproductive bench science: Hurdles and new technological solutions. Theriogenology, 2020, 150, 34-40.	0.9	5
81	Immune profile of hyaluronic acid hydrogel polyethylene glycol crosslinked: An in vitro evaluation in human polymorphonuclear leukocytes. Dermatologic Therapy, 2020, 33, e13388.	0.8	7
82	Better growth-factor binding aids tissue repair. Nature Biomedical Engineering, 2020, 4, 368-369.	11.6	4
83	Wechselwirkung von Polyelektrolytâ€Architekturen mit Proteinen und Biosystemen. Angewandte Chemie, 2021, 133, 3926-3950.	1.6	8
84	Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angewandte Chemie - International Edition, 2021, 60, 3882-3904.	7.2	65
85	Biomimetic glycosaminoglycan-based scaffolds improve skeletal muscle regeneration in a Murine volumetric muscle loss model. Bioactive Materials, 2021, 6, 1201-1213.	8.6	26
86	Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chemical Engineering Journal, 2021, 404, 126518.	6.6	51
87	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	7.8	234
88	Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials, 2021, 268, 120602.	5.7	104
89	Recellularization of Decellularized Whole Organ Scaffolds: Elements, Progresses, and Challenges. , 2021, , 313-413.		0
90	Biodegradable hydrogels. , 2021, , 395-419.		11
91	A modular, injectable, non-covalently assembled hydrogel system features widescale tunable degradability for controlled release and tissue integration. Biomaterials, 2021, 269, 120637.	5.7	9
92	Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chemical Neuroscience, 2021, 12, 1178-1188.	1.7	12

#	Article	IF	CITATIONS
93	Doubleâ€Network Heparin Dynamic Hydrogels: Dynagels as Antiâ€bacterial 3D Cell Culture Scaffolds. Chemistry - A European Journal, 2021, 27, 7080-7084.	1.7	4
94	Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Advanced Healthcare Materials, 2021, 10, e2002153.	3.9	46
95	Sericin-chitosan-glycosaminoglycans hydrogels incorporated with growth factors for in vitro and in vivo skin repair. Carbohydrate Polymers, 2021, 258, 117717.	5.1	17
96	Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions. Biomedical Materials (Bristol), 2021, 16, 042012.	1.7	9
98	Tuning the network charge of biohybrid hydrogel matrices to modulate the release of SDF-1. Biological Chemistry, 2021, 402, 1453-1464.	1.2	4
99	Conformational changes of GDNF-derived peptide induced by heparin, heparan sulfate, and sulfated hyaluronic acid – Analysis by circular dichroism spectroscopy and molecular dynamics simulation. International Journal of Biological Macromolecules, 2021, 182, 2144-2150.	3.6	7
100	Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. Micromachines, 2021, 12, 1057.	1.4	6
101	Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biological Chemistry, 2021, 402, 1309-1324.	1.2	3
102	Modulation of macrophage functions by ECM-inspired wound dressings– a promising therapeutic approach for chronic wounds. Biological Chemistry, 2021, 402, 1289-1307.	1.2	8
103	A multi-in-one strategy with glucose-triggered long-term antithrombogenicity and sequentially enhanced endothelialization for biological valve leaflets. Biomaterials, 2021, 275, 120981.	5.7	20
104	Carbohydrate-Based Macromolecular Biomaterials. Chemical Reviews, 2021, 121, 10950-11029.	23.0	122
105	Stem Cell Microarrays for Assessing Growth Factor Signaling in Engineered Glycan Microenvironments. Advanced Healthcare Materials, 2022, 11, e2101232.	3.9	1
106	Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules, 2021, 26, 5597.	1.7	19
107	Poly(2â€alkylâ€2â€oxazoline)â€Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials. Advanced Healthcare Materials, 2021, 10, e2101327.	3.9	4
108	Customizing biohybrid cryogels to serve as ready-to-use delivery systems of signaling proteins. Biomaterials, 2021, 278, 121170.	5.7	6
109	Chapter 3. Biomimetic and Collagen-based Biomaterials for Biomedical Applications. RSC Soft Matter, 2021, , 61-87.	0.2	1
110	PEG/HA Hybrid Hydrogels for Biologically and Mechanically Tailorable Bone Marrow Organoids. Advanced Functional Materials, 2020, 30, 1910282.	7.8	48
111	Reversibly Assembled Electroconductive Hydrogel via a Host–Guest Interaction for 3D Cell Culture. ACS Applied Materials & Interfaces, 2019, 11, 7715-7724.	4.0	69

	CHATION	LPORT	
#	ARTICLE Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules, 2021, 11, 47.	IF 1.8	Citations 6
114	Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics, 2021, 13, 1628.	2.0	3
115	Green Chemistry Principles In Advancing Hierarchical Functionalization of Polymer-Based Nanomedicines. ACS Symposium Series, 2020, , 135-157.	0.5	0
116	Life inter vivos: modeling regeneration in the relation between bodies and biomaterials. BioSocieties, 0, , 1.	0.8	0
117	Mechanobiological Strategies to Enhance Stem Cell Functionality for Regenerative Medicine and Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 747398.	1.8	25
118	Glycosaminoglycans as polyelectrolytes: implications in bioactivity and assembly of biomedical devices. International Materials Reviews, 2022, 67, 765-795.	9.4	5
119	A Selfâ€Assembled Matrix System for Cellâ€Bioengineering Applications in Different Dimensions, Scales, and Geometries. Small, 2022, 18, e2104758.	5.2	3
120	Biomimetic Metalâ^'Organic Frameworks as Targeted Vehicles to Enhance Osteogenesis. Advanced Healthcare Materials, 2022, 11, e2102821.	3.9	25
121	Substrate topography regulates extracellular matrix component secretion by bone marrow-derived mesenchymal stem cells. Journal of Science: Advanced Materials and Devices, 2022, 7, 100437.	1.5	2
122	Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers. Gels, 2021, 7, 266.	2.1	1
123	Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Science Advances, 2022, 8, eabn1646.	4.7	25
124	Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Review of Medical Devices, 2022, 19, 353-367.	1.4	2
125	Editorial: Functional and Smart Biomaterials: Development and Application in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	2
126	Glycosaminoglycan-Based Hydrogel Delivery System Regulates the Wound Microenvironment to Rescue Chronic Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 31737-31750.	4.0	39
127	Recent Advances of Natural Polysaccharideâ€based Doubleâ€network Hydrogels for Tissue Repair. Chemistry - an Asian Journal, 2022, 17, .	1.7	11
128	Regioselective sulfated chitosan produces a biocompatible and antibacterial wound dressing with low inflammatory response. , 2022, 139, 213020.		7
129	Advanced bioactive hydrogels for the treatment of myocardial infarction. Journal of Materials Chemistry B, 2022, 10, 8375-8385.	2.9	5
130	Polymer based Gels: Recent and Future Applications in Drug Delivery Field. Current Drug Delivery, 2023, 20, 1288-1313.	0.8	5

#	Article	IF	CITATIONS
131	Bioinspired and Inflammationâ€Modulatory Glycopeptide Hydrogels for Radiationâ€Induced Chronic Skin Injury Repair. Advanced Healthcare Materials, 2023, 12, .	3.9	14
132	Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches — From modular synthesis to gel-formation. Carbohydrate Polymers, 2023, 300, 120251.	5.1	3
133	Three-Dimensional Biohybrid StarPEG–Heparin Hydrogel Cultures for Modeling Human Neuronal Development and Alzheimer's Disease Pathology. Methods in Molecular Biology, 2023, , 159-170.	0.4	1
134	Combining thermosensitive physical self-assembly and covalent cycloaddition chemistry as simultaneous dual cross-linking mechanisms for the preparation of injectable hydrogels with tuneable properties. European Polymer Journal, 2023, 183, 111761.	2.6	6
135	Structural and biological engineering of 3D hydrogels for wound healing. Bioactive Materials, 2023, 24, 197-235.	8.6	49
136	3D Printing of Hydrogel-Based Biocompatible Materials. Russian Journal of Applied Chemistry, 2022, 95, 775-788.	0.1	4
137	Combining Cryogel Architecture and Macromolecular Crowdingâ€Enhanced Extracellular Matrix Cues to Mimic the Bone Marrow Niche. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	1
138	A Tumor Microenvironment Model of Pancreatic Cancer to Elucidate Responses toward Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	3
139	Biomaterial-based platforms for tumour tissue engineering. Nature Reviews Materials, 2023, 8, 314-330.	23.3	15
140	Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. International Journal of Biological Macromolecules, 2023, 234, 123745.	3.6	4
141	Recent advances in decellularized biomaterials for wound healing. Materials Today Bio, 2023, 19, 100589.	2.6	17
142	Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Advanced Healthcare Materials, 2023, 12, .	3.9	7
143	Sustained Release of Human Adipose Tissue Stem Cell Secretome from Star‧haped Poly(ethylene) Tj ETQq0 0 0 Spinal Cord Injury Rat Model. Advanced Healthcare Materials, 2023, 12, .	0 rgBT /O\ 3.9	verlock 10 Tf 10
144	Glycopolymer-Based Hydrogels Impair Energy Metabolism via Delivering Mannose and Depleting Glucose for Tumor Suppression. , 2023, 5, 1145-1152.		3
145	A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Acta Biomaterialia, 2023, 162, 211-225.	4.1	3
148	The Era of Biomaterials: Smart Implants?. ACS Applied Bio Materials, 2023, 6, 2982-2994.	2.3	1
156	Islet Macroencapsulation: Strategies to Boost Islet Graft Oxygenation. , 2023, , 251-280.		0