In Situ Bond Modulation of Graphitic Carbon Nitride to Enhanced Photocatalytic Hydrogen Production

Advanced Functional Materials 26, 6822-6829 DOI: 10.1002/adfm.201602779

Citation Report

#	Article	IF	CITATIONS
1	Superiority of graphene over carbon analogs for enhanced photocatalytic H2-production activity of Znln2S4. Applied Catalysis B: Environmental, 2017, 206, 344-352.	10.8	156
2	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	5.8	376
3	Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Research, 2017, 10, 1710-1719.	5.8	33
4	Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H ₂ production over g-C ₃ N ₄ nanosheets under visible light. Catalysis Science and Technology, 2017, 7, 1193-1202.	2.1	114
5	The enhanced photocatalytic activity of g-C ₃ N ₄ -LaFeO ₃ for the water reduction reaction through a mediator free Z-scheme mechanism. Inorganic Chemistry Frontiers, 2017, 4, 1022-1032.	3.0	99
6	Exfoliated metal free homojunction photocatalyst prepared by a biomediated route for enhanced hydrogen evolution and Rhodamine B degradation. Materials Chemistry Frontiers, 2017, 1, 1641-1653.	3.2	49
7	MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation. Applied Surface Science, 2017, 396, 1808-1815.	3.1	67
8	Fabrication of 3D quasi-hierarchical Z-scheme RGO-Fe 2 O 3 -MoS 2 nanoheterostructures for highly enhanced visible-light-driven photocatalytic degradation. Applied Surface Science, 2017, 420, 669-680.	3.1	68
9	Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. Journal of Catalysis, 2017, 352, 274-281.	3.1	193
10	Inâ€Situ Construction of Globeâ€kike Carbon Nitride as a Selfâ€Cocatalyst Modified Treeâ€kike Carbon Nitride for Drastic Improvement in Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2017, 9, 4035-4042.	1.8	20
11	Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 217, 551-559.	10.8	126
12	Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 1421-1434.	1.7	72
13	One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS ₂ Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 23635-23646.	4.0	178
14	Mesoporous Ag@TiO ₂ nanofibers and their photocatalytic activity for hydrogen evolution. RSC Advances, 2017, 7, 30051-30059.	1.7	27
15	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	3.1	332
16	One-step green synthesis of nitrogen and phosphorus co-doped pitch-based porous graphene-like carbon for supercapacitors. Journal of Porous Materials, 2017, 24, 1689-1696.	1.3	16
17	Greatly enhanced photocatalytic activity by organic flexible piezoelectric PVDF induced spatial electric field. Catalysis Science and Technology, 2017, 7, 5594-5601.	2.1	42
18	Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. Nano Energy, 2017, 41, 738-748.	8.2	215

#	Article	IF	CITATIONS
19	Reduced Oxygenated <i>g</i> ₃ N ₄ with Abundant Nitrogen Vacancies for Visibleâ€Light Photocatalytic Applications. Chemistry - A European Journal, 2017, 23, 15466-15473.	1.7	62
20	Preparation of Carbonâ€Rich <i>g</i> ₃ N ₄ Nanosheets with Enhanced Visible Light Utilization for Efficient Photocatalytic Hydrogen Production. Small, 2017, 13, 1701552.	5.2	142
21	Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 2017, 38, 1295-1306.	6.9	114
22	A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 19025-19035.	5.2	151
23	Boosting molecular oxygen activation of SrTiO ₃ by engineering exposed facets for highly efficient photocatalytic oxidation. Journal of Materials Chemistry A, 2017, 5, 23822-23830.	5.2	47
24	g-C ₃ N ₄ Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H ₂ Evolution. ACS Catalysis, 2017, 7, 8228-8234.	5.5	131
25	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
26	Oxygen-Induced Bi ⁵⁺ -Self-Doped Bi ₄ V ₂ O ₁₁ with a p–n Homojunction Toward Promoting the Photocatalytic Performance. ACS Applied Materials & Interfaces, 2017, 9, 23748-23755.	4.0	88
27	Ultrathin g-C3N4 Nanosheet-Modified BiOCl Hierarchical Flower-Like Plate Heterostructure with Enhanced Photostability and Photocatalytic Performance. Crystals, 2017, 7, 266.	1.0	34
28	Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47, 2298-2321.	18.7	488
29	In-situ synthesis of graphitic carbon nitride/iron oxideâ^'copper composites and their application in the electrochemical detection of glucose. Electrochimica Acta, 2018, 265, 275-283.	2.6	53
30	Solar energy conversion on g-C3N4 photocatalyst: Light harvesting, charge separation, and surface kinetics. Journal of Energy Chemistry, 2018, 27, 1111-1123.	7.1	144
31	Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. Chinese Journal of Catalysis, 2018, 39, 760-770.	6.9	36
32	Flowing water enabled piezoelectric potential of flexible composite film for enhanced photocatalytic performance. Chemical Engineering Journal, 2018, 347, 263-272.	6.6	49
33	Epitaxial facet junctions on TiO ₂ single crystals for efficient photocatalytic water splitting. Energy and Environmental Science, 2018, 11, 1444-1448.	15.6	102
34	Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 230, 115-124.	10.8	143
35	Enhancement of photocatalytic hydrogen evolution activity of g-C3N4 induced by structural distortion via post-fluorination treatment. Applied Catalysis B: Environmental, 2018, 227, 276-284.	10.8	33
36	0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 188-194.	2.3	54

#	Article	IF	CITATIONS
37	Confined organometallic Au1N single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2018, 46, 110-116.	8.2	77
38	Different Morphologies of SnS ₂ Supported on 2D g-C ₃ N ₄ for Excellent and Stable Visible Light Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5132-5141.	3.2	125
39	Oxygen self-doped g-C ₃ N ₄ with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale, 2018, 10, 4515-4522.	2.8	247
40	A facile in situ solvothermal method for two-dimensional layered g-C3N4/SnS2 p-n heterojunction composites with efficient visible-light photocatalytic activity. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	13
41	Bifunctional Cu ₃ P Decorated g-C ₃ N ₄ Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4026-4036.	3.2	243
42	Creating Graphitic Carbon Nitride Based Donorâ€i̇́€â€"Acceptorâ€i̇́€â€"Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution. Small, 2018, 14, e1703599.	5.2	100
43	Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy and Environmental Science, 2018, 11, 566-571.	15.6	304
44	Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226, 1-9.	10.8	292
45	Heteroatoms binary-doped hierarchical porous g-C3N4 nanobelts for remarkably enhanced visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2018, 226, 61-70.	10.8	135
46	Salt-assisted synthesis of 3D open porous g-C ₃ N ₄ decorated with cyano groups for photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 3008-3013.	2.8	87
47	Amorphous tantalum oxyhydroxide homojunction: In situ construction for enhanced hydrogen production. Journal of Colloid and Interface Science, 2018, 525, 196-205.	5.0	17
48	Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Applied Catalysis B: Environmental, 2018, 236, 99-106.	10.8	99
49	Rapid high-temperature treatment on graphitic carbon nitride for excellent photocatalytic H2-evolution performance. Applied Catalysis B: Environmental, 2018, 233, 80-87.	10.8	79
50	Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Applied Catalysis B: Environmental, 2018, 232, 19-25.	10.8	227
51	Synthesis of synergetic phosphorus and cyano groups (C N) modified g-C3N4 for enhanced photocatalytic H2 production and CO2 reduction under visible light irradiation. Applied Catalysis B: Environmental, 2018, 232, 521-530.	10.8	162
52	Fabrication of a Co(OH) ₂ /ZnCr LDH "p–n―Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H ₂ and O ₂ Evolution. Inorganic Chemistry, 2018, 57, 3840-3854.	1.9	162
53	Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 145-153.	2.0	29
54	Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline. Applied Surface Science, 2018, 428, 739-747.	3.1	26

#	Article	IF	CITATIONS
55	Significantly enhanced photocatalytic hydrogen generation over graphitic carbon nitride with carefully modified intralayer structures. Chemical Engineering Journal, 2018, 332, 499-507.	6.6	47
56	gâ€C ₃ N ₄ â€Based Heterostructured Photocatalysts. Advanced Energy Materials, 2018, 8, 1701503.	10.2	1,870
57	Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy, 2018, 44, 73-81.	8.2	386
58	Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency. Carbon, 2018, 129, 637-645.	5.4	42
59	KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 99-106.	2.7	50
60	Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 225, 397-405.	10.8	154
61	Understanding the charge separation and transfer in mesoporous carbonate-doped phase-junction TiO2 nanotubes for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 225, 433-444.	10.8	48
62	Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Applied Catalysis B: Environmental, 2018, 226, 53-60.	10.8	94
63	Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated system for efficient visible-light-driven water splitting. Applied Catalysis B: Environmental, 2018, 224, 877-885.	10.8	69
64	Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225, 154-161.	10.8	296
65	Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Applied Catalysis B: Environmental, 2018, 221, 47-55.	10.8	251
66	Realizing the regulated carrier separation and exciton generation of Bi ₂₄ O ₃₁ Cl ₁₀ <i>via</i> a carbon doping strategy. Journal of Materials Chemistry A, 2018, 6, 24350-24357.	5.2	39
67	Tuning Nitrogen Content in Graphitic Carbon Nitride by Isonicotinic acid for Highly Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 11, 1045.	1.8	9
68	Hierarchical Macro–Mesoporous Polymeric Carbon Nitride Microspheres with Narrow Bandgap for Enhanced Photocatalytic Hydrogen Production. Advanced Materials Interfaces, 2018, 5, 1801241.	1.9	21
69	Tuning Metal Catalyst with Metal–C ₃ N ₄ Interaction for Efficient CO ₂ Electroreduction. ACS Catalysis, 2018, 8, 11035-11041.	5.5	161
70	Significantly Improved Photocatalytic Hydrogen Production Activity over Ultrafine Mesoporous TiO ₂ Nanofibers Photocatalysts. ChemistrySelect, 2018, 3, 10126-10132.	0.7	8
71	Synergistic Effects of Boron and Sulfur Co-doping into Graphitic Carbon Nitride Framework for Enhanced Photocatalytic Activity in Visible Light Driven Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 5936-5947.	2.5	162
72	Metal-Free Graphitic Carbon Nitride Photocatalyst Goes Into Two-Dimensional Time. Frontiers in Chemistry, 2018, 6, 551.	1.8	41

#	Article	IF	CITATIONS
73	Ordered graphitic carbon nitride tubular bundles with efficient electron-hole separation and enhanced photocatalytic performance for hydrogen generation. Applied Catalysis A: General, 2018, 566, 200-206.	2.2	21
74	Carbon Self-Doped Carbon Nitride Nanosheets with Enhanced Visible-Light Photocatalytic Hydrogen Production. Catalysts, 2018, 8, 366.	1.6	17
75	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous gâ€C ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 13758-13762.	1.6	172
76	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous gâ€C ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 13570-13574.	7.2	432
77	Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. Journal of Catalysis, 2018, 366, 237-244.	3.1	68
78	Construction of novel Sr0.4H1.2Nb2O6·H2O/g-C3N4 heterojunction with enhanced visible light photocatalytic activity for hydrogen evolution. Journal of Colloid and Interface Science, 2018, 526, 451-458.	5.0	26
79	Green synthesis of luminescent graphitic carbon nitride quantum dots from human urine and its bioimaging application. Talanta, 2018, 188, 35-40.	2.9	47
80	Reconstructing Supramolecular Aggregates to Nitrogen-Deficient g-C ₃ N ₄ Bunchy Tubes with Enhanced Photocatalysis for H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 18746-18753.	4.0	97
81	Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 237, 24-31.	10.8	207
82	Biomimetic Donor–Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angewandte Chemie - International Edition, 2018, 57, 8729-8733.	7.2	190
83	Liquidâ€Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small, 2018, 14, e1800749.	5.2	90
84	Double defects modified carbon nitride nanosheets with enhanced photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2018, 20, 17471-17476.	1.3	26
85	Mn-Doped g-C ₃ N ₄ Nanoribbon for Efficient Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8754-8761.	3.2	93
86	A nanoclay-induced defective g-C ₃ N ₄ photocatalyst for highly efficient catalytic reactions. Chemical Communications, 2018, 54, 8249-8252.	2.2	33
87	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 10403-10407.	1.6	139
88	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 10246-10250.	7.2	619
89	New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Catalysis Science and Technology, 2018, 8, 3846-3852.	2.1	32
90	Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution. Applied Surface Science, 2018, 459, 845-852.	3.1	36

#	Article	IF	CITATIONS
91	Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: the road travelled and the way forward. Catalysis Science and Technology, 2018, 8, 4576-4599.	2.1	99
92	Triamtereneâ€Grafted Graphitic Carbon Nitride with Electronic Potential Redistribution for Efficient Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2018, 13, 3073-3083.	1.7	22
93	Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1800820.	5.6	92
94	Biomimetic Donor–Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angewandte Chemie, 2018, 130, 8865-8869.	1.6	26
95	Preparation of α-Fe ₂ O ₃ nanowires through electrospinning and their Ag ₃ PO ₄ heterojunction composites with enhanced visible light photocatalytic activity. Ferroelectrics, 2018, 528, 58-65.	0.3	18
96	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	1.6	19
97	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	7.2	205
98	Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2019, 259, 118077.	10.8	94
99	Heterogeneous structural defects to prompt charge shuttle in g-C3N4 plane for boosting visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 259, 118094.	10.8	97
100	Synthesis of a well-dispersed CaFe ₂ O ₄ /g-C ₃ N ₄ /CNT composite towards the degradation of toxic water pollutants under visible light. RSC Advances, 2019, 9, 25750-25761.	1.7	29
101	Amino-Assisted NH ₂ -UiO-66 Anchored on Porous g-C ₃ N ₄ for Enhanced Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 30673-30681.	4.0	116
102	Ni/Fe Codoped In ₂ S ₃ Nanosheet Arrays Boost Photoâ€Electrochemical Performance of Planar Si Photocathodes. Advanced Energy Materials, 2019, 9, 1902135.	10.2	47
103	Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible‣ight Photocatalysis. Advanced Materials, 2019, 31, e1807540.	11.1	166
104	Bosk-like monocrystal of Co–Sn–Se grown on porous Ti for electrocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics, 2019, 30, 15097-15104.	1.1	1
105	Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H ₂ evolution and CO ₂ reduction. Dalton Transactions, 2019, 48, 12070-12079.	1.6	21
106	Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257, 117931.	10.8	170
107	Ag-Bridged Z-Scheme 2D/2D Bi ₅ FeTi ₃ O ₁₅ /g-C ₃ N ₄ Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights. ACS Applied Materials & amp; Interfaces, 2019, 11, 27686-27696.	4.0	200
108	Facile synthesis of g-C3N4/ LaMO3 (M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting. Materials Science in Semiconductor Processing, 2019, 103, 104643.	1.9	21

#	Article	IF	CITATIONS
109	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
110	Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. Applied Surface Science, 2019, 492, 808-817.	3.1	70
111	Constructing Sn(<scp>ii</scp>)-doped SrNb ₂ O ₆ for visible light response driven H ₂ and O ₂ evolution from water. Catalysis Science and Technology, 2019, 9, 3619-3622.	2.1	4
112	Insight into the Enhanced Hydrogen Evolution Activity of 2,4-Diaminopyrimidine-Doped Graphitic Carbon Nitride Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 2228-2237.	1.5	25
113	In situ self-assembly synthesis of carbon self-doped graphite carbon nitride hexagonal tubes with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 27354-27362.	3.8	25
114	Ultrasmall Co@Co(OH) ₂ Nanoclusters Embedded in Nâ€Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation. ChemSusChem, 2019, 12, 5117-5125.	3.6	26
115	Excellent visible light photocatalytic efficiency of Na and S co-doped g-C3N4 nanotubes for H2 production and organic pollutant degradation. International Journal of Hydrogen Energy, 2019, 44, 31916-31929.	3.8	42
116	K and halogen binary-doped graphitic carbon nitride (g-C3N4) toward enhanced visible light hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 27704-27712.	3.8	44
117	Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni ₂ P for Highly Sustained Photocatalytic H ₂ Production from Seawater. ACS Applied Materials & Interfaces, 2019, 11, 41313-41320.	4.0	71
118	Potassiumâ€Ionâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie, 2019, 131, 16797-16803.	1.6	26
119	Potassiumâ€lonâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 16644-16650.	7.2	356
120	Threeâ€Dimensional Hierarchical Porous Carbon/Graphitic Carbon Nitride Composites for Efficient Photocatalytic Hydrogen Production. ChemCatChem, 2019, 11, 6364-6371.	1.8	22
121	Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. CheM, 2019, 5, 2775-2813.	5.8	78
122	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, 2019, 4, 746-760.	19.8	638
123	Sandwich-Nanostructured n-Cu ₂ O/AuAg/p-Cu ₂ O Photocathode with Highly Positive Onset Potential for Improved Water Reduction. ACS Applied Materials & Interfaces, 2019, 11, 38625-38632.	4.0	30
124	Synthesis of magnetic biomass carbon-based Bi ₂ O ₃ photocatalyst and mechanism insight by a facile microwave and deposition method. New Journal of Chemistry, 2019, 43, 2888-2898.	1.4	16
125	Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobaltâ€Phosphate‣oaded Co ₃ O ₄ /Fe ₂ O ₃ p–n Heterojunction Nanorod Arrays. Advanced Functional Materials, 2019, 29, 1801902.	7.8	220
126	Defects Promote Ultrafast Charge Separation in Graphitic Carbon Nitride for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction Activity. Chemistry - A European Journal, 2019, 25, 5028 5025	1.7	85

#	Article	IF	CITATIONS
127	The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 2318-2324.	1.3	90
128	Cyano and potassium-rich g-C ₃ N ₄ hollow tubes for efficient visible-light-driven hydrogen evolution. Catalysis Science and Technology, 2019, 9, 3342-3346.	2.1	45
129	Constructing a fragmentary g-C ₃ N ₄ framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination. Catalysis Science and Technology, 2019, 9, 3753-3762.	2.1	30
130	Ultrafast NaN3-deflagration induced nitrogen vacancy-enriched g-C3N4 for tailoring band structures and enhanced photocatalytic performance. Journal of Power Sources, 2019, 434, 226731.	4.0	32
131	Enhanced photocatalytic performance of polymeric C3N4 doped with theobromine composed of an imidazole ring and a pyrimidine ring. Chinese Journal of Catalysis, 2019, 40, 875-885.	6.9	30
132	Se-modified polymeric carbon nitride nanosheets with improved photocatalytic activities. Journal of Catalysis, 2019, 375, 104-112.	3.1	44
133	Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40-58.	5.4	54
134	MnOx-decorated 3D porous C3N4 with internal donor–acceptor motifs for efficient photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 256, 117805.	10.8	85
135	Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 256, 117853.	10.8	65
136	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Advanced Functional Materials, 2019, 29, 1901024.	7.8	44
137	Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 359-368.	10.8	70
138	Controllable local electronic migration induced charge separation and red-shift emission in carbon nitride for enhanced photocatalysis and potential phototherapy. Chemical Communications, 2019, 55, 6002-6005.	2.2	15
139	Internal electric field construction on dual oxygen group-doped carbon nitride for enhanced photodegradation of pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2019, 256, 117705.	10.8	74
140	Enhancing Visibleâ€Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. ChemSusChem, 2019, 12, 3257-3262.	3.6	101
141	Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693-721.	5.4	618
142	Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Applied Catalysis B: Environmental, 2019, 254, 443-451.	10.8	72
143	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
144	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214

#	ARTICLE	IF	CITATIONS
145	Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 2019, 40, 289-319.	6.9	413
147	Sea-urchin-structure g-C3N4 with narrow bandgap (˜2.0 eV) for efficient overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2019, 249, 275-281.	10.8	110
148	Crystallization, cyanamide defect and ion induction of carbon nitride: Exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 251, 206-212.	10.8	76
149	Construction of an in-situ Fenton-like system based on a g-C3N4 composite photocatalyst. Journal of Hazardous Materials, 2019, 373, 565-571.	6.5	32
150	Solid-State, Low-Cost, and Green Synthesis and Robust Photochemical Hydrogen Evolution Performance of Ternary TiO2/MgTiO3/C Photocatalysts. IScience, 2019, 14, 15-26.	1.9	23
151	Loading AgCl@Ag on phosphotungstic acid modified macrocyclic coordination compound: Z-scheme photocatalyst for persistent pollutant degradation and hydrogen evolution. Journal of Colloid and Interface Science, 2019, 547, 50-59.	5.0	23
152	A "ship-in-a-bottle―strategy to fabricate highly crystallized nanoporous graphitic C ₃ N ₄ microspheres under pressurized conditions. Journal of Materials Chemistry A, 2019, 7, 8952-8959.	5.2	37
153	Constructing nitrogen vacancy introduced g-C3N4 p-n homojunction for enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2019, 7, 102984.	3.3	57
154	Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride. Chemical Engineering Journal, 2019, 369, 263-271.	6.6	55
155	Physical vapor deposition (PVD): a method to fabricate modified g-C3N4 sheets. New Journal of Chemistry, 2019, 43, 6683-6687.	1.4	14
156	Enhanced Photocatalytic Hydrogen Evolution of the Hydrogenated Deficient g ₃ N ₄ via Surface Hydrotreating. ChemCatChem, 2019, 11, 6275-6281.	1.8	19
157	Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. Journal of Materials Chemistry A, 2019, 7, 11170-11176.	5.2	22
158	Precursor-reforming strategy induced g-C3N4 microtubes with spatial anisotropic charge separation established by conquering hydrogen bond for enhanced photocatalytic H2-production performance. Journal of Colloid and Interface Science, 2019, 547, 224-233.	5.0	37
159	Solvated Electrons for Photochemistry Syntheses Using Conjugated Carbon Nitride Polymers. ACS Catalysis, 2019, 9, 2949-2955.	5.5	81
160	Designing Defective Crystalline Carbon Nitride to Enable Selective CO ₂ Photoreduction in the Gas Phase. Advanced Functional Materials, 2019, 29, 1900093.	7.8	254
161	Modulating charge transfer dynamics for g-C ₃ N ₄ through a dimension and interface engineered transition metal phosphide co-catalyst for efficient visible-light photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 6939-6945.	5.2	64
162	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 2019, 123, 69-72.	1.6	63
163	Intramolecular Charge Transfer and Extended Conjugate Effects in Donor–̀–Acceptor‶ype Mesoporous Carbon Nitride for Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 1325-1333.	3.6	52

#	Article	IF	CITATIONS
164	Sb-doped polymeric carbon nitride with charge-capture centers for efficient charge separation and photocatalytic performance in H2 evolution and environmental remediation. Catalysis Science and Technology, 2019, 9, 6627-6637.	2.1	7
165	Facile synthesis of tin-doped polymeric carbon nitride with a hole-trapping center for efficient charge separation and photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 25824-25829.	5.2	16
166	Switching charge kinetics from type-I to <i>Z</i> -scheme for g-C ₃ N ₄ and ZnIn ₂ S ₄ by defective engineering for efficient and durable hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 3422-3429.	2.5	21
167	Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 240, 64-71.	10.8	143
168	βâ€cyclodextrin modified gâ€C ₃ N ₄ nanosheet: a fluorescent drug carrier with ultrahigh drug loading capacity and pHâ€responsive release. Journal of Chemical Technology and Biotechnology, 2019, 94, 628-633.	1.6	36
169	Full spectrum responsive In2.77S4/WS2 p-n heterojunction as an efficient photocatalyst for Cr(VI) reduction and tetracycline oxidation. Applied Surface Science, 2019, 473, 992-1001.	3.1	46
170	Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Applied Catalysis B: Environmental, 2019, 245, 334-342.	10.8	192
171	Photocatalysis of Graphene and Carbon Nitride-Based Functional Carbon Quantum Dots. , 2019, , 759-781.		28
172	Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production. Applied Surface Science, 2019, 476, 552-559.	3.1	32
173	Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245, 399-409.	10.8	174
174	Enhanced Selectivity for Oriented Catalyzing Tetracycline by the Functional Inorganic Imprinted ZnFe2O4@Ag3PO4/SiO2 Photocatalyst with Excellent Stability. Nano, 2019, 14, 1950004.	0.5	4
175	Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 245, 760-769.	10.8	118
176	Facile and Scalable Fabrication of Porous gâ€C 3 N 4 Nanosheets with Nitrogen Defects and Oxygenâ€Doping for Synergistically Promoted Visible Light Photocatalytic H 2 Evolution. Energy Technology, 2019, 7, 1800886.	1.8	16
177	Porous graphitic carbon nitride with lamellar structure: Facile synthesis via in-site supramolecular self-assembly in alkaline solutions and superior photocatalytic activity. Advanced Powder Technology, 2019, 30, 120-125.	2.0	8
178	Nitrogen vacancies modified graphitic carbon nitride: Scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution. Chemical Engineering Journal, 2019, 358, 20-29.	6.6	101
179	TiO ₂ –MnO _{<i>x</i>} –Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO ₂ -Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5581-5589.	4.0	219
180	Promoting the Photo-Fenton catalytic activity with carbon dots: Broadening light absorption, higher applicable pH and better reuse performance. Molecular Catalysis, 2020, 481, 110254.	1.0	4
181	Low boiling point solvent mediated strategy to synthesize functionalized monolayer carbon nitride for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 260, 118181.	10.8	142

#	Article	IF	CITATIONS
182	One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 262, 118252.	10.8	172
183	Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chemical Engineering Journal, 2020, 382, 123017.	6.6	83
184	Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382, 122812.	6.6	155
185	Enhanced visible-light photocatalytic H2 production of hierarchical g-C3N4 hexagon by one-step self-assembly strategy. Applied Surface Science, 2020, 499, 143942.	3.1	16
186	Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chemical Engineering Journal, 2020, 383, 123132.	6.6	129
187	Visible-near-infrared-responsive g-C3N4H+ reduced decatungstate with excellent performance for photocatalytic removal of petroleum hydrocarbon. Journal of Hazardous Materials, 2020, 381, 120994.	6.5	25
188	Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production. International Journal of Hydrogen Energy, 2020, 45, 7541-7551.	3.8	75
189	Cobalt phosphate hydroxide loaded g-C3N4 photocatalysts and its hydrogen production activity. International Journal of Hydrogen Energy, 2020, 45, 7562-7573.	3.8	38
190	Enhanced photocatalytic hydrogen evolution by carbon-doped carbon nitride synthesized via the assistance of cellulose. Applied Surface Science, 2020, 504, 144454.	3.1	17
191	Enhanced photocatalytic activity of ZnO/g-C3N4 composites by regulating stacked thickness of g-C3N4 nanosheets. Environmental Pollution, 2020, 257, 113577.	3.7	26
192	Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: Visible-light-driven photocatalytic activity. Applied Surface Science, 2020, 505, 144576.	3.1	25
193	Direct Observation of Dynamic Bond Evolution in Singleâ€Atom Pt/C ₃ N ₄ Catalysts. Angewandte Chemie - International Edition, 2020, 59, 6224-6229.	7.2	256
194	Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2020, 265, 118620.	10.8	153
195	Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Applied Catalysis B: Environmental, 2020, 265, 118581.	10.8	113
196	Band structure engineering of polymeric carbon nitride with oxygen/carbon codoping for efficient charge separation and photocatalytic performance. Journal of Colloid and Interface Science, 2020, 564, 333-343.	5.0	26
197	Direct Observation of Dynamic Bond Evolution in Singleâ€Atom Pt/C ₃ N ₄ Catalysts. Angewandte Chemie, 2020, 132, 6283-6288.	1.6	34
198	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900487.	3.1	85
199	Enhanced n→ï€* electron transition of porous P-doped g-C3N4 nanosheets for improved photocatalytic H2 evolution performance. Ceramics International, 2020, 46, 8444-8451.	2.3	61

#	Article	IF	CITATIONS
200	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
201	In2O3/boron doped g-C3N4 heterojunction catalysts with remarkably enhanced visible-light photocatalytic efficiencies. Applied Surface Science, 2020, 504, 144241.	3.1	38
202	Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Applied Surface Science, 2020, 505, 144654.	3.1	45
203	Graphitic Carbon Nitrideâ€Based Lowâ€Dimensional Heterostructures for Photocatalytic Applications. Solar Rrl, 2020, 4, 1900435.	3.1	65
204	Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2020, 4, 485-503.	2.5	68
205	A hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. Journal of Materials Chemistry A, 2020, 8, 3160-3167.	5.2	59
206	KOH-Assisted Band Engineering of Polymeric Carbon Nitride for Visible Light Photocatalytic Oxygen Reduction to Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 594-603.	3.2	57
207	Fabrication and Photodegradation Application of Isopropanol-Functionalized Poly (Triazine Imide). Journal of Electronic Materials, 2020, 49, 1518-1526.	1.0	3
208	Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting. Nano Energy, 2020, 69, 104408.	8.2	52
209	Study of cyano and hydroxyl groups modification on the properties of porous carbon nitride synthesized by using a salt assistant method. Applied Surface Science, 2020, 507, 144885.	3.1	34
210	Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation. Journal of Alloys and Compounds, 2020, 819, 153064.	2.8	34
211	Porous graphitic carbon nitride with nitrogen defects and cobalt-nitrogen (Co N) bonds for efficient broad spectrum (visible and near-infrared) photocatalytic H2 production. Journal of Colloid and Interface Science, 2020, 561, 719-729.	5.0	21
212	Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.	3.5	281
213	Carbonaceous 0D/2D composite photocatalyst for degradation of organic dyes. Diamond and Related Materials, 2020, 109, 108096.	1.8	9
214	Intrinsic Defects in Polymeric Carbon Nitride for Photocatalysis Applications. Chemistry - an Asian Journal, 2020, 15, 3405-3415.	1.7	39
215	Efficient visible-light activation of molecular oxygen to produce hydrogen peroxide using P doped g-C ₃ N ₄ hollow spheres. Journal of Materials Chemistry A, 2020, 8, 22720-22727.	5.2	59
216	Restacked melon as highly-efficient photocatalyst. Nano Energy, 2020, 77, 105124.	8.2	7
217	Beyond Hydrogen Evolution: Solar-Driven, Water-Donating Transfer Hydrogenation over Platinum/Carbon Nitride. ACS Catalysis, 2020, 10, 9227-9235.	5.5	68

#	Article	IF	CITATIONS
218	Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis. Applied Catalysis B: Environmental, 2020, 278, 119342.	10.8	55
219	The improvement of photocatalytic performance for hydrogen evolution over mesoporous g-C ₃ N ₄ modified with nitrogen defects. Sustainable Energy and Fuels, 2020, 4, 5179-5187.	2.5	43
220	Graphitic carbon nitride-based 2D catalysts for green energy: Physical mechanism and applications. Materials Today Energy, 2020, 17, 100488.	2.5	14
221	A β-cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrogen Peroxide Production. Nanomaterials, 2020, 10, 1969.	1.9	15
222	2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 2020, 41, 270-303.	8.3	214
223	Direct probing of atomically dispersed Ru species over multi-edged TiO ₂ for highly efficient photocatalytic hydrogen evolution. Science Advances, 2020, 6, .	4.7	161
224	Salt-templated synthesis of 3D porous foam-like C ₃ N ₄ towards high-performance photodegradation of tetracyclines. New Journal of Chemistry, 2020, 44, 17405-17412.	1.4	24
225	Task-Specific Synthesis of 3D Porous Carbon Nitrides from the Cycloaddition Reaction and Sequential Self-Assembly Strategy toward Photocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2020, 12, 40433-40442.	4.0	33
226	Mechanochemical Synthesis of Nitrogen-Deficient Mesopore-Rich Polymeric Carbon Nitride with Highly Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 18606-18615.	3.2	33
227	Functional group defect design in polymeric carbon nitride for photocatalytic application. APL Materials, 2020, 8, .	2.2	16
228	Bi ₂ O ₃ -Sensitized TiO ₂ Hollow Photocatalyst Drives the Efficient Removal of Tetracyclines under Visible Light. Inorganic Chemistry, 2020, 59, 18131-18140.	1.9	84
229	A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen. International Journal of Hydrogen Energy, 2020, 45, 30521-30532.	3.8	71
230	Activating and optimizing activity of CdS@g-C3N4 heterojunction for photocatalytic hydrogen evolution through the synergistic effect of phosphorus doping and defects. Journal of Alloys and Compounds, 2020, 834, 155201.	2.8	21
231	Graphitic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H ₂ production performance. RSC Advances, 2020, 10, 18632-18638.	1.7	18
232	Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: Defect-dopant strategy of nitrogen defect and boron dopant. Chemical Engineering Journal, 2020, 396, 125395.	6.6	92
233	CaH2-assisted structural engineering of porous defective graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 18937-18945.	3.8	12
234	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
235	Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride. Journal of Colloid and Interface Science, 2020, 578, 574-583.	5.0	53

#	Article	IF	CITATIONS
236	Anionic/cationic synergistic action of insulator BaCO3 enhanced the photocatalytic activities of graphitic carbon nitride. Applied Surface Science, 2020, 528, 146924.	3.1	11
237	Defect-modified reduced graphitic carbon nitride (RCN) enhanced oxidation performance for photocatalytic degradation of diclofenac. Chemosphere, 2020, 258, 127343.	4.2	41
238	Enhanced photocatalytic reduction of aqueous Re(VII) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc(VII) elimination. Chemical Engineering Journal, 2020, 401, 125977.	6.6	48
239	Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification. Applied Surface Science, 2020, 527, 146584.	3.1	97
240	Unveiling morphology altered photoactivity of microspherical carbon nitride scaffolds. Applied Surface Science, 2020, 526, 146661.	3.1	8
241	In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution. Nano Energy, 2020, 75, 104865.	8.2	46
242	Realization of ultrathin red 2D carbon nitride sheets to significantly boost the photoelectrochemical water splitting performance of TiO2 photoanodes. Chemical Engineering Journal, 2020, 396, 125267.	6.6	16
243	Inert basal plane activation of two-dimensional ZnIn ₂ S ₄ <i>via</i> Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 13376-13384.	5.2	79
244	Thin‣ayered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
245	Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Applied Surface Science, 2020, 515, 146009.	3.1	63
246	Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution. Chemical Engineering Journal, 2020, 390, 124634.	6.6	27
247	Two-dimensional materials for photocatalytic water splitting and CO2 reduction. , 2020, , 173-227.		7
248	Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Applied Materials Today, 2020, 20, 100741.	2.3	28
249	Incorporating nitrogen defects into novel few-layer carbon nitride nanosheets for enhanced photocatalytic H2 production. Applied Surface Science, 2020, 529, 147104.	3.1	23
250	Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: Enhanced optical absorption and carrier separation for improving photocatalytic activity. Chemical Engineering Journal, 2020, 402, 126185.	6.6	89
251	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	5.5	200
252	Scalable one-pot synthesis of phosphorus-doped g-C3N4 nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Diamond and Related Materials, 2020, 104, 107734.	1.8	22
253	Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo- and electro-chemistry performance. Journal of Alloys and Compounds, 2020, 826, 154145.	2.8	39

#	Article	IF	CITATIONS
254	Defect Engineering in Atomic-Layered Graphitic Carbon Nitride for Greatly Extended Visible-Light Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 13805-13812.	4.0	111
255	Formation of Bï£įNï£įC Coordination to Stabilize the Exposed Active Nitrogen Atoms in gâ€C ₃ N ₄ for Dramatically Enhanced Photocatalytic Ammonia Synthesis Performance. Small, 2020, 16, e1906880.	5.2	88
256	Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 269, 118799.	10.8	117
257	In situ preparation of graphitic carbon nitride bonded with cyano groups for enhanced photocatalytic activity. International Journal of Hydrogen Energy, 2020, 45, 9683-9694.	3.8	17
258	Theoretical study of a p–n homojunction SiGe field-effect transistor via covalent functionalization. RSC Advances, 2020, 10, 7682-7690.	1.7	2
259	Visibleâ€lightâ€stimulated Alkalisâ€triggered Platinum Cocatalyst with Electron Deficient Interface for Hydrogen Evolution. ChemCatChem, 2020, 12, 2189-2193.	1.8	4
260	Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A. Chemosphere, 2020, 248, 126053.	4.2	23
261	Post-annealed graphite carbon nitride nanoplates obtained by sugar-assisted exfoliation with improved visible-light photocatalytic performance. Journal of Colloid and Interface Science, 2020, 567, 369-378.	5.0	14
262	The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41, 642-671.	6.9	151
263	Semiconductor/Covalentâ€Organicâ€Framework Zâ€5cheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie, 2020, 132, 6562-6568.	1.6	44
264	Semiconductor/Covalentâ€Organicâ€Framework Zâ€Scheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 6500-6506.	7.2	328
265	Na2Fe2Ti6O16 as a hybrid co-catalyst on g-C3N4 to enhance the photocatalytic hydrogen evolution under visible light illumination. Applied Surface Science, 2020, 509, 145357.	3.1	9
266	Electrostatic self-assembly of a AgI/Bi ₂ Ga ₄ O ₉ p–n junction photocatalyst for boosting superoxide radical generation. Journal of Materials Chemistry A, 2020, 8, 4083-4090.	5.2	73
267	Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. Journal of Materials Chemistry A, 2020, 8, 10571-10603.	5.2	80
268	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 2070045.	3.1	4
269	Green fabrication of AuNPs/CMTKP/g-C3N4 nanocomposites with enhanced photocatalytic activity for the removal of nitric oxide under visible-light irradiation. Journal of Cleaner Production, 2020, 256, 120257.	4.6	12
270	Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 273, 119050.	10.8	138
271	Light-responsive nanozymes for biosensing. Analyst, The, 2020, 145, 4388-4397.	1.7	61

#	Article	IF	CITATIONS
272	Sulfate modified g-C ₃ N ₄ with enhanced photocatalytic activity towards hydrogen evolution: the role of sulfate in photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 10116-10122.	1.3	13
273	Maleic hydrazide-based molecule doping in three-dimensional lettuce-like graphite carbon nitride towards highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 272, 119009.	10.8	37
274	A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride. Chemosphere, 2020, 253, 126672.	4.2	21
275	Tremella-like porous carbon nitride co-doped with oxygen and carbon towards efficient visible-light-driven purification of wastewater. Separation and Purification Technology, 2021, 257, 117984.	3.9	23
276	One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chemical Engineering Journal, 2021, 406, 126844.	6.6	249
277	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	3.1	34
278	Local-interaction-field-coupled semiconductor photocatalysis: recent progress and future challenges. Journal of Materials Chemistry A, 2021, 9, 2491-2525.	5.2	48
279	The pivotal role of defects in fabrication of polymeric carbon nitride homojunctions with enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 586, 748-757.	5.0	25
280	Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. Journal of Colloid and Interface Science, 2021, 587, 110-120.	5.0	91
281	The synergy of thermal exfoliation and phosphorus doping in g-C3N4 for improved photocatalytic H2 generation. International Journal of Hydrogen Energy, 2021, 46, 3595-3604.	3.8	22
282	Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2021, 582, 752-763.	5.0	39
283	Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chemical Engineering Journal, 2021, 421, 127729.	6.6	67
284	Facile construction of O-doped crystalline / non-crystalline g-C3N4 embedded nano-homojunction for efficiently photocatalytic H2 evolution. Carbon, 2021, 172, 602-612.	5.4	77
285	Efficient photocatalytic conversion of CH ₄ into ethanol with O ₂ over nitrogen vacancy-rich carbon nitride at room temperature. Chemical Communications, 2021, 57, 871-874.	2.2	30
286	Photocatalytic degradation of sulfonamides in 4-phenoxyphenol-modified g-C3N4 composites: Performance and mechanism. Chemical Engineering Journal, 2021, 421, 127864.	6.6	25
287	The spatially oriented redistribute of photogenerated carriers and photocatalytic hydrogen evolution mechanism research on polymeric carbon nitride Van der Waals homojunction. Chemical Engineering Journal, 2021, 408, 127284.	6.6	8
288	Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chemical Engineering Journal, 2021, 406, 126868.	6.6	84
289	Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environmental Chemistry Letters, 2021, 19, 271-306.	8.3	124

#	Article	IF	CITATIONS
290	Construction of Novel Metal-Free Graphene Oxide/Graphitic Carbon Nitride Nanohybrids: A 2D–2D Amalgamation for the Effective Dedyeing of Waste Water. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 716-730.	1.9	16
291	Nitrogen Vacancy Engineering in Graphitic Carbon Nitride for Strong, Stable, and Wavelength Tunable Electrochemiluminescence Emissions. Analytical Chemistry, 2021, 93, 2678-2686.	3.2	40
292	NiCo ₂ O ₄ nanosheets as a novel oxygen-evolution-reaction cocatalyst <i>in situ</i> bonded on the g-C ₃ N ₄ photocatalyst for excellent overall water splitting. Journal of Materials Chemistry A, 2021, 9, 12299-12306.	5.2	92
293	Efficient Charge Migration in Chemically-Bonded Prussian Blue Analogue/CdS with Beaded Structure for Photocatalytic H ₂ Evolution. Jacs Au, 2021, 1, 212-220.	3.6	47
294	Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. Journal of Industrial and Engineering Chemistry, 2021, 93, 28-56.	2.9	56
295	Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency. Journal of Materials Chemistry A, 2021, 9, 4700-4706.	5.2	23
296	Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chemical Communications, 2021, 57, 1550-1567.	2.2	22
297	Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 2021, 50, 11785-11843.	18.7	174
298	Controllable Generation of Reactive Oxygen Species on Cyano-Group-Modified Carbon Nitride for Selective Epoxidation of Styrene. Innovation(China), 2021, 2, 100089.	5.2	17
299	Granular Polymeric Carbon Nitride with Carbon Vacancies for Enhanced Photocatalytic Hydrogen Evolution. Solar Rrl, 2021, 5, 2000796.	3.1	23
300	2D materials and their heterostructures for photocatalytic water splitting and conversion of CO ₂ to value chemicals and fuels. JPhys Energy, 2021, 3, 022003.	2.3	33
301	Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nature Energy, 2021, 6, 388-397.	19.8	764
302	Enhancement in Photocatalytic H ₂ O ₂ Production over g-C ₃ N ₄ Nanostructures: A Collaborative Approach of Nitrogen Deficiency and Supramolecular Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 4520-4530.	3.2	87
303	Photothermal synergic catalytic degradation of the gaseous organic pollutant isopropanol in oxygen vacancies utilizing ZnFe ₂ O ₄ . Journal of Chemical Research, 2021, 45, 773-780.	0.6	2
304	Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chemical Engineering Journal, 2021, 409, 128184.	6.6	54
305	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	7.3	81
306	Molecular Triazine–Heptazine Junctions Promoting Exciton Dissociation for Overall Water Splitting with Visible Light. Journal of Physical Chemistry C, 2021, 125, 9818-9826.	1.5	55
307	MOF-derived synthesis of MnS/In2S3 p-n heterojunctions with hierarchical structures for efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2021, 588, 547-556.	5.0	48

#	Article	IF	CITATIONS
308	State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts. Frontiers in Energy, 2021, 15, 600-620.	1.2	13
309	Facile synthesis of the Z-scheme graphite-like carbon nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative removal of nitric oxides under visible light. Journal of Colloid and Interface Science, 2021, 588, 110-121.	5.0	29
310	Pointâ€Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g ₃ N ₄) Photocatalysts toward Artificial Photosynthesis. Small, 2021, 17, e2006851.	5.2	139
311	g-C3N4-Stabilised Organic–Inorganic Halide Perovskites for Efficient Photocatalytic Selective Oxidation of Benzyl Alcohol. Catalysts, 2021, 11, 505.	1.6	5
312	Novel hierarchical BiOBr-based photocatalyst co-modified with Ag nanoparticles and porous g-C3N4 nanosheets for efficient removal of tetracycline and Cr(VI). Journal of Materials Science: Materials in Electronics, 2021, 32, 13014-13028.	1.1	4
313	Carbon Defects Induced Delocalization of ï€ Electrons Enables Efficient Charge Separation in Graphitic Carbon Nitride for Increased Photocatalytic H2 Generation. Catalysis Letters, 2022, 152, 669-678.	1.4	6
314	Boosting CsPbBr ₃ â€Driven Superior and Longâ€Term Photocatalytic CO ₂ Reduction under Pure Water Medium: Synergy Effects of Multifunctional Melamine Foam and Graphitic Carbon Nitride (gâ€C ₃ N ₄). Solar Rrl, 2021, 5, 2100186.	3.1	19
315	An n-Type Benzobisthiadiazole-Based Covalent Organic Framework with Narrowed Bandgap and Enhanced Electroactivity. Chemistry of Materials, 2021, 33, 3566-3574.	3.2	21
316	Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy, 2021, 83, 105783.	8.2	42
317	Realization of Strong Room-Temperature Ferromagnetism in Atomically Thin 2D Carbon Nitride Sheets by Thermal Annealing. ACS Nano, 2021, 15, 12069-12076.	7.3	27
318	Inâ€depth Understanding of the Effects of Intramolecular Charge Transfer on Carbon Nitride Based Photocatalystsâ€. Chinese Journal of Chemistry, 2021, 39, 2044-2053.	2.6	18
319	Nanoporous CoFe2O4 Loaded with Pt-Ag for Photocatalytic Hydrogen Evolution. Jom, 2021, 73, 2798-2807.	0.9	2
320	Highly Polymerized Wine-Red Carbon Nitride to Enhance Photoelectrochemical Water Splitting Performance of Hematite. Journal of Physical Chemistry C, 2021, 125, 13273-13282.	1.5	15
321	Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nature Communications, 2021, 12, 3701.	5.8	175
322	Donor-acceptor carbon nitride with electron-withdrawing chlorine group to promote exciton dissociation. Chinese Journal of Catalysis, 2021, 42, 1168-1175.	6.9	19
323	Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance. Journal of Colloid and Interface Science, 2021, 594, 64-72.	5.0	11
324	Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chemical Engineering Journal, 2021, 416, 129148.	6.6	165
325	Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Applied Catalysis B: Environmental, 2021, 288, 119994.	10.8	189

#	Article	IF	CITATIONS
326	Combined soft templating with thermal exfoliation toward synthesis of porous g-C3N4 nanosheets for improved photocatalytic hydrogen evolution. Journal of Materials Research and Technology, 2021, 13, 301-310.	2.6	23
327	Application of potassium-modified carbon nitride as a highly efficient recyclable catalyst for synthesis of 4H-chromene derivatives. Research on Chemical Intermediates, 2022, 48, 307-320.	1.3	8
328	Homogeneous Carbon/Potassiumâ€Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Nearâ€Infrared Photocatalytic H ₂ Production. Advanced Materials, 2021, 33, e2101455.	11.1	144
329	Positive roles of Br in g-C3N4/PTCDI-Br heterojunction for photocatalytic degrading chlorophenols. Chemical Engineering Journal, 2021, 418, 129492.	6.6	15
330	Photodepositing CdS on the Active Cyano Groups Decorated gâ€C ₃ N ₄ in Zâ€Scheme Manner Promotes Visibleâ€Lightâ€Driven Hydrogen Evolution. Small, 2021, 17, e2102699.	5.2	51
331	Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO ₂ into CO. ACS Applied Materials & Interfaces, 2021, 13, 40629-40637.	4.0	51
332	Three-Dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chemical Engineering Journal, 2021, 418, 129117.	6.6	36
333	Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon, 2021, 181, 193-203.	5.4	81
334	Transparent g-C3N4 thin film: Enhanced photocatalytic performance and convenient recycling. Journal of Physics and Chemistry of Solids, 2021, 155, 110114.	1.9	6
335	Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 27014-27025.	3.8	16
336	Cyano group modulated porous carbon nitride assisted by silver nanowire for boosting photoreduction of aqueous Cr(VI). Journal of Environmental Chemical Engineering, 2021, 9, 105490.	3.3	13
337	Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline. Ceramics International, 2022, 48, 1306-1313.	2.3	33
338	Engineering of a Hollowâ€Structured Cu _{2â^'} <i>_X</i> S Nanoâ€Homojunction Platform for Near Infraredâ€Triggered Infected Wound Healing and Cancer Therapy. Advanced Functional Materials, 2021, 31, 2106700.	7.8	52
339	Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Research, 2023, 16, 4524-4530.	5.8	21
340	One-step fabrication of nitrogen-deficient carbon nitride through pyrolysis of melamine and 1,2,4-triazole for its enhanced photocatalytic degradation. Green Chemical Engineering, 2021, 2, 317-326.	3.3	4
341	Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2021, 42, 1608-1616.	6.9	67
342	Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. Journal of Catalysis, 2021, 401, 262-270.	3.1	18
343	Semi-chemical interaction between graphitic carbon nitride and Pt for boosting photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33, 3061-3064.	4.8	12

#	Article	IF	CITATIONS
344	Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Applied Catalysis B: Environmental, 2021, 292, 120212.	10.8	5
345	Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency. Applied Surface Science, 2021, 559, 149876.	3.1	17
346	Graphitic carbon nitride heterojunction photocatalysts for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 37242-37267.	3.8	36
347	A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Materials Today Energy, 2021, 21, 100829.	2.5	89
348	Engineering FeS2 nanoparticles on tubular g-C3N4 for photo-Fenton treatment of paint wastewater. Chinese Chemical Letters, 2022, 33, 3073-3077.	4.8	5
349	Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42, 1413-1438.	6.9	208
350	Surface oxygenous groups modified graphitic carbon nitride with significant positive shift of valence band for efficient photocatalytic oxidation. Applied Surface Science, 2021, 563, 150070.	3.1	9
351	In-situ construction of morphology-controllable 0D/1D g-C3N4 homojunction with enhanced photocatalytic activity. Applied Surface Science, 2021, 563, 150317.	3.1	24
352	Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Advances in Colloid and Interface Science, 2021, 296, 102523.	7.0	49
353	Eutectic iodide-based salt as a melem-to-PTI conversion stopping agent for all-in-one graphitic carbon nitride. Applied Catalysis B: Environmental, 2021, 294, 120222.	10.8	13
354	In-situ coating of multifunctional FeCo-bimetal organic framework nanolayers on hematite photoanode for superior oxygen evolution. Applied Catalysis B: Environmental, 2021, 297, 120406.	10.8	41
355	Recent advances in crystalline carbon nitride for photocatalysis. Journal of Materials Science and Technology, 2021, 91, 224-240.	5.6	97
356	Bridging regulation in graphitic carbon nitride for band-structure modulation and directional charge transfer towards efficient H2 evolution under visible-light irradiation. Journal of Colloid and Interface Science, 2021, 601, 220-228.	5.0	19
357	Macroscopic graphitic carbon nitride monolith for efficient hydrogen production by photocatalytic reforming of glucose under sunlight. Chemosphere, 2021, 283, 131174.	4.2	8
358	Photocatalytic H2O2 generation assisted photoelectrochemical water oxidation for enhanced BiVO4 photoanode performance. Chemical Engineering Journal Advances, 2021, 8, 100142.	2.4	13
359	Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H2 generation. Journal of Colloid and Interface Science, 2021, 601, 326-337.	5.0	27
360	Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. Journal of Materials Science and Technology, 2021, 95, 127-135.	5.6	41
361	Sodium doped flaky carbon nitride with nitrogen defects for enhanced photoreduction carbon dioxide activity. Journal of Colloid and Interface Science, 2021, 603, 210-219.	5.0	26

#	Article	IF	CITATIONS
362	Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120521.	10.8	86
363	Structural reconstruction of carbon nitride with tailored electronic structure: A bifunctional photocatalyst for cooperative artificial photosynthesis and selective phenylcarbinol oxidation. Applied Catalysis B: Environmental, 2021, 298, 120517.	10.8	7
364	Nitrogen defect engineering and π-conjugation structure decorated g-C3N4 with highly enhanced visible-light photocatalytic hydrogen evolution and mechanism insight. Chemical Engineering Journal, 2021, 425, 131844.	6.6	76
365	Engineered defect-rich TiO2/g-C3N4 heterojunction: A visible light-driven photocatalyst for efficient degradation of phenolic wastewater. Chemosphere, 2022, 286, 131696.	4.2	19
366	Carbon quantum dots sensitized 2D/2D carbon nitride nanosheets/bismuth tungstate for visible light photocatalytic degradation norfloxacin. Chemosphere, 2022, 287, 132126.	4.2	16
367	Stabilizing plasma-induced highly nitrogen-deficient g-C3N4 by heteroatom-refilling for excellent lithium-ion battery anodes. Chemical Engineering Journal, 2022, 427, 131032.	6.6	38
368	Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Applied Catalysis B: Environmental, 2022, 300, 120736.	10.8	70
369	Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation. Journal of Materials Science and Technology, 2022, 98, 160-168.	5.6	45
370	Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chemical Engineering Journal, 2022, 427, 130991.	6.6	85
371	Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chemical Engineering Journal, 2022, 427, 132032.	6.6	92
372	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
373	Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds. Advances in Colloid and Interface Science, 2020, 284, 102275.	7.0	30
374	Simple synthesis of the novel adsorbent BaCO3/g-C3N4 for rapid and high-efficient selective removal of Crystal Violet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124948.	2.3	9
375	In situ growth of CdS quantum dots on phosphorus-doped carbon nitride hollow tubes as active OD/1D heterostructures for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 577, 1-11.	5.0	63
376	3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 16576-16585.	1.3	86
377	Hybrid CN-MEA microplates with enhanced photocatalytic hydrogen evolution under visible light irradiation. Catalysis Science and Technology, 2017, 7, 3777-3784.	2.1	8
378	<i>In situ</i> ion exchange synthesis of MoS ₂ /g-C ₃ N ₄ heterojunctions for highly efficient hydrogen production. New Journal of Chemistry, 2018, 42, 910-917.	1.4	40
379	Facile <i>in situ</i> reductive synthesis of both nitrogen deficient and protonated g-C ₃ N ₄ nanosheets for the synergistic enhancement of visible-light H ₂ evolution. Chemical Science, 2020, 11, 2716-2728.	3.7	55

#	Article	IF	CITATIONS
380	A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion. Journal of Materials Chemistry A, 2020, 8, 3726-3734.	5.2	25
381	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 0, , 1.	5.8	9
382	Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. ACS Catalysis, 2021, 11, 13463-13471.	5.5	54
383	Cyano group-enriched crystalline graphitic carbon nitride photocatalyst: Ethyl acetate-induced improved ordered structure and efficient hydrogen-evolution activity. Journal of Colloid and Interface Science, 2022, 608, 1268-1277.	5.0	29
384	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2
385	Template-Assisted Surface Hydrophilicity of Graphitic Carbon Nitride for Enhanced Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2021, 4, 12965-12973.	2.5	13
386	Band structure-controlled P-C3N4 for photocatalytic water splitting via appropriately decreasing oxidation capacity. Journal of Alloys and Compounds, 2021, 895, 162513.	2.8	5
387	Simultaneous Heteroatom Doping and Microstructure Construction by Solid Thermal Melting Method for Enhancing Photoelectrochemical Property of g-C3N4 Electrodes. Separation and Purification Technology, 2021, , 120005.	3.9	7
388	Increased solar absorption and promoted photocarrier separation in atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Chemical Engineering Journal, 2022, 431, 133219.	6.6	7
389	Graphitic Azaâ€Fused π onjugated Networks: Construction, Engineering, and Taskâ€5pecific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
390	Preparation and photocatalytic performance of metallic Nb0.9Ta0.1S2/2D-C3N4 composite. Oxford Open Materials Science, 2020, 1, .	0.5	1
391	Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Applied Catalysis B: Environmental, 2022, 303, 120932.	10.8	127
392	Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Applied Catalysis B: Environmental, 2022, 303, 120929.	10.8	155
393	Crystallinity Modulation of Electron Acceptor in Oneâ€Photon Excitation Pathwayâ€Based Heterostructure for Visibleâ€Light Photocatalysis. Solar Rrl, 2022, 6, 2100901.	3.1	7
394	Ag and MOFs-derived hollow Co3O4 decorated in the 3D g-C3N4 for creating dual transferring channels of electrons and holes to boost CO2 photoreduction performance. Journal of Colloid and Interface Science, 2022, 609, 901-909.	5.0	26
395	Engineering Nitrogen Vacancy in Polymeric Carbon Nitride for Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 54967-54973.	4.0	42
396	UV-Vis-NIR full-range-responsive carbon-rich carbon nitride nanotubes for enhanced photocatalytic performance. New Journal of Chemistry, 2022, 46, 4654-4665.	1.4	5
397	Donor-acceptor type two-dimensional porphyrin-based covalent organic framework for visible-light-driven heterogeneous photocatalysis. Chemical Engineering Journal, 2022, 432, 134288.	6.6	56

#	Article	IF	CITATIONS
398	Highly efficient hydrogen evolution from water splitting on heptazine polymer with three types of defects. Applied Surface Science, 2022, 580, 152070.	3.1	7
399	The integration of Triazine-based porous organic polymer with bio-waste poplar catkin as water-floatable photocatalyst. Applied Surface Science, 2022, 581, 152409.	3.1	12
400	Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2022, 14, 3970-3979.	4.0	44
401	Graphitic carbon nitride for photocatalytic hydrogen production. , 2022, , 17-68.		2
402	BiOCl Nanorings with Co-Exposed (110)/(001) Facets for Photocatalytic Degradation of Organic Dyes. ACS Applied Nano Materials, 2022, 5, 2476-2482.	2.4	12
404	Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H ₂ O ₂ evolution. Energy and Environmental Science, 2022, 15, 830-842.	15.6	308
405	Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. Chinese Journal of Catalysis, 2022, 43, 679-707.	6.9	53
406	Outstanding catalytic performance of metal-free peroxymonosulfate activator: Important role of chrysotile. Separation and Purification Technology, 2022, 287, 120526.	3.9	12
407	Photo-thermal conversion of CO2 and biomass-based glycerol into glycerol carbonate over Co3O4-ZnO p-n heterojunction catalysts. Fuel, 2022, 315, 123294.	3.4	4
408	Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance. Applied Catalysis B: Environmental, 2022, 306, 121107.	10.8	112
409	Bandgap engineered g-C3N4 and its graphene composites for stable photoreduction of CO2 to methanol. Carbon, 2022, 192, 101-108.	5.4	42
410	Built-In Electric Field Directs Electron Transport at Ultrathin Ni(OH) ₂ /Metal–Organic Framework Interface for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 2161-2168.	2.5	9
411	Cocatalysis of Nickle Species on G-C3n4 for Enhanced Photocatalytic Co2 Reduction Performance. SSRN Electronic Journal, 0, , .	0.4	0
412	Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO ₂ –TiC/g-C ₃ N ₄ for photocatalytic CO ₂ reduction <i>via</i> dry reforming of methane. Catalysis Science and Technology, 2022. 12. 2804-2818.	2.1	9
413	Enhanced the Synergistic Effect of Tetracycline Adsorption and Photocatalytic Degradation on a Mesoporous Carbon Nitride. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1567-1581.	1.9	0
414	Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11853-11862.	3.8	5
415	In-situ-reduced synthesis of cyano group modified g-C3N4/CaCO3 composite with highly enhanced photocatalytic activity for nicotine elimination. Journal of Environmental Sciences, 2023, 126, 517-530.	3.2	17
416	Rapid Self-Decomposition of g-C ₃ N ₄ During Gas–Solid Photocatalytic CO ₂ Reduction and Its Effects on Performance Assessment. ACS Catalysis, 2022, 12, 4560-4570.	5.5	86

#	Article	IF	CITATIONS
417	Green fabrication of citrus pectin-Ag@AgCl/g-C3N4 nanocomposites with enhanced photocatalytic activity for the degradation of new coccine. Food Chemistry, 2022, 387, 132928.	4.2	11
418	Ascorbic acid-induced structural defect in photocatalytic graphitic carbon nitride to boost H2O2 fuel cell performance. Journal of Power Sources, 2022, 532, 231368.	4.0	7
419	Long afterglow phosphor driven g-C3N4 photocatalyst for continuous water purification under light and dark conditions. Journal of Solid State Chemistry, 2022, 310, 123057.	1.4	7
420	Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 C-site vacancies for photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2022, 311, 121372.	10.8	54
421	Photocatalytic O2 activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation. Applied Catalysis B: Environmental, 2022, 310, 121329.	10.8	90
422	Chemical Cutting of Network Nodes in Polymeric Carbon Nitride for Enhanced Visible-Light Photocatalytic Hydrogen Generation. ACS Applied Nano Materials, 2022, 5, 691-701.	2.4	8
423	Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Zâ€Scheme ZnIn ₂ S ₄ /gâ€C ₃ N ₄ Heterojunction. Advanced Functional Materials, 2022, 32, .	7.8	147
424	Promoted charge separation and specific surface area <i>via</i> interlacing of N-doped titanium dioxide nanotubes on carbon nitride nanosheets for photocatalytic degradation of Rhodamine B. Nanotechnology Reviews, 2022, 11, 1592-1605.	2.6	6
425	Engineering hollow Ni–Fe-based mesoporous spherical structure derived from MOF for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 17662-17672.	3.8	5
426	Boosting photocatalytic hydrogen evolution via regulating Pt chemical states. Chemical Engineering Journal, 2022, 442, 136334.	6.6	23
427	Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors. Nanotechnology, 2022, 33, 322001.	1.3	7
428	Zif-67-Derived Ultrathin Co-Ni Layered Double Hydroxides Wrapped on 3d G-C3n4 with Enhanced Visible-Light Photocatalytic Performance for Greenhouse Gas Co2 Reduction. SSRN Electronic Journal, 0, , .	0.4	Ο
429	Rational design of plasmonic Ag@CoFe2O4/g-C3N4 p-n heterojunction photocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 18708-18724.	3.8	17
430	Crystalline Intramolecular Ternary Carbon Nitride Homojunction for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2022, 12, 6345-6358.	5.5	101
431	Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan. Research on Chemical Intermediates, 2022, 48, 2295-2311.	1.3	3
432	A universal glass-induced method for the synthesis of cyano group modified g-C3N4 with excellent photocatalytic performance. Journal of Physics and Chemistry of Solids, 2022, 167, 110771.	1.9	2
433	Optimal growth of sodium titanate nanoflower on TiO2 thin film for the fabrication of a novel Ti/TiO2/Na2Ti3O7 photoanode with excellent stability. Journal of Alloys and Compounds, 2022, 913, 165337.	2.8	9
434	Synergy of nitrogen vacancies and intercalation of carbon species for enhancing sunlight photocatalytic hydrogen production of carbon nitride. Applied Catalysis B: Environmental, 2022, 314, 121497.	10.8	37

CITATION REPORT ARTICLE IF CITATIONS Engineered graphite carbon nitride for efficient elimination of indoor formaldehyde at ambient 3.3 6 temperature. Journal of Environmental Chemical Engineering, 2022, 10, 107881. Carbon Nitride Homojunction with Functional Surface for Efficient Photocatalytic Production of 0.4 H2o2. SSRN Electronic Journal, 0, , . A Photo- and Redox Actives Mesoporous 3d Covalent Organic Framework Enables Highly Efficient 0 0.4 Metal-Free Photoredox Catalysis. SSRN Electronic Journal, 0, , . Potassium gluconate-cooperative pore generation based on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen production and antibiotic degradation. Journal of Environmental Chemical Engineering, 2022, 10, 107986. Piezocatalytic performance difference of graphitic carbon nitride (g-C3N4) derived from different 1.2 16 precursors. Chemical Physics Letters, 2022, 801, 139748. Electrostatic self-assembly combined with microwave hydrothermal strategy: construction of 1D/1D carbon nanofibers/crystalline g-C3N4 heterojunction for boosting photocatalytic hydrogen production. Nano Energy, 2022, 99, 107432. 8.2 Cyanamide-defect-induced built-in electric field in crystalline carbon nitride for enhanced visible to 3.0 14 near-infrared light photocatalytic activity. Inorganic Chemistry Frontiers, 2022, 9, 4320-4328. Collaborative enhancement in charge separation and photon harvesting of 2D/2D heterojunction photocatalyst by horizontal loading of SnS2 nanosheets on g-CN films. Catalysis Science and 2.1 Technology, 0, , . A review on synthesis, modification method, and challenges of light-driven H2 evolution using 7.0 22 g-C3N4-based photocatalyst. Advances in Colloid and Interface Science, 2022, 307, 102722. Two-Dimensional Photocatalysts for Energy and Environmental Applications. Solar, 2022, 2, 305-320. Facile oneâ€pot pyrolysis preparation of <scp>SnO₂</scp>gâ€C₃N₄</scp> composites for improved 2 1.6 photocatalytic <scp>H₂</scp> production. Journal of Chemical Technology and Biotechnology, 2022, 97, 2921-2931. ZIF-67-derived ultrathin Co-Ni layered double hydroxides wrapped on 3D g-C3N4 with enhanced visible-light photocatalytic performance for greenhouse gas CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108119. 3.3 Phâ€"Cn as a Novel Ecl Emitter Combining Catalysis and Luminescence in One. SSRN Electronic Journal, 0.4 0 $\label{eq:capture} Capture \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct High } \widehat{a} \in \mathbb{T} \mbox{ransport Double Enhancement Strategy to Construct$ Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (gâ[^]CN) 1.9 2

	Electrodes. Nanomateriais, 2022, 12, 2374.		
450	Elucidating Orbital Delocalization Effects on Boosting Electrochemiluminescence Efficiency of Carbon Nitrides. Advanced Optical Materials, 2022, 10, .	3.6	24
451	Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review. Arabian Journal of Chemistry, 2022, 15, 104070.	2.3	27
452	Carbohydrate-regulated synthesis of ultrathin porous nitrogen-vacancy polymeric carbon nitride for highly efficient Visible-light hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138010.	6.6	6

435

437

438

439

441

442

443

444

445

446

447

448

449

0, , .

#	ARTICLE	IF	CITATIONS
453	Homojunction photocatalysts for water splitting. Nano Research, 2022, 15, 10171-10184.	5.8	34
454	A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. Journal of Catalysis, 2022, 413, 692-702.	3.1	4
455	Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C N and K-doping sites on graphitic carbon nitride nanorod arrays. Applied Catalysis B: Environmental, 2022, 317, 121752.	10.8	22
456	Effective modification of photocatalytic and piezocatalytic performances for poly(heptazine imide) by carbon dots decoration. Dalton Transactions, 2022, 51, 13015-13021.	1.6	6
457	Rich Indiumâ€Vacancies In ₂ S ₃ with Atomic p–n Homojunction for Boosting Photocatalytic Multifunctional Properties. Small, 2022, 18, .	5.2	28
458	Magnetic MgFe2O4/MIL-88A catalyst for photo-Fenton sulfamethoxazole decomposition under visible light. Separation and Purification Technology, 2022, 301, 121965.	3.9	29
459	A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction. Chinese Chemical Letters, 2023, 34, 107771.	4.8	17
460	1 D CeO2/g-C3N4 type II heterojunction for visible-light-driven photocatalytic hydrogen evolution. Inorganic Chemistry Communication, 2022, 144, 109838.	1.8	17
461	Molybdenum atomic sites embedded 1D carbon nitride nanotubes as highly efficient bifunctional photocatalyst for tetracycline degradation and hydrogen evolution. Chemical Engineering Journal, 2023, 451, 138305.	6.6	16
462	MOF-derived tunable spin-state MnIII doped g-C3N4 photocatalysts with enhanced photocatalytic activity. Separation and Purification Technology, 2022, 302, 122146.	3.9	7
463	Nitrogen defect-containing polymeric carbon nitride for efficient photocatalytic H ₂ evolution and RhB degradation under visible light irradiation. RSC Advances, 2022, 12, 24713-24723.	1.7	2
464	Organic composite photocatalysts from g-C3N4 and soluble dibenzothiophene-S-S'-dioxide-containing polymer for hydrogen evolution. New Journal of Chemistry, 0, , .	1.4	0
465	New Application of Resin Macrosphere: Preparation of Bi2o3@C Photocatalysts as Cheap Organic Carbon Source and Application in Dye Wastewater Treatment. SSRN Electronic Journal, 0, , .	0.4	0
466	In-situ exsolved NiS nanoparticle-socketed CdS with strongly coupled interfaces as a superior visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2023, 321, 122028.	10.8	24
467	Facile Chemical Vapor Modification Strategy to Construct Surface Cyanoâ€Rich Polymer Carbon Nitrides for Highly Efficient Photocatalytic H ₂ Evolution. ChemSusChem, 2022, 15, .	3.6	5
468	Structural, Electronic, and Magnetic Characteristics of Graphitic Carbon Nitride Nanoribbons and Their Applications in Spintronics. Journal of Physical Chemistry C, 2022, 126, 16429-16436.	1.5	3
469	Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. Trends in Chemistry, 2022, 4, 984-1004.	4.4	12
470	Multiscale modification of carbon nitride-based homojunction for enhanced photocatalytic atrazine decomposition. Journal of Colloid and Interface Science, 2023, 630, 127-139.	5.0	12

#	Article	IF	CITATIONS
471	Synergistic effect of biomass-derived carbon decoration and nitrogen defects on seaweed-like tubular g-C ₃ N ₄ for enhanced photocatalytic H ₂ evolution. Catalysis Science and Technology, 2022, 12, 7427-7432.	2.1	3
472	Engineering doping and defect in graphitic carbon nitride by one-pot method for enhanced photocatalytic hydrogen evolution. Ceramics International, 2023, 49, 6729-6738.	2.3	7
473	Ph–CN as a novel ECL emitter combining catalysis and luminescence in one. Sensors and Actuators B: Chemical, 2023, 375, 132921.	4.0	5
474	A Targeted Review of Current Progress, Challenges and Future Perspective of g ₃ N ₄ based Hybrid Photocatalyst Toward Multidimensional Applications. Chemical Record, 2023, 23, .	2.9	19
475	Multication and Structure Regulation: Utilizing Xâ€Đoped (X = Co, Mn, Cu) ZnS/CoO Hollow Composites to Spatially Propel the Charge for Superior Solar Hydrogen Evolution. Solar Rrl, 2023, 7, .	⁵ 3.1	10
476	Heptazineâ€Based Orderedâ€Distorted Copolymers with Enhanced Visibleâ€Light Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	32
477	3D g-C3N4/Mn3O4 heterostructures towards high energy density supercapacitor. Journal of Electroanalytical Chemistry, 2022, 926, 116928.	1.9	3
478	Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chemical Engineering Journal, 2023, 453, 139755.	6.6	87
479	Dual-defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: Performance, degradation pathway, and mechanism. Separation and Purification Technology, 2023, 306, 122578.	3.9	15
480	Novel 3D multi-layered carbon nitride/indium sulfide heterostructure for boosted superoxide anion radical generation and enhanced photocatalysis under visible light. Chemical Engineering Journal, 2023, 453, 139776.	6.6	19
481	Synthesis, characterization and photocatalytic properties of In2.77S4/Ti3C2 composites. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
482	Chlorine-mediated synthesis of self-exfoliated and wavy-structured graphitic carbon nitride nanosheets for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 3893-3900.	3.8	2
483	The introduction of carbon nanosheet buffer layer for enhanced hydrogen evolution performance of C ₃ N ₄ /CoP photocatalysts. Journal of Applied Physics, 2022, 132, 185305.	1.1	0
484	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	4.6	14
485	Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring-promoted piezo–photocatalysis. Journal of Colloid and Interface Science, 2023, 632, 271-284.	5.0	17
486	Trade-Off of Metal Sites in Fe–Ni Bimetal Metal–Organic Frameworks for Efficient CO ₂ Photoreduction with Nearly 100% CO Selectivity. ACS Applied Materials & Interfaces, 2022, 14, 52868-52876.	4.0	6
487	Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy, 2023, 105, 108032.	8.2	60
488	Rational design of modified donor-acceptor functionalized graphitic carbon nitride structures with tailored optoelectronic and textural features for visible light-assisted H2O2 production. Journal of Alloys and Compounds, 2023, 937, 168420.	2.8	10

#	Article	IF	CITATIONS
489	Constructing the multilayer O-g-C3N4@W18O49 heterostructure for deeply photocatalytic oxidation NO. Separation and Purification Technology, 2023, 307, 122841.	3.9	6
490	Fabricating metal-free Z-scheme heterostructures with nitrogen-deficient carbon nitride for fast photocatalytic removal of acetaminophen. Separation and Purification Technology, 2023, 308, 122964.	3.9	9
491	A hydroxyl-induced carbon nitride homojunction with functional surface for efficient photocatalytic production of H2O2. Applied Catalysis B: Environmental, 2023, 324, 122216.	10.8	27
492	Construction of PdS@MIL-125-NH2@ZnS type-II heterostructure with efficient charge separation for boosted photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2023, 145, 116-124.	5.6	13
493	Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light. Chemical Engineering Journal, 2023, 457, 141261.	6.6	23
494	Visible Light-Active Ternary Heterojunction Photocatalyst for Efficient CO ₂ Reduction with Simultaneous Amine Oxidation and Sustainable H ₂ O ₂ Production. ACS Applied Materials & amp; Interfaces, 2023, 15, 914-931.	4.0	9
495	The cooperative role of nitrogen defects and cyano-group functionalization in carbon nitride towards enhancing its CO ₂ photoreduction activity. Sustainable Energy and Fuels, 2023, 7, 1664-1676.	2.5	4
496	Spatially restricted strategy to construct crystalline carbon nitride nanosheet assists exciton dissociation to enhance photocatalytic hydrogen evolution activity. Applied Surface Science, 2023, 616, 156523.	3.1	11
497	Synthesis of a new class of high-entropy nitride ceramics and the effects of nitrogen vacancies on their magnetic properties. Applied Surface Science, 2023, 618, 156543.	3.1	2
498	Synthesis of Carbon Nitride Nanosheets with n→π* Electronic Transition for Boosting Photocatalytic CO ₂ Reduction. Journal of the Electrochemical Society, 2023, 170, 036502.	1.3	1
499	A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Materials Today Physics, 2023, 34, 101080.	2.9	17
500	Insights into adsorption and high photocatalytic oxidation of ciprofloxacin under visible light by intra-molecular Donor-Acceptor like p-n isotype heterojunction: Performance and mechanism. Chemical Engineering Journal, 2023, 464, 142533.	6.6	9
501	Plasma synthesis of K-doped amorphous carbon nitride with passivated trap states for enhanced photocatalytic H2O2 production. Journal of Alloys and Compounds, 2023, 947, 169663.	2.8	6
502	A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Applied Catalysis B: Environmental, 2023, 331, 122733.	10.8	52
503	Construction of triazine-heptazine-based carbon nitride heterojunctions boosts the selective photocatalytic Câ^'C bond cleavage of lignin models. Applied Catalysis B: Environmental, 2023, 331, 122688.	10.8	13
504	Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications. Journal of Colloid and Interface Science, 2023, 641, 861-874.	5.0	2
505	Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy, 2023, 108, 108228.	8.2	36
506	Anchoring TiO2@CsPbBr3 on g-C3N4 nanosheet for enhanced photocatalytic degradation activity of tetracycline hydrochloride. Diamond and Related Materials, 2023, 133, 109727.	1.8	6

#	Article	IF	CITATIONS
507	Interfacially bonded Co-N boosts photocatalytic H2 evolution in a closely coupled CoFe2O4/g-C3N4 composite structure. International Journal of Hydrogen Energy, 2023, 48, 18257-18267.	3.8	2
508	New application of resin macrospheres: preparation of Bi ₂ O ₃ /C photocatalysts from an inexpensive organic carbon source and their application in dye wastewater treatment. New Journal of Chemistry, 2023, 47, 5903-5914.	1.4	0
509	Selective CO ₂ Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS Nano, 2023, 17, 4922-4932.	7.3	16
510	Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 46, 91-102.	6.9	4
511	Ordered Co ^{III} â€MOF@Co ^{II} â€MOF Heterojunction for Highly Efficient Photocatalytic Syngas Production. Small Science, 2023, 3, .	5.8	2
512	Efficient Doping Induced by Charge Transfer at the Hetero-Interface to Enhance Photocatalytic Performance. ACS Applied Materials & Interfaces, 2023, 15, 12924-12935.	4.0	15
513	Post-cyclization of a bisimine-linked covalent organic framework to enhance the performance of visible-light photocatalytic hydrogen evolution. Polymer Chemistry, 2023, 14, 1323-1329.	1.9	1
514	Three-Component Donorâ^'ï€â€"Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 0, , .	6.6	12
515	Effect of Functional Group Modifications on the Photocatalytic Performance of g ₃ N ₄ . Small, 2023, 19, .	5.2	23
516	Unraveling the dual defect effects in C3N5 for piezo-photocatalytic degradation and H2O2 generation. Applied Catalysis B: Environmental, 2023, 332, 122752.	10.8	29
517	Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. , 2023, 1, 333-352.		10
529	g-C ₃ N ₄ Photocatalysts: Utilizing Electron–Hole Pairs for Boosted Redox Capability in Water Splitting. Energy Material Advances, 2023, 4, .	4.7	7
534	Recent progress of graphitic carbon nitride films and their application in photoelectrochemical water splitting. Sustainable Energy and Fuels, 0, , .	2.5	0
559	A Review on Advancements of Graphitic Carbon Nitride Based Phototelectrodes for Photoelectrochemical Water Splitting. Energy Advances, 0, , .	1.4	0
565	Decade Milestone Advancement of Defect-Engineered g-C3N4 for Solar Catalytic Applications. Nano-Micro Letters, 2024, 16, .	14.4	0
582	Designing heterostructures for production of solar fuels. , 2024, , 255-275.		0