Thirst neurons anticipate the homeostatic consequence

Nature 537, 680-684

DOI: 10.1038/nature18950

Citation Report

#	Article	IF	CITATIONS
1	Thirst. Current Biology, 2016, 26, R1260-R1265.	1.8	85
2	Firing Up in Anticipation. Cell, 2016, 167, 871-873.	13.5	0
3	Forecast for water balance. Nature, 2016, 537, 626-627.	13.7	8
4	Small molecular replicators go organic. Nature, 2016, 537, 627-628.	13.7	4
5	ãŒã,"ç″èfžãēæ»ã⊷ã┥ãªãŠã,«ãfªã,¦ãfã§åç−«ç³»ã,'抑制ã™ã,‹. Nature Digest, 2016, 13, 33-35.	0.0	0
6	The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature Reviews Endocrinology, 2017, 13, 521-535.	4.3	87
7	Neural circuits underlying thirst and fluid homeostasis. Nature Reviews Neuroscience, 2017, 18, 459-469.	4.9	190
8	Nephrogenic diabetes insipidus. Current Opinion in Pediatrics, 2017, 29, 199-205.	1.0	39
9	Hunger and thirst interact to regulate ingestive behavior in flies and mammals. BioEssays, 2017, 39, 1600261.	1.2	13
10	Bidirectional Anticipation of Future Osmotic Challenges by Vasopressin Neurons. Neuron, 2017, 93, 57-65.	3.8	63
11	Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron, 2017, 96, 190-206.e7.	3.8	64
12	Dynamics of Gut-Brain Communication Underlying Hunger. Neuron, 2017, 96, 461-475.e5.	3.8	193
13	Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension, 2017, 70, 990-997.	1.3	18
14	Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 2017, 357, 1149-1155.	6.0	233
15	Neurons that drive and quench thirst. Science, 2017, 357, 1092-1093.	6.0	18
16	Toward a Wiring Diagram Understanding of Appetite Control. Neuron, 2017, 95, 757-778.	3.8	391
17	Craving for the future: the brain as a nutritional prediction system. Current Opinion in Insect Science, 2017, 23, 96-103.	2.2	31
18	Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R633-R645.	0.9	22

#	ARTICLE	IF	CITATIONS
19	Lateral Hypothalamic Control of Energy Balance. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2017, 9, i-106.	0.3	2
20	Vasopressin: physiology, assessment and osmosensation. Journal of Internal Medicine, 2017, 282, 284-297.	2.7	171
21	The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement. Neuron, 2017, 96, 1272-1281.e4.	3.8	89
22	Interaction between thermoregulation and osmoregulation in domestic animals. Revista Brasileira De Zootecnia, 2017, 46, 783-790.	0.3	8
23	Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. International Journal of Molecular Sciences, 2017, 18, 2385.	1.8	56
24	Ventromedial Hypothalamus and the Generation of Aggression. Frontiers in Systems Neuroscience, 2017, 11, 94.	1.2	91
25	On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics, 2017, 33, 3454-3460.	1.8	91
26	Salt and water: not so simple. Journal of Clinical Investigation, 2017, 127, 1625-1626.	3.9	10
27	Hierarchical neural architecture underlying thirst regulation. Nature, 2018, 555, 204-209.	13.7	113
28	Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. Biophysics Reports, 2018, 4, 82-93.	0.2	18
29	Activation of organum vasculosum neurones and water intake in mice by vasopressin neurones in the suprachiasmatic nucleus. Journal of Neuroendocrinology, 2018, 30, e12577.	1.2	12
30	Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate terrestrialization. Scientific Reports, 2018, 8, 625.	1.6	19
31	Influence of anterior midcingulate cortex on drinking behavior during thirst and following satiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 786-791.	3.3	18
32	Mind Reading and Writing: The Future of Neurotechnology. Trends in Cognitive Sciences, 2018, 22, 598-610.	4.0	65
33	The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocrine Reviews, 2018, 39, 333-368.	8.9	177
34	The Hypothalamic Preoptic Area and Body Weight Control. Neuroendocrinology, 2018, 106, 187-194.	1.2	38
35	The neural basis of homeostatic and anticipatory thirst. Nature Reviews Nephrology, 2018, 14, 11-25.	4.1	106
36	Optogenetic manipulation of ENS - The brain in the gut. Life Sciences, 2018, 192, 18-25.	2.0	7

#	Article	IF	Citations
37	Third Level: The Hypothalamus. , 2018, , 175-244.		1
38	Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Frontiers in Psychiatry, 2018, 9, 410.	1.3	40
39	Neural Circuit Motifs in Valence Processing. Neuron, 2018, 100, 436-452.	3.8	168
40	A corticopontine circuit for initiation of urination. Nature Neuroscience, 2018, 21, 1541-1550.	7.1	62
41	The timing of action determines reward prediction signals in identified midbrain dopamine neurons. Nature Neuroscience, 2018, 21, 1563-1573.	7.1	161
42	The Amphibious Mudskipper: A Unique Model Bridging the Gap of Central Actions of Osmoregulatory Hormones Between Terrestrial and Aquatic Vertebrates. Frontiers in Physiology, 2018, 9, 1112.	1.3	9
43	Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission. Cell Reports, 2018, 23, 2245-2253.	2.9	20
44	Modulation of synaptic inputs in magnocellular neurones in a rat model of cancer cachexia. Journal of Neuroendocrinology, 2018, 30, e12630.	1.2	0
45	Vasopressin and the Regulation of Thirst. Annals of Nutrition and Metabolism, 2018, 72, 3-7.	1.0	34
46	Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiological Reviews, 2018, 98, 1627-1738.	13.1	673
47	The Neurocircuitry of fluid satiation. Physiological Reports, 2018, 6, e13744.	0.7	12
48	Hypothalamic neurons controlling water homeostasis: it's about time. Current Opinion in Physiology, 2018, 5, 45-50.	0.9	3
49	Water is life. Acta Physiologica, 2018, 224, e13173.	1.8	4
50	Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study. Journal of Neurophysiology, 2018, 120, 2269-2281.	0.9	5
51	Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology, 2018, 33, 170-181.	1.6	27
52	How does drinking water affect attention and memory? The effect of mouth rinsing and mouth drying on children's performance. Physiology and Behavior, 2018, 194, 233-238.	1.0	9
53	Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends in Neurosciences, 2018, 41, 526-539.	4.2	22
54	Anterior cingulate cortex modulates the affectiveâ€motivative dimension of hyperosmolalityâ€induced thirst. Journal of Physiology, 2019, 597, 4851-4860.	1.3	5

#	Article	IF	CITATIONS
55	Translational approach to apathyâ€like behavior in mice: From the practical point of view. Psychiatry and Clinical Neurosciences, 2019, 73, 685-689.	1.0	2
56	Of Mice and Men—The Physiology, Psychology, and Pathology of Overhydration. Nutrients, 2019, 11, 1539.	1.7	20
57	Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell, 2019, 179, 1129-1143.e23.	13.5	265
58	Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes and Development, 2019, 33, 1136-1158.	2.7	39
59	Hypothalamic Heuristics for Survival. Trends in Endocrinology and Metabolism, 2019, 30, 689-691.	3.1	5
60	Allostasis: A Brain-Centered, Predictive Mode of Physiological Regulation. Trends in Neurosciences, 2019, 42, 740-752.	4.2	121
61	New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. New England Journal of Medicine, 2019, 380, 459-471.	13.9	71
62	From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. Journal of Neuroendocrinology, 2019, 31, e12689.	1.2	52
63	Renal efficiency underlies adaptive heterothermy of heat-stressed hypohydrated goats. Tropical Animal Health and Production, 2019, 51, 2287-2295.	0.5	3
64	Temporally and Spatially Distinct Thirst Satiation Signals. Neuron, 2019, 103, 242-249.e4.	3.8	54
65	Neural populations for maintaining body fluid balance. Current Opinion in Neurobiology, 2019, 57, 134-140.	2.0	13
66	Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nature Neuroscience, 2019, 22, 576-585.	7.1	97
67	Chemosensory modulation of neural circuits for sodium appetite. Nature, 2019, 568, 93-97.	13.7	47
68	A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature, 2019, 568, 98-102.	13.7	98
69	Leptin Receptor Signaling in Sim1-Expressing Neurons Regulates Body Temperature and Adaptive Thermogenesis. Endocrinology, 2019, 160, 863-879.	1.4	12
70	Neural mechanisms of social homeostasis. Annals of the New York Academy of Sciences, 2019, 1457, 5-25.	1.8	111
71	Rehydrating efficacy of maple water after exercise-induced dehydration. Journal of the International Society of Sports Nutrition, 2019, 16, 5.	1.7	8
72	Regulation of Thirst and Vasopressin Release. Annual Review of Physiology, 2019, 81, 359-373.	5.6	47

#	Article	IF	Citations
73	Hormonal regulation of thirst in the amphibious ray-finned fish suggests the requirement for terrestrialization during evolution. Scientific Reports, 2019, 9, 16347.	1.6	4
74	Thirst and Drinking Paradigms: Evolution from Single Factor Effects to Brainwide Dynamic Networks. Nutrients, 2019, 11, 2864.	1.7	24
75	Cell-Type Identification in the Autonomic Nervous System. Neuroscience Bulletin, 2019, 35, 145-155.	1.5	2
76	Next-Generation Tools to Study Autonomic Regulation In Vivo. Neuroscience Bulletin, 2019, 35, 113-123.	1.5	6
77	Sodium Is Detected by the OVLT to Regulate Sympathetic Tone. Neuron, 2019, 101, 3-5.	3.8	4
78	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
79	Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology, 2019, 154, 61-67.	2.0	32
80	Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology, 2019, 154, 13-21.	2.0	26
81	Nitric oxide signalling in the brain and its control of bodily functions. British Journal of Pharmacology, 2020, 177, 5437-5458.	2.7	48
82	Understanding the coalescence and non-coalescence of underwater oil droplets. Chemical Physics, 2020, 529, 110466.	0.9	7
83	Keeping time in the lamina terminalis: Novel oscillator properties of forebrain sensory circumventricular organs. FASEB Journal, 2020, 34, 974-987.	0.2	13
84	Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger. Cell, 2020, 180, 25-32.	13.5	95
85	Evaluation of a Safety Protocol for the Management of Thirst in the Postoperative Period. Journal of Perianesthesia Nursing, 2020, 35, 193-197.	0.3	7
86	The use of mentholated popsicle to reduce thirst during preoperative fasting: A randomised controlled trial. Journal of Clinical Nursing, 2020, 29, 840-851.	1.4	19
87	Ad libitum water consumption off-sets the thermal and cardiovascular strain exacerbated by dehydration during a 3-h simulated heatwave. European Journal of Applied Physiology, 2020, 120, 391-399.	1.2	14
88	The origins of thirst. Science, 2020, 370, 45-46.	6.0	5
89	A Novel Cortical Mechanism for Top-Down Control of Water Intake. Current Biology, 2020, 30, 4789-4798.e4.	1.8	13
90	Hindbrain Double-Negative Feedback Mediates Palatability-Guided Food and Water Consumption. Cell, 2020, 182, 1589-1605.e22.	13.5	49

#	Article	IF	CITATIONS
91	Primary polydipsia: Update. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101469.	2.2	12
92	Thirst recruits phasic dopamine signaling through subfornical organ neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30744-30754.	3.3	22
93	Review of computational neuroaesthetics: bridging the gap between neuroaesthetics and computer science. Brain Informatics, 2020, 7, 16.	1.8	11
94	Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake. Nature Communications, 2020, 11, 5692.	5.8	15
95	Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids. International Journal of Molecular Sciences, 2020, 21, 6748.	1.8	2
96	Inputs to Thirst and Drinking during Water Restriction and Rehydration. Nutrients, 2020, 12, 2554.	1.7	19
97	Integrating Hunger with Rival Motivations. Trends in Endocrinology and Metabolism, 2020, 31, 495-507.	3.1	47
98	Distinguishing Low and High Water Consumers—A Paradigm of Disease Risk. Nutrients, 2020, 12, 858.	1.7	16
99	Neuronal Networks in Hypertension, Hypertension, 2020, 76, 300-311.	1.3	54
100	A Farewell to Art: Aesthetics as a Topic in Psychology and Neuroscience. Perspectives on Psychological Science, 2020, 15, 630-642.	5.2	42
101	Estimation of Current and Future Physiological States in Insular Cortex. Neuron, 2020, 105, 1094-1111.e10.	3.8	142
102	Comment on: "The Utility of Thirst as a Measure of Hydration Status Following Exercise-Induced Dehydration― Nutrients, 2020, 12, 215.	1.7	0
103	To Relieve the Patient's Thirst, Refresh the Mouth First: A Pilot Study Using Mini Mint Ice Cubes in Severely Dehydrated Patients. Journal of Pain and Symptom Management, 2020, 60, e82-e88.	0.6	6
104	Layers of signals that regulate appetite. Current Opinion in Neurobiology, 2020, 64, 79-88.	2.0	27
105	Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis. Frontiers in Neuroscience, 2020, 14, 219.	1.4	13
106	Computational Models of Interoception and Body Regulation. Trends in Neurosciences, 2021, 44, 63-76.	4.2	97
107	Progression of human subjective perceptions during euhydration, mild dehydration, and drinking. Physiology and Behavior, 2021, 229, 113211.	1.0	6
108	At what stage in the drinking process does drinking water affect attention and memory? Effects of mouth rinsing and mouth drying in adults. Psychological Research, 2021, 85, 214-222.	1.0	3

#	Article	IF	CITATIONS
109	The median preoptic nucleus: A major regulator of fluid, temperature, sleep, and cardiovascular homeostasis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 435-454.	1.0	3
111	Concept analysis of Perioperative Thirst for the development of a new nursing diagnosis. Revista Brasileira De Enfermagem, 2021, 74, e20200065.	0.2	8
112	The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 203-215.	1.0	5
113	Disorders of the Posterior Pituitary. , 2021, , 357-394.		9
114	Effects of the ice popsicle on vasopressin, osmolality, thirst intensity, and thirst discomfort. Revista Gaucha De Enfermagem / EENFUFRGS, 2021, 42, e20190449.	0.2	3
115	Hyperdipsia in sheep bearing lesions in the medial septal nucleus. Brain Research, 2021, 1752, 147223.	1.1	2
116	Use of Mentholated Popsicle in the Management of the Elderly Patient's Thirst in the Immediate Postoperative Period: A Randomized Controlled Trial. Journal of Perianesthesia Nursing, 2021, 36, 262-267.	0.3	8
117	Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obesity Research and Clinical Practice, 2021, 15, 114-123.	0.8	22
118	Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus. Frontiers in Endocrinology, 2021, 12, 627343.	1.5	3
119	The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell, 2021, 184, 1500-1516.	13.5	48
120	The emerging role of the apelinergic system in kidney physiology and disease. Nephrology Dialysis Transplantation, 2022, 37, 2314-2326.	0.4	8
122	Evolution of water conservation in humans. Current Biology, 2021, 31, 1804-1810.e5.	1.8	18
123	Fluid and electrolyte balance considerations for female athletes. European Journal of Sport Science, 2022, 22, 697-708.	1.4	9
124	Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites, 2021, 11, 494.	1.3	14
125	Intermittent cold exposure improves glucose homeostasis despite exacerbating dietâ€induced obesity in mice housed at thermoneutrality. Journal of Physiology, 2022, 600, 829-845.	1.3	9
126	Effect of intestinal dialysis using polyethylene glycol on fluid balance and thirst in maintenance hemodialysis patients: A comparative study. Therapeutic Apheresis and Dialysis, 2021, , .	0.4	1
127	Provision of instructions to drink ad libitum or according to thirst sensation: impact during 120 km of cycling in the heat in men. Applied Physiology, Nutrition and Metabolism, 2021, , .	0.9	2
128	Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron, 2021, 109, 3576-3593.	3.8	45

#	Article	IF	CITATIONS
129	Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. ELife, 2021, 10, .	2.8	10
130	Is a neuropathic mechanism involved in the perception of oral dryness?. Archives of Oral Biology, 2021, 130, 105213.	0.8	4
131	Neurobehavioral Studies of Thirst. , 2022, , 39-44.		O
132	Evaluation of the protocol for thirst management using ice popsicles in the immediate postoperative period: A pilot study in southern Brazilian hospital. Anais Da Academia Brasileira De Ciencias, 2021, 93, .	0.3	2
133	Advances in the Management of Perioperative Patients' Thirst. AORN Journal, 2020, 111, 165-179.	0.2	26
134	Vagal sensory neurons and gut-brain signaling. Current Opinion in Neurobiology, 2020, 62, 133-140.	2.0	38
136	Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science, 2019, 364, 253.	6.0	256
137	FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology, 2020, 161, .	1.4	57
138	Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst. Journal of Neuroscience, 2020, 40, 2069-2079.	1.7	12
139	Acute intravenous acyl ghrelin infusion induces thirst but does not affect sodium excretion: two randomized, double-blind, placebo-controlled crossover studies in hypopituitary patients. European Journal of Endocrinology, 2019, 181, 23-30.	1.9	7
141	Hunger neurons drive feeding through a sustained, positive reinforcement signal. ELife, 2016, 5, .	2.8	142
142	Low wnt/ \hat{I}^2 -catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. ELife, 2019, 8, .	2.8	60
143	Neurexophilin4 is a selectively expressed \hat{l}_{\pm} -neurexin ligand that modulates specific cerebellar synapses and motor functions. ELife, 2019, 8, .	2.8	19
146	āf^āf"āfē,¼ā«āŠā'ā,‹é£²æ°′å^¶å¾¡æ©Ÿæ§‹ā®è¡Œå‹•生ç‡å¦çš"ç"ç©¶. Comparative Endocrinology, 2018, 44, I	1 2 69130.	O
147	SYSTEM OF METABOLISM OF DRINKING WATER AS A METHODOLOGICAL BASIS FOR THE ESTIMATION OF ITS MINERAL COMPOSITION. Gigiena I Sanitariia, 2019, 98, 555-562.	0.1	4
149	Rostral ventrolateral medulla, retropontine region and autonomic regulations. Autonomic Neuroscience: Basic and Clinical, 2022, 237, 102922.	1.4	14
150	Vasopressin and Breathing: Review of Evidence for Respiratory Effects of the Antidiuretic Hormone. Frontiers in Physiology, 2021, 12, 744177.	1.3	7
151	Rational regulation of water-seeking effort in rodents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	3

#	Article	IF	CITATIONS
152	A Novel Mathematical Model to Represent the Hypothalamic Control on Water Balance. Lecture Notes in Networks and Systems, 2022, , 581-591.	0.5	0
153	Insights into Salt Handling and Blood Pressure. New England Journal of Medicine, 2021, 385, 1981-1993.	13.9	61
154	Towards understanding the neural origins of hibernation. Journal of Experimental Biology, 2022, 225,	0.8	10
155	Interoception as modeling, allostasis as control. Biological Psychology, 2022, 167, 108242.	1.1	34
156	Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron, 2022, 110, 1036-1050.e7.	3.8	14
157	(Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Current Hypertension Reviews, 2022, 18, 101-116.	0.5	3
158	Subfornical organ interleukin 1 receptor: A novel regulator of spontaneous and conditioned fear associated behaviors in mice. Brain, Behavior, and Immunity, 2022, 101, 304-317.	2.0	4
159	Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiology and Behavior, 2022, 247, 113707.	1.0	5
161	The gut-brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon. American Journal of Physiology - Renal Physiology, 2022, 322, G523-G533.	1.6	13
162	Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. International Journal of Obesity, 2022, 46, 718-725.	1.6	2
163	Crossâ€cultural variation in thirst perception in hotâ€humid and hotâ€arid environments: Evidence from two smallâ€scale populations. American Journal of Human Biology, 2022, 34, e23715.	0.8	5
166	The subfornical organ regulates acidosisâ€evoked fear by engaging microglial acidâ€sensor TDAG8 and forebrain neurocircuits in male mice. Journal of Neuroscience Research, 2022, 100, 1732-1746.	1.3	3
167	Dopamine subsystems that track internal states. Nature, 2022, 608, 374-380.	13.7	54
168	Central regulation of body fluid homeostasis. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 283-324.	1.6	12
169	Gliotransmission of D-serine promotes thirst-directed behaviors in Drosophila. Current Biology, 2022, 32, 3952-3970.e8.	1.8	12
170	Central respiratory chemoreception. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, , 37-72.	1.0	14
171	Type A motivation or Biological Needs. , 2022, , 19-32.		0
172	Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology, 2023, 38, 73-81.	1.6	2

#	Article	IF	CITATIONS
173	Exploring the neurobiology of the premonitory phase of migraine preclinically $\hat{a} \in a$ role for hypothalamic kappa opioid receptors?. Journal of Headache and Pain, 2022, 23, .	2.5	3
174	The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew?. Reviews in the Neurosciences, 2023, 34, 295-311.	1.4	1
175	Secretin receptor deletion in the subfornical organ attenuates the activation of excitatory neurons under dehydration. Current Biology, 2022, 32, 4832-4841.e5.	1.8	9
176	Dynamic processing of hunger and thirst by common mesolimbic neural ensembles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	7
178	Variation in human water turnover associated with environmental and lifestyle factors. Science, 2022, 378, 909-915.	6.0	23
179	Catecholaminergic Structures of the Rat Subfornical Organ. Cell and Tissue Biology, 2022, 16, 568-575.	0.2	0
180	Behavioural osmoregulation during land invasion in fish: Prandial drinking and wetting of the dry skin. PLoS ONE, 2022, 17, e0277968.	1.1	0
181	Neuroscience: Secretin excites the thirst circuit. Current Biology, 2022, 32, R1318-R1320.	1.8	1
183	Disturbances of Hormonal Circadian Rhythms by Light Pollution. International Journal of Molecular Sciences, 2023, 24, 7255.	1.8	3
184	The role of glucagon-like peptide-1 (GLP-1) in fluid and food intakes in vasopressin-deficient Brattleboro rats. Physiology and Behavior, 2023, 262, 114093.	1.0	2
185	Relieving Perception of Thirst and Xerostomia in Patients with Palliative and End-of-life Care Needs: A Rapid Review. Journal of Pain and Symptom Management, 2023, 66, e45-e68.	0.6	2
186	Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metabolism, 2023, 35, 456-471.e6.	7.2	15
187	Thirst: neuroendocrine regulation in mammals. Veterinary Research Communications, 2023, 47, 1085-1101.	0.6	1
188	CPT1A in AgRP neurons is required for sex-dependent regulation of feeding and thirst. Biology of Sex Differences, 2023, 14, .	1.8	4
189	Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management. Endocrine Reviews, 2023, 44, 819-861.	8.9	7
190	Nos1+ and Nos1â^' excitatory neurons in the BLA regulate anxiety- and depression-related behaviors oppositely. Journal of Affective Disorders, 2023, 333, 181-192.	2.0	3
191	Bidirectional control of parathyroid hormone and bone mass by subfornical organ. Neuron, 2023, 111, 1914-1932.e6.	3.8	7