Solar parabolic dish Stirling engine system design, simu

Energy Conversion and Management 126, 60-75 DOI: 10.1016/j.enconman.2016.07.067

Citation Report

#	Article	IF	CITATIONS
1	Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation. Renewable Energy, 2017, 107, 23-35.	8.9	52
2	Parametric analysis and optimization of a solar assisted gas turbine. Energy Conversion and Management, 2017, 139, 151-165.	9.2	55
3	Design and thermal performances of a scalable linear Fresnel reflector solar system. Energy Conversion and Management, 2017, 146, 174-181.	9.2	42
4	Solar-driven Joule cycle reciprocating Ericsson engines for small scale applications. From improper operation to high performance. Energy Conversion and Management, 2017, 135, 101-116.	9.2	1
5	An Improved Multi-objective Bare-Bones PSO for Optimal Design of Solar Dish Stirling Engine Systems. Communications in Computer and Information Science, 2017, , 167-177.	0.5	1
6	Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton. Energy Conversion and Management, 2017, 150, 651-668.	9.2	11
7	Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Applied Energy, 2017, 205, 1394-1407.	10.1	61
8	Daily performance of parabolic trough solar collectors. Solar Energy, 2017, 158, 663-678.	6.1	83
9	Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques. Applied Energy, 2017, 204, 271-286.	10.1	50
10	Design and implementation of a 38 kW dish-Stirling concentrated solar power system. IOP Conference Series: Earth and Environmental Science, 2017, 93, 012052.	0.3	14
11	Thermal and exergy performance of a nanofluid-based solar dish collector with spiral cavity receiver. Applied Thermal Engineering, 2018, 135, 206-217.	6.0	44
12	Experimental study of carbon nano tube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: Outdoor tests. Energy Conversion and Management, 2018, 165, 593-601.	9.2	64
13	Design charts for Scheffler reflector. Solar Energy, 2018, 163, 104-112.	6.1	22
14	An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system. Renewable Energy, 2018, 123, 150-161.	8.9	14
15	A detailed parametric analysis of a solar dish collector. Sustainable Energy Technologies and Assessments, 2018, 25, 99-110.	2.7	51
16	Luter system a new approach to CSP energy diversification. Renewable and Sustainable Energy Reviews, 2018, 82, 2106-2111.	16.4	0
17	Realization of an Energetic Hub Based on a High-Performance Dish Stirling Plant. , 2018, , .		1
18	Design and Construction for Hydroxides Based Air Conditioning System with Solar Collectors for Confined Roofs. , 0, , .		Ο

#	ARTICLE	IF	CITATIONS
19	Solar power technology for electricity generation: A critical review. Energy Science and Engineering, 2018, 6, 340-361.	4.0	251
20	Review on solar Stirling engine: Development and performance. Thermal Science and Engineering Progress, 2018, 8, 244-256.	2.7	78
21	A simulation tool for concentrated solar power based on micro gas turbine engines. Energy Conversion and Management, 2018, 174, 844-854.	9.2	21
22	Solar tracking systems: Technologies and trackers drive types – A review. Renewable and Sustainable Energy Reviews, 2018, 91, 754-782.	16.4	194
23	Technological challenges and optimization efforts of the Stirling machine: A review. Energy Conversion and Management, 2018, 171, 1365-1387.	9.2	103
24	Advances in solar thermal harvesting technology based on surface solar absorption collectors: A review. Solar Energy Materials and Solar Cells, 2018, 187, 123-139.	6.2	42
25	Mathematical modeling, simulation and optimization of solar thermal powered Encontech engine for desalination. Solar Energy, 2018, 172, 104-115.	6.1	6
26	4.6 Stirling Engines. , 2018, , 169-208.		8
27	A Comparative Study on Hydrogen Production from Small-Scale PV and CSP Systems. Lecture Notes in Electrical Engineering, 2019, , 723-730.	0.4	3
28	Application-based design of the Fresnel lens solar concentrator. Renewables: Wind, Water, and Solar, 2019, 6, .	3.7	11
29	Thermodynamic Performance Evaluation of a Solar Parabolic Dish Assisted Multigeneration System. Journal of Solar Energy Engineering, Transactions of the ASME, 2019, 141, .	1.8	13
30	Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of"Flat-front‣tartup model. Energy, 2019, 183, 936-945.	8.8	21
31	Energy modeling of a solar dish/Stirling by artificial intelligence approach. Energy Conversion and Management, 2019, 199, 112021.	9.2	38
32	Designing and modeling a novel dual parabolic concentrator with three degree of freedom (DOF) robotic arm. Solar Energy, 2019, 194, 436-449.	6.1	5
33	A Procedure for the Producibility Curve Identification of a Dish-Stirling Plant, Starting from Experimental Data. , 2019, , .		0
34	A maximum power control based on flexible collector applied to concentrator solar power. Renewable and Sustainable Energy Reviews, 2019, 110, 315-331.	16.4	3
35	Assessment of the concentrated solar power potential in Botswana. Renewable and Sustainable Energy Reviews, 2019, 109, 294-306.	16.4	13
36	Design and ray tracing of multifaceted Scheffler reflector with novel crossbars. Solar Energy, 2019, 185, 363-373.	6.1	12

#	Article	IF	CITATIONS
37	Applications of cascaded phase change materials in solar water collector storage tanks: A review. Solar Energy Materials and Solar Cells, 2019, 199, 24-49.	6.2	125
38	A novel solar assisted vacuum thermionic generator-absorption refrigerator cogeneration system producing electricity and cooling. Energy Conversion and Management, 2019, 187, 83-92.	9.2	15
39	Concentrated Solar Power Dish Stirling Technology in Prospect of Energy Crisis in Bangladesh. , 2019, , .		1
40	Comparative Investigation for Solar Thermal Energy Technologies System. Journal of Physics: Conference Series, 2019, 1362, 012116.	0.4	1
41	An Improved Bare Bone Multi-Objective Particle Swarm Optimization Algorithm for Solar Thermal Power Plants. Energies, 2019, 12, 4480.	3.1	6
42	Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights. Technological Forecasting and Social Change, 2019, 140, 258-270.	11.6	91
43	Modelling, simulation and thermal analysis of a solar dish/Stirling system: A case study in Natal, Brazil. Energy Conversion and Management, 2019, 181, 189-201.	9.2	32
44	Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Applied Thermal Engineering, 2019, 148, 295-306.	6.0	119
45	Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid. Renewable Energy, 2019, 135, 259-265.	8.9	37
46	A simple and clean method to prepare SiC-containing vitreous ceramics for solar thermal storage in the clay-feldspar system. Journal of Cleaner Production, 2020, 248, 119257.	9.3	13
47	A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors. Applied Energy, 2020, 260, 114378.	10.1	39
48	Design and performance analysis of an annular fresnel solar concentrator. Energy, 2020, 210, 118594.	8.8	7
49	Optimization of hybridization configurations for concentrating solar power systems and coal-fired power plants: A review. Renewable Energy Focus, 2020, 35, 41-55.	4.5	9
50	Analysis of the yield and production cost of large-scale electrolytic hydrogen from different solar technologies and under several Moroccan climate zones. International Journal of Hydrogen Energy, 2020, 45, 26785-26799.	7.1	63
51	Installation of 100 MW Concentrated Solar Power Plant in Lebanon: A Comparative Study Between Linear Fresnel and Dish-Stirling. , 2020, , .		1
52	Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids. Energy Reports, 2020, 6, 2919-2947.	5.1	83
53	Applications of nanomaterial for parabolic trough collector. Powder Technology, 2020, 375, 472-492.	4.2	12
54	Optimal design parameters and performance optimization of thermodynamically balanced dish/Stirling concentrated solar power system using multi-objective particle swarm optimization. Applied Thermal Engineering, 2020, 178, 115539.	6.0	53

#	Article	IF	CITATIONS
55	Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system. Energy, 2020, 208, 118255.	8.8	6
56	A novel hybrid and interactive solar system consists of Stirling engine Ì,vacuum evaporator Ì,thermoelectric cooler for electricity generation and water distillation. Renewable Energy, 2020, 153, 1053-1066.	8.9	27
57	A comprehensive review on modeling and performance optimization of Stirling engine. International Journal of Energy Research, 2020, 44, 6098-6127.	4.5	24
58	Modeling and Control of Dish-Stirling Solar Thermal Integrated With PMDC Generator Optimized by Meta-Heuristic Approach. IEEE Access, 2020, 8, 26343-26355.	4.2	13
59	Simplified Modeling and Simulation of Electricity Production from a Dish/Stirling System. International Journal of Photoenergy, 2020, 2020, 1-14.	2.5	8
60	Development of concentrating dish and solar still assembly for sea water desalination. Materials Today: Proceedings, 2021, 45, 974-980.	1.8	8
61	Comprehensive parametric analysis, design and performance assessment of a solar dish/Stirling system. Chemical Engineering Research and Design, 2021, 146, 276-291.	5.6	32
62	Modeling of the dynamic characteristics and performance of a four ylinder doubleâ€acting Stirling engine. International Journal of Energy Research, 2021, 45, 4197-4213.	4.5	3
63	A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. Journal of Cleaner Production, 2021, 283, 124664.	9.3	66
64	Thermodynamic performance of a new hybrid system based on concentrating solar system, molten carbonate fuel cell and organic Rankine cycle with CO2 capturing analysis. Chemical Engineering Research and Design, 2021, 146, 531-551.	5.6	43
65	Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system. Renewable Energy, 2021, 164, 194-210.	8.9	59
66	Design and development of a <scp>lowâ€cost</scp> solar parabolic dish concentrator system with manual dualâ€axis tracking. International Journal of Energy Research, 2021, 45, 6446-6456.	4.5	20
67	Voltage stability of solar dish-Stirling based autonomous DC microgrid using grey wolf optimised FOPID-controller. International Journal of Sustainable Energy, 2021, 40, 412-429.	2.4	7
68	Solar Thermal Power Generation. Engergy Systems in Electrical Engineering, 2021, , 35-77.	0.7	0
69	Introduction to hybrid energy systems. , 2021, , 1-43.		1
70	Technoâ€enviroâ€economic assessment of a standâ€elone parabolic solar dish stirling system for electricity generation. International Journal of Energy Research, 2021, 45, 10250-10270.	4.5	13
71	Design and Three-Dimensional Simulation of a Solar Dish-Stirling Engine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2021, 82, 51-76.	0.6	0
72	Recent advances in gas/steam power cycles for concentrating solar power. International Journal of Ambient Energy, 2022, 43, 4716-4727.	2.5	10

#	Article	IF	CITATIONS
73	Analytical and numerical analysis of a ringâ€∎rray concentrator. International Journal of Energy Research, 2021, 45, 15110-15123.	4.5	4
74	ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering, 2021, 7, 1000-1015.	1.6	4
75	The performance prediction and techno-economic analyses of a stand-alone parabolic solar dish/stirling system, for Jamshoro, Pakistan. Cleaner Engineering and Technology, 2021, 2, 100064.	4.0	11
76	Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renewable Energy, 2021, 171, 1202-1212.	8.9	12
77	Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device. International Journal of Energy Research, 2021, 45, 16436-16455.	4.5	181
78	CFD Performance Analysis of a Dish-Stirling System for Microgeneration. Processes, 2021, 9, 1142.	2.8	13
79	Effects Of Reflectance And Shading On Parabolic Dish Photovoltaic Solar Concentrator Performance. Journal of Physics: Conference Series, 2021, 1963, 012160.	0.4	1
80	A review study on mathematical modeling of solar parabolic d ishâ€6tirling system used for electricity generation. International Journal of Energy Research, 2021, 45, 18355.	4.5	4
81	Optical design of a tension cable-membrane concentrator. Energy Reports, 2021, 7, 8021-8021.	5.1	0
83	Experimental performance evaluation of a parabolic dish solar geyser using a generalized approach for decentralized applications. Sustainable Energy Technologies and Assessments, 2021, 47, 101454.	2.7	5
84	Design and Techno-economic assessment of a new hybrid system of a solar dish Stirling engine instegrated with a horizontal axis wind turbine for microgrid power generation. Energy Conversion and Management, 2021, 245, 114587.	9.2	25
85	Optimization of the radiative flux uniformity of a modular solar simulator to improve solar technology qualification testing. Sustainable Energy Technologies and Assessments, 2021, 47, 101372.	2.7	7
86	Comprehensive evaluation of flat plate and parabolic dish solar collectors' performance using different operating fluids and MWCNT nanofluid in different climatic conditions. Energy Reports, 2021, 7, 2436-2451.	5.1	35
87	A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance. Applied Energy, 2021, 303, 117681.	10.1	8
88	Solar System Characteristics, Advantages, and Disadvantages. , 2021, , 1-24.		4
89	A novel parabolic solar dish design for a hybrid solar lighting-thermal applications. Energy Reports, 2020, 6, 1136-1143.	5.1	24
90	A Comprehensive Perspective of Waste Heat Recovery Potential from Solar Stirling Engines. E3S Web of Conferences, 2021, 313, 06001.	0.5	0
91	Thermodynamic cycles for solar thermal power plants: A review. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e420.	4.1	7

ARTICLE

IF CITATIONS

92 GÜNEÅž ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMAT ANALİZİ. UludaÄŸ University Journal of the Faculty of Engineering, 2019, 24, 300-312.

93	Optical simulation of a parabolic solar concentrator. , 2020, , .		0
94	Numerical design and simulation of a thermodynamic solar solution for a pilot residential building at the edge of the sun-belt region. Environment, Development and Sustainability, 2022, 24, 12582-12608.	5.0	1
95	Concentrating collector systems for solar thermal and thermochemical applications. Advances in Chemical Engineering, 2021, 58, 1-53.	0.9	11
96	Study on the Optical Performance of Novel Dish Solar Concentrator Formed by Rotating Array of Plane Mirrors with the Same Size. SSRN Electronic Journal, 0, , .	0.4	0
97	Development of Solar Desalination Units Using Solar Concentrators or/and Internal Reflectors. International Journal of Engineering and Technology Innovation, 2021, 12, 45-61.	1.2	4
98	The energy and exergy analysis of a combined parabolic solar dish – steam power plant. Renewable Energy Focus, 2022, 41, 55-68.	4.5	15
99	Fabrication of an Organic/Inorganic Silicon Hybrid Solar Cell Based on PEDOT:PSS Doped and Non-Doped with CBP and Dibenzothiopene-Benzoyl-Tertiarybutylcarbozole. Journal of Electronic Materials, 2022, 51, 1342-1348.	2.2	1
100	Solar Thermal Receivers—A Review. Lecture Notes in Mechanical Engineering, 2022, , 311-325.	0.4	3
101	Modeling and control of a solar-thermal dish-stirling coupled PMDC generator and battery based DC microgrid in the framework of the ENERGY NEXUS. Energy Nexus, 2022, 5, 100048.	7.7	7
102	The design of a hybrid parabolic solar dish–steam power plant: An experimental study. Energy Reports, 2022, 8, 1949-1965.	5.1	18
103	Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump. Energies, 2022, 15, 1238.	3.1	4
104	Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations. Environmental Science and Pollution Research, 2022, 29, 32335-32367.	5.3	22
105	Analysis of Solar Irradiance Variation on Heat Flux and Temperature Distribution for a Dish Concentrator Receiver. , 2022, 1, .		4
106	Design, Fabrication, and Thermal Evaluation of a Solar Cooking System Integrated With Tracking Device and Sensible Heat Storage Materials. Frontiers in Energy Research, 2022, 10, .	2.3	1
107	Performance evaluation of PCM based solar concentrator type desalination device. Materials Today: Proceedings, 2022, , .	1.8	5
108	Experimental and theoretical study for suitability of hybrid nano enhanced phase change material for thermal energy storage applications. Journal of Energy Storage, 2022, 51, 104431.	8.1	33
109	Multi-criteria decision making for different concentrated solar thermal power technologies. Sustainable Energy Technologies and Assessments, 2022, 52, 102118.	2.7	21

#	Article	IF	CITATIONS
110	Output prediction of alpha-type Stirling engines using gradient boosted regression trees and corresponding heat recovery system optimization based on improved NSGA-II. Energy Reports, 2022, 8, 835-846.	5.1	5
111	A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Reports, 2022, 8, 4128-4154.	5.1	27
112	Recent advances, challenges, and prospects in solar dish collectors: Designs, applications, and optimization frameworks. Solar Energy Materials and Solar Cells, 2022, 241, 111743.	6.2	21
113	Transient Performance Prediction of Solar Dish Concentrator Integrated with Stirling and TEG for Small Scale Irrigation System: A Case of Ethiopia. SSRN Electronic Journal, 0, , .	0.4	0
114	Steam and electrical power generation by a hybrid photovoltaic/parabolic dish concentrator using beam splitter technology. International Journal of Energy Research, 2022, 46, 12341-12361.	4.5	4
115	Review on fibre-optic-based daylight enhancement systems in buildings. Renewable and Sustainable Energy Reviews, 2022, 163, 112514.	16.4	10
116	Development and thermal performance evaluation of solar parabolic dish based on fiberâ€reinforced plastic. Heat Transfer, 2022, 51, 6222-6248.	3.0	4
117	Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size. Renewable Energy, 2022, 195, 416-430.	8.9	9
118	Historical overview of power generation in solar parabolic dish collector system. Environmental Science and Pollution Research, 2022, 29, 64404-64446.	5.3	10
119	A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling. Energies, 2022, 15, 6123.	3.1	12
120	Mapping the development of various solar thermal technologies with hype cycle analysis. Sustainable Energy Technologies and Assessments, 2022, 53, 102615.	2.7	3
121	Exergetic improvement potential analysis of a new design of concentration based solar distiller. International Journal of Ambient Energy, 0, , 1-13.	2.5	0
122	Characteristics of heat transfer media. , 2022, , 113-149.		0
123	The Effect of Concentrator Radius on The Performance of a Solar Photovoltaic Concentrating System With a Parabolic Dish. Journal of Physics: Conference Series, 2022, 2322, 012071.	0.4	0
124	Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia. Heliyon, 2022, 8, e10629.	3.2	7
125	Innovative Solar Concentration Systems and Its Potential Application in Angola. Energies, 2022, 15, 7124.	3.1	1
126	Prediction of focal image for solar parabolic dish concentrator with square facets—an analytical model. Environmental Science and Pollution Research, 2023, 30, 20065-20076.	5.3	1
127	A new second order thermal model for accurate simulation of the transient and steady–state response of beta-type Stirling engines based on time-varying calculation of thermal losses.	2.3	0

ARTICLE IF CITATIONS # A solar-wind hybrid system developed by integrating wind blades into a Dish-Stirling concentrator. 128 2.7 2 Sustainable Energy Technologies and Assessments, 2022, 54, 102810. Numerical investigation to assess the output performance of concentrated solar parabolic dish 129 system. Journal of Renewable and Sustainable Energy, 2022, 14, . Novel techniques to enhance the performance of Stirling engines integrated with solar systems. 130 8.9 6 Renewable Energy, 2023, 202, 894-906. Experimental investigation of solarâ€powered food steamer based on parabolic dish concentrator for 3.0 domestic applications. Heat Transfer, 2023, 52, 2796-2837. Design a solar harvester system capturing light and thermal energy coupled with a novel direct 132 7.8 16 thermal energy storage and nanoparticles. International Journal of Thermofluids, 2023, 18, 100328. Performance investigation of a Scheffler solar cooking system combined with Stirling engine. 1.8 Materials Today: Proceedings, 2023, , . Nonimaging Behavior of Circular Trough Concentrators With Tubular Receivers. Journal of Solar 134 1.8 1 Energy Engineering, Transactions of the ASME, 2024, 146, . Theoretical and experimental study on the heat collection of solar dish system based on adjustable 9.2 receiver. Energy Conversion and Management, 2023, 291, 117250. A Comparative Study of Parabolic Dish Concentrators Used in Various Systems. Lecture Notes in 136 0.4 0 Mechanical Engineering, 2023, , 359-369. Modeling of a hybrid power system integrating solar radiation and syngas combustion energy. Energy Science and Engineering, 2023, 11, 3379-3396. Hybridization solutions for solar dish systems installed in the Mediterranean region. Renewable 138 0 8.9 Énergy, 2023, 217, 119112. Beyond Solar Cookers: Modeling and Designing Concentrated Solar Power as Engineering Projects in Physics Classrooms. Physics Teacher, 2023, 61, 447-452. Efficient solar hydrocarbon fuel production by integrating Fischer-Tropsch synthesis with high-temperature solid oxide co-electrolysis and electrolysis. Energy Conversion and Management, 140 9.2 1 2023, 294, 117598. Experimental investigation to evaluate the performance profile of a small-scale standalone concentrated solar parabolic dish Stirling system. International Journal of Ambient Energy, 2023, 44, 141 2.5 2489-2506. Thermodynamic performance analysis of solar-biomass based gas turbine- Rankine–Kalina combined 142 0 2.1 triple power cycle. Multiscale and Multidisciplinary Modeling, Experiments and Design, 0, , . Performance evaluation and optimization of solar dish concentrator in the upper Egypt region. 144 Environmental Progress and Sustainable Energy, 0, , . A new design for a built-in hybrid energy system, parabolic dish solar concentrator and bioenergy 145 9.3 0 (PDSC/BC): A case study – Libya. Journal of Cleaner Production, 2024, 441, 140944. An optimized approach for solar concentrating parabolic dish based on particle swarm 146 3.2 optimization-genetic algorithm. Heliyon, 2024, 10, e26165.

CITATION REPORT

#	Article	IF	CITATIONS
147	Experimental investigation of generating superheated steam using a parabolic dish with a cylindrical cavity receiver: A case study. Open Engineering, 2024, 14, .	1.6	0