River bank geomorphology controls groundwater arsen adjacent to the Red River, Hanoi Vietnam

Water Resources Research 52, 6321-6334 DOI: 10.1002/2016wr018891

Citation Report

#	Article	IF	CITATIONS
1	The Impact of the Degree of Aquifer Confinement and Anisotropy on Tidal Pulse Propagation. Ground Water, 2017, 55, 519-531.	1.3	19
2	Processes governing arsenic retardation on <scp>P</scp> leistocene sediments: Adsorption experiments and modelâ€based analysis. Water Resources Research, 2017, 53, 4344-4360.	4.2	42
3	Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam. Environmental Science & Technology, 2017, 51, 838-845.	10.0	54
4	Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China. Hydrogeology Journal, 2018, 26, 1499-1512.	2.1	20
5	Chemical speciation and bioavailability concentration of arsenic and heavy metals in sediment and soil cores in estuarine ecosystem, Vietnam. Microchemical Journal, 2018, 139, 268-277.	4.5	32
6	Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research, 2018, 129, 123-132.	11.3	18
7	Spatial Variability of Groundwater Arsenic Concentration as Controlled by Hydrogeology: Conceptual Analysis Using 2â€D Reactive Transport Modeling. Water Resources Research, 2018, 54, 10254-10269.	4.2	21
8	The fate of arsenic in groundwater discharged to the Meghna River, Bangladesh. Environmental Chemistry, 2018, 15, 29.	1.5	17
9	Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & amp; Technology, 2018, 52, 9243-9253.	10.0	57
10	Arsenic mobilization from iron oxides in the presence of oxalic acid under hydrodynamic conditions. Chemosphere, 2018, 212, 219-227.	8.2	16
11	Quantifying Riverine Recharge Impacts on Redox Conditions and Arsenic Release in Groundwater Aquifers Along the Red River, Vietnam. Water Resources Research, 2019, 55, 6712-6728.	4.2	16
13	Iron speciation at the riverbank surface in wetland and potential impact on the mobility of trace metals. Science of the Total Environment, 2019, 651, 443-455.	8.0	22
14	Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 2019, 189, 79-98.	9.1	91
15	Geomorphic Controls on Spatial Arsenic Distribution in Aquifers of theÂBrahmaputra River Floodplains. Advances in Water Security, 2020, , 43-53.	0.8	0
16	Arsenic Water Resources Contamination. Advances in Water Security, 2020, , .	0.8	6
17	Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science and Technology Letters, 2020, 7, 916-922.	8.7	19
18	Geochemical transformations beneath man-made ponds: Implications for arsenic mobilization in South Asian aquifers. Geochimica Et Cosmochimica Acta, 2020, 288, 262-281.	3.9	9
19	Origin of Groundwater Arsenic in a Rural Pleistocene Aquifer in Bangladesh Depressurized by Distal Municipal Pumping. Water Resources Research, 2020, 56, e2020WR027178.	4.2	31

CITATION REPORT

#	Article	IF	CITATIONS
20	The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020, 13, 288-295.	12.9	104
21	Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. Journal of Hydrology, 2020, 583, 124599.	5.4	33
22	Quantifying Geochemical Processes of Arsenic Mobility in Groundwater From an Inland Basin Using a Reactive Transport Model. Water Resources Research, 2020, 56, e2019WR025492.	4.2	33
23	Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Science of the Total Environment, 2020, 717, 137143.	8.0	61
24	Urbanization, and child mental health and life functioning in Vietnam: implications for global health disparities. Social Psychiatry and Psychiatric Epidemiology, 2020, 55, 673-683.	3.1	3
25	Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 2021, 407, 124398.	12.4	31
26	Iron mineral transformations and their impact on As (im)mobilization at redox interfaces in As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2021, 296, 189-209.	3.9	24
27	Variability in groundwater flow and chemistry in the Mekong River alluvial aquifer (Thailand): implications for arsenic and manganese occurrence. Environmental Earth Sciences, 2021, 80, 1.	2.7	4
28	Pleistocene sands of the Mississippi River Alluvial Aquifer produce the highest groundwater arsenic concentrations in southern Louisiana, USA. Journal of Hydrology, 2021, 595, 125995.	5.4	7
29	Geomorphic controls on shallow groundwater arsenic contamination in Bengal basin, India. Environmental Science and Pollution Research, 2021, 28, 42177-42195.	5.3	13
30	Quantitative study on characteristics of hydrological drought in arid area of Northwest China under changing environment. Journal of Hydrology, 2021, 597, 126343.	5.4	18
31	Carbon and methane cycling in arsenic-contaminated aquifers. Water Research, 2021, 200, 117300.	11.3	22
32	Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere, 2022, 286, 131790.	8.2	73
33	Remote sensing of wetland evolution in predicting shallow groundwater arsenic distribution in two typical inland basins. Science of the Total Environment, 2022, 806, 150496.	8.0	20
34	Difference in attenuation among Mn, As, and Fe in riverbed sediments. Journal of Hazardous Materials, 2018, 341, 277-289.	12.4	8
35	Assessment of surface water quality and mercury levels from Artisanal and small-scale gold mining (ASGM) along Acupan River, Benguet, Philippines. Environmental Geochemistry and Health, 2021, , 1.	3.4	3
36	Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environmental Pollution, 2022, 296, 118741.	7.5	20
37	Noble gas constraints on the fate of arsenic in groundwater. Water Research, 2022, 214, 118199.	11.3	4

#	Article	IF	CITATIONS
38	Groundwater arsenic content in quaternary aquifers of the Red River delta, Vietnam, controlled by the hydrogeological processes. Journal of Hydrology, 2022, 609, 127778.	5.4	4
39	Surface Flooding as a Key Driver of Groundwater Arsenic Contamination in Southeast Asia. Environmental Science & Technology, 2022, 56, 928-937.	10.0	25
41	Arsenic contamination and potential health risk to primary school children through drinking water sources. Human and Ecological Risk Assessment (HERA), 2023, 29, 369-389.	3.4	5
42	Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. Chemosphere, 2022, 308, 136289.	8.2	8
43	Arsenic pools in soils under native vegetation on a steatite outcrop in Brazil. Environmental Research, 2023, 216, 114482.	7.5	0
44	Characterizing groundwater – surface water interaction across the Brazos River watershed, Texas, with uranium isotopes. Applied Geochemistry, 2022, 147, 105491.	3.0	0
45	Geospatial Machine Learning Prediction of Arsenic Distribution in the Groundwater of Murshidabad District, West Bengal, India: Analyzing Spatiotemporal Patterns to Understand Human Health Risk. ACS ES&T Water, 2022, 2, 2409-2421.	4.6	1
46	Noble gases in aquitard provide insight into underlying subsurface stratigraphy and free gas formation. Vadose Zone Journal, 2023, 22, .	2.2	1
47	The response patterns of riverbank to the components carried by different pollution sources in the river: Experiments and models. Journal of Hydrology, 2023, 617, 128903.	5.4	3
48	Hotspots of geogenic arsenic and manganese contamination in groundwater of the floodplains in lowland Amazonia (South America). Science of the Total Environment, 2023, 860, 160407.	8.0	4
49	Hydrologic Control on Arsenic Cycling at the Groundwater–Surface Water Interface of a Tidal Channel. Environmental Science & Technology, 2023, 57, 222-230.	10.0	8
50	Natural arsenic-rich spring waters discharging from the Austin Chalk, North-Central Texas, USA: Mineral and chemical evidence of pyrite oxidation followed by reductive dissolution of neo-formed Fe(III) oxides/oxyhydroxides. Applied Geochemistry, 2023, 150, 105547.	3.0	0
51	Co-occurrence of arsenic and iodine in the middle-deep groundwater of the Datong Basin: From the perspective of optical properties and isotopic characteristics. Environmental Pollution, 2023, 329, 121686.	7.5	2
52	Transformation of dissolved organic matter and related arsenic mobility at a surface water-groundwater interface in the Hetao Basin, China. Environmental Pollution, 2023, 334, 122202.	7.5	0
53	Release of arsenic during riverbank filtration under anoxic conditions linked to grain size of riverbed sediments. Science of the Total Environment, 2023, 900, 165858.	8.0	1
54	Isotope hydrology tools in the assessment of arsenic contamination in groundwater: An overview. Chemosphere, 2023, 340, 139898.	8.2	2
55	Redox trapping of arsenic in hyporheic zones modified by silicate weathering beneath floodplains. Applied Geochemistry, 2023, 159, 105831.	3.0	1
56	Diverse sedimentary organic matter within the river-aquifer interface drives arsenic mobility along the Meghna River Corridor in Bangladesh. Applied Geochemistry, 2024, 161, 105883.	3.0	0

CITATION REPORT

#	Article	IF	CITATIONS
57	Predicting natural arsenic enrichment in peat-bearing, alluvial and coastal depositional systems: A generalized model based on sequence stratigraphy. Science of the Total Environment, 2024, 924, 171571.	8.0	0