Antibiotic resistance in Burkholderia species

Drug Resistance Updates 28, 82-90 DOI: 10.1016/j.drup.2016.07.003

Citation Report

#	Article	IF	CITATIONS
1	Innate immune response to Burkholderia mallei. Current Opinion in Infectious Diseases, 2017, 30, 297-302.	1.3	10
2	Crystal structures of the <i>Burkholderia multivorans</i> hopanoid transporter HpnN. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6557-6562.	3.3	40
3	Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance. MBio, 2017, 8, .	1.8	31
4	Burkholderia cepacia complex in cystic fibrosis in a Brazilian reference center. Medical Microbiology and Immunology, 2017, 206, 447-461.	2.6	3
5	Clinical and microbiological profile of chronic Burkholderia cepacia complex infections in a cystic fibrosis reference hospital in Brazil. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2263-2271.	1.3	5
6	Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting <i>Burkholderia</i> Infections. ACS Infectious Diseases, 2017, 3, 736-743.	1.8	8
7	Relationships Between Resistance and Virulence in Burkholderia pseudomallei. Current Tropical Medicine Reports, 2017, 4, 127-135.	1.6	0
8	Histopathological and immunohistochemical characterization of <i>Burkholderia pseudomallei</i> lesions in an acute model of infection with <scp>BALB</scp> /c mice. International Journal of Experimental Pathology, 2017, 98, 347-355.	0.6	3
9	Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Frontiers in Cellular and Infection Microbiology, 2017, 7, 460.	1.8	68
10	Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	14
11	Melioidosis. Nature Reviews Disease Primers, 2018, 4, 17107.	18.1	430
12	Burkholderia multivorans: A rare yet emerging cause of bacterial meningitis. IDCases, 2018, 11, 61-63.	0.4	7
13	Successful Treatment of Persistent Burkholderia cepacia Complex Bacteremia with Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	28
14	Presence of β-Lactamase Encoding Genes inBurkholderia cepaciaComplex Isolated from Soil. Microbial Drug Resistance, 2018, 24, 347-352.	0.9	3
15	Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding. MSphere, 2018, 3, .	1.3	25
16	A genome-wide association analysis reveals a potential role for recombination in the evolution of antimicrobial resistance in Burkholderia multivorans. PLoS Pathogens, 2018, 14, e1007453.	2.1	28
17	Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Frontiers in Cellular and Infection Microbiology, 2018, 8, 370.	1.8	10
10	Sequence heterogeneity of the PenA carbapenemase in clinical isolates of Burkholderia multivorans.	0.8	10

#	Article	IF	CITATIONS
20	Burkholderia cepacia complex infections: More complex than the bacterium name suggest. Journal of Infection, 2018, 77, 166-170.	1.7	61
21	Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Scientific Reports, 2018, 8, 10652.	1.6	16
22	Gene Regulation by Redox-Sensitive Burkholderia thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis elegans. Infection and Immunity, 2018, 86, .	1.0	10
23	The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. Journal of Bacteriology, 2018, 200, .	1.0	32
24	Clinical and histopathological features of <i>Burkholderia cepacia</i> complex dermatitis in dogs: a series of four cases. Veterinary Dermatology, 2018, 29, 457.	0.4	8
25	Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PLoS ONE, 2018, 13, e0201835.	1.1	45
26	Unmet needs in cystic fibrosis: the next steps in improving outcomes. Expert Review of Respiratory Medicine, 2018, 12, 585-593.	1.0	17
27	<i>In Vitro</i> Susceptibility of Burkholderia cepacia Complex Isolated from Cystic Fibrosis Patients to Ceftazidime-Avibactam and Ceftolozane-Tazobactam. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	34
28	Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	17
29	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA Journal, 2019, 17, e05753.	0.9	37
30	Bacteriostatic stimulus of meropenem on allelochemical-metabolizing Burkholderia sp. LS-044 mitigates ferulic acid autotoxicity in rice (Oryza sativa ssp. japonica cv. Tainung 71). Plant and Soil, 2019, 443, 73-86.	1.8	7
31	A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. Journal of Biological Chemistry, 2019, 294, 13248-13268.	1.6	27
32	The lytic transglycosylase, LtgG, controls cell morphology and virulence in Burkholderia pseudomallei. Scientific Reports, 2019, 9, 11060.	1.6	13
33	Erythritol as a single carbon source improves cultural isolation of Burkholderia pseudomallei from rice paddy soils. PLoS Neglected Tropical Diseases, 2019, 13, e0007821.	1.3	7
34	<i>Betaproteobacteria</i> are predominant in drinking water: are there reasons for concern?. Critical Reviews in Microbiology, 2019, 45, 649-667.	2.7	18
35	Variation of Burkholderia cenocepacia cell wall morphology and mechanical properties during cystic fibrosis lung infection, assessed by atomic force microscopy. Scientific Reports, 2019, 9, 16118.	1.6	13
36	Impact of clonally-related Burkholderia contaminans strains in two patients attending an Italian cystic fibrosis centre: a case report. BMC Pulmonary Medicine, 2019, 19, 164.	0.8	2
37	A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in <i>Burkholderia</i> . ACS Synthetic Biology, 2019, 8, 2372-2384.	1.9	33

#	Article	IF	CITATIONS
38	An in situ high-throughput screen identifies inhibitors of intracellularBurkholderia pseudomalleiwith therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18597-18606.	3.3	13
39	Characterization of Microbiota in Endometrial Fluid and Vaginal Secretions in Infertile Women with Repeated Implantation Failure. Mediators of Inflammation, 2019, 2019, 1-10.	1.4	69
40	Structure-based classification of class A beta-lactamases, an update. Current Research in Translational Medicine, 2019, 67, 115-122.	1.2	20
41	The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine: X, 2019, 1, 100002.	0.9	15
42	Successful ceftazidimeâ€avibactam treatment of postâ€surgery Burkholderia multivorans genomovar II bacteremia and brain abscesses in a young lung transplanted woman with cystic fibrosis. Transplant Infectious Disease, 2019, 21, e13082.	0.7	19
43	Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Bioscience Reports, 2019, 39, .	1.1	57
44	Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides. PLoS ONE, 2019, 14, e0212447.	1.1	38
45	Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 7.	1.7	52
46	Disruption of Quorum Sensing and Virulence in <i>Burkholderia cenocepacia</i> by a Structural Analogue of the <i>cis</i> -2-Dodecenoic Acid Signal. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
47	An EmrB multidrug efflux pump in Burkholderia thailandensis with unexpected roles in antibiotic resistance. Journal of Biological Chemistry, 2019, 294, 1891-1903.	1.6	10
48	GC-072, a Novel Therapeutic Candidate for Oral Treatment of Melioidosis and Infections Caused by Select Biothreat Pathogens. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4
49	Melioidosis en Colombia, descripción de un caso clÃnico y consideraciones epidemiológicas. Biomedica, 2019, 39, 10-18.	0.3	3
50	Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics, 2019, 20, 803.	1.2	47
51	Deletion of Two Genes in Burkholderia pseudomallei MSHR668 That Target Essential Amino Acids Protect Acutely Infected BALB/c Mice and Promote Long Term Survival. Vaccines, 2019, 7, 196.	2.1	13
52	Epidemiological investigation and successful management of a Burkholderia cepacia outbreak in a neurotrauma intensive care unit. International Journal of Infectious Diseases, 2019, 79, 4-11.	1.5	11
53	Antibodies Are Major Drivers of Protection against Lethal Aerosol Infection with Highly Pathogenic <i>Burkholderia</i> spp. MSphere, 2019, 4, .	1.3	7
54	Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. Journal of Proteomics, 2019, 194, 14-24.	1.2	10
55	Increased Mortality in Mice following Immunoprophylaxis Therapy with High Dosage of Nicotinamide in Burkholderia Persistent Infections. Infection and Immunity, 2019, 87, .	1.0	6

ARTICLE IF CITATIONS # MarR Family Transcription Factors from <i>Burkholderia</i> Species: Hidden Clues to Control of 2.9 32 56 Virulence-Associated Genes. Microbiology and Molecular Biology Reviews, 2019, 83, . <i>Burkholderia multivorans</i> Exhibits Antibiotic Collateral Sensitivity. Microbial Drug Resistance, 2020, 26, 1-8. Burkholderia cepacia complex: 11 years of surveillance in patients with Cystic Fibrosis in Posadas, 58 0.4 2 Argentina. Revista Argentina De Microbiologia, 2020, 52, 176-182. Thailandenes, Cryptic Polyene Natural Products Isolated from <i>Burkholderia thailandensis</i> 59 Using Phenotype-Guided Transposon Mutagenesis. ACS Chemical Biology, 2020, 15, 1195-1203. Discovery of Ubonodin, an Antimicrobial Lasso Peptide Active against Members of the <i>Burkholderia 60 1.3 44 cepacia (i> Complex. ChemBioChem, 2020, 21, 1335-1340. Intracellular survival and innate immune evasion of <i>Burkholderia cepacia</i>: Improved understanding of quorum sensingâ€controlled virulence factors, biofilm, and inhibitors. Microbiology and Immunology, 2020, 64, 87-98. <p>Antimicrobial Resistance and Genotyping of Bacteria Isolated from Urinary Tract Infection in Children in an Iranian Referral Hospital</p>. Infection and Drug Resistance, 2020, Volume 13, 62 1.1 6 3317-3323. Environmental contamination alters the intestinal microbial community of the livebearer killifish 1.4 Phalloceros caudimaculatus. Heliyon, 2020, 6, e04190. An Overview of the Treatment of Less Common Non–Lactoseâ€Fermenting Gramâ€Negative Bacteria. 1.2 64 26 Pharmacotherapy, 2020, 40, 936-951. The SPLUNC1-Î²ENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. 1.4 Respiratory Research, 2020, 21, 190. From pan-genome to protein dynamics: A computational hierarchical quest to identify drug target in 2 66 2.3multi-drug resistant Burkholderia cepacia. Journal of Molecular Liquids, 2020, 317, 113904. Combating the great mimicker: latest progress in the development of Burkholderia pseudomallei vaccines. Expert Review of Vaccines, 2020, 19, 653-660. 2.0 Dietary antioxidant seleno-L-methionine protects macrophages infected with Burkholderia 68 1.1 1 thailandensis. PLoS ONE, 2020, 15, e0238174. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of <i>Burkholderia 1.8 mallei</i>/i> and provides protection against lethal aerosol challenge. Virulence, 2020, 11, 1024-1040. Current Advances in Burkholderia Vaccines Development. Cells, 2020, 9, 2671. 70 1.8 18 The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses, 2020, 12, 1393. Exploring the Interplay of Resistance Nodulation Division Efflux Pumps, <i>Amp</i>C and <i>Opr</i>D in Antimicrobial Resistance of <i>Burkholderia cepacia </i> Complex in Clinical Isolates. Microbial 72 0.9 6 Drug Resistance, 2020, 26, 1144-1152. A Gene Cluster That Encodes Histone Deacetylase Inhibitors Contributes to Bacterial Persistence and Antibiotic Tolerance in Burkholderia thailandensis. MSystems, 2020, 5, .

#	Article	IF	CITATIONS
74	Consecutive outbreaks of Burkholderia cepacia complex caused by intrinsically contaminated chlorhexidine mouthwashes. American Journal of Infection Control, 2020, 48, 1348-1353.	1.1	4
75	The Burkholderia thailandensis Phages ΦE058 and ΦE067 Represent Distinct Prototypes of a New Subgroup of Temperate Burkholderia Myoviruses. Frontiers in Microbiology, 2020, 11, 1120.	1.5	3
76	Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Ecotoxicology and Environmental Safety, 2020, 194, 110443.	2.9	23
77	Phenotypic characterization of trimeric autotransporter adhesin-defective bcaC mutant of Burkholderia cenocepacia: cross-talk towards the histidine kinase BCAM0218. Microbes and Infection, 2020, 22, 457-466.	1.0	2
78	BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules, 2020, 25, 248.	1.7	5
79	Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations. Infection, Genetics and Evolution, 2020, 82, 104314.	1.0	16
80	Human Melioidosis. Clinical Microbiology Reviews, 2020, 33, .	5.7	105
81	<i>Burkholderia cepacia</i> Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products. Clinical Microbiology Reviews, 2020, 33, .	5.7	74
82	Regulation of Virulence by Two-Component Systems in Pathogenic <i>Burkholderia</i> . Infection and Immunity, 2020, 88, .	1.0	22
83	Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria. MBio, 2020, 11, .	1.8	7
84	Molecular and epidemiological analysis of a Burkholderia cepacia sepsis outbreak from a tertiary care hospital in Bangladesh. PLoS Neglected Tropical Diseases, 2020, 14, e0008200.	1.3	0
85	Burkholderia pseudomallei Clinical Isolates Are Highly Susceptible <i>In Vitro</i> to Cefiderocol, a Siderophore Cephalosporin. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	17
86	Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values. Clinical Microbiology and Infection, 2021, 27, 736-741.	2.8	14
87	Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew. Journal of Food Processing and Preservation, 2021, 45, e15061.	0.9	3
88	In Vitro Antibacterial Activity and In Vivo Efficacy of Sulbactam-Durlobactam against Pathogenic Burkholderia Species. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	5
89	Nosocomial recurrent bacterial meningitis/ventriculitis postelective surgery in a case of total knee replacement. Journal of Marine Medical Society, 2021, .	0.0	0
90	Gasdermin D restricts Burkholderia cenocepacia infection in vitro and in vivo. Scientific Reports, 2021, 11, 855.	1.6	21
91	Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells, 2021, 10, 495.	1.8	11

#	Article	IF	Citations
92	Unusual Penile Prolapse with an Infectious Background Caused by the Burkholderia cepacia Complex in a Stallion. Journal of Equine Veterinary Science, 2021, 97, 103353.	0.4	1
93	Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biology, 2021, 19, e3001093.	2.6	31
94	Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environmental Research, 2021, 194, 110664.	3.7	287
97	Health assessment of wild speckled dwarf tortoises, CHERSOBIUS SIGNATUS. BMC Veterinary Research, 2021, 17, 102.	0.7	3
99	Fatal Pandoraea nosoerga infection after combined liver-lung transplantation for cystic fibrosis: a recontamination by the pre-transplantation strain. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2403-2406.	1.3	2
100	Ciprofloxacin Prophylaxis in Emergency Response Plans Would Alter Bacterial Communities in Wastewater Treatment Infrastructure. Environmental Engineering Science, 2021, 38, 211-223.	0.8	3
101	Does Cefiderocol Have a Potential Role in Cystic Fibrosis Pulmonary Exacerbation Management?. Microbial Drug Resistance, 2021, 27, 1726-1732.	0.9	6
102	Atypical Burkholderia Cepacia Resistance to Ceftazidime/Avibactam and Co-trimoxazole: A Case of Open Wound Contamination and Persistent Bacteremia. Cureus, 2021, 13, e15836.	0.2	1
104	Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics, 2021, 10, 863.	1.5	21
105	Differences in the fecal microbiota of dairy calves reared with differing sources of milk and levels of maternal contact. JDS Communications, 2021, 2, 200-206.	0.5	3
106	Conservation of Resistance-Nodulation-Cell Division Efflux Pump-Mediated Antibiotic Resistance in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Species. Antimicrobial Agents and Chemotherapy, 2021, 65, e0092021.	1.4	6
107	Effects of gut microbiota remodeling on the dysbiosis induced by high fat diet in a mouse model of Gulf war illness. Life Sciences, 2021, 279, 119675.	2.0	5
108	Evaluation of antimicrobial susceptibility testing methods for Burkholderia cenocepacia and Burkholderia multivorans isolates from cystic fibrosis patients. Journal of Clinical Microbiology, 2021, 59, e0144721.	1.8	4
109	In vitro and in vivo activity of GT-1, a novel siderophore cephalosporin, and GT-055, a broad-spectrum β-lactamase inhibitor, against biothreat and ESKAPE pathogens. Journal of Antibiotics, 2021, 74, 884-892.	1.0	6
110	Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland. Annals of Clinical Microbiology and Antimicrobials, 2021, 20, 64.	1.7	19
112	Bacteriophage-Mediated Risk Pathways Underlying the Emergence of Antimicrobial Resistance via Intrageneric and Intergeneric Recombination of Antibiotic Efflux Genes Across Natural populations of Human Pathogenic Bacteria. Microbial Ecology, 2022, 84, 213-226.	1.4	2
113	Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting Gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018. Journal of Microbiology, Immunology and Infection, 2022, 55, 463-473.	1.5	28
114	Genomic analysis of Burkholderia cenocepacia isolated from a liver abscess in a patient with cystic fibrosis. Apmis, 2021, 129, 631-640.	0.9	0

#	Article	IF	Citations
115	Antimicrobial Susceptibility of Western Hemisphere Isolates of <i>Burkholderia pseudomallei</i> : Phenotypic and Genomic Analyses. Microbial Drug Resistance, 2021, 27, 1176-1185.	0.9	3
116	Corpse decomposition increases the diversity and abundance of antibiotic resistance genes in different soil types in a fish model. Environmental Pollution, 2021, 286, 117560.	3.7	19
117	Phytoremediation of microbial contamination in soil by New Zealand native plants. Applied Soil Ecology, 2021, 167, 104040.	2.1	3
118	Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. Journal of Environmental Management, 2021, 299, 113628.	3.8	19
119	Burkholderia in Transplant: Important to Speciate and Important to Treat. , 2021, , 391-408.		0
120	Natural Inhibitors of Quorum-Sensing Factors: a Novel Strategy to Control Pathogenic Bacteria. Revista Brasileira De Farmacognosia, 2020, 30, 743-755.	0.6	6
121	Insights into the genome diversity and virulence of two clinical isolates of Burkholderia cenocepacia. Journal of Medical Microbiology, 2018, 67, 1157-1167.	0.7	4
125	Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS ONE, 2020, 15, e0242593.	1.1	5
126	Characterization of Burkholderia pseudomallei from spontaneous melioidosis in a Bornean orangutan. Veterinary World, 2020, 13, 2459-2468.	0.7	1
127	Characterization of Burkholderia cepacia Complex Core Genome and the Underlying Recombination and Positive Selection. Frontiers in Genetics, 2020, 11, 506.	1.1	12
128	Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines, 2021, 9, 1219.	2.1	6
131	Molecular Identification of Gram-Negative Bacteria in Respiratory Samples of Cystic Fibrosis Patients from a Children Referral Hospital in Tehran. Archives of Pediatric Infectious Diseases, 2019, 7, .	0.1	1
132	A Peptidoglycan Amidase Mutant of <i>Burkholderia insecticola</i> Adapts an L-form-like Shape in the Gut Symbiotic Organ of the Bean Bug <i>Riptortus pedestris</i> . Microbes and Environments, 2020, 35, n/a.	0.7	1
133	Multidrug-Resistant Burkholderia cepacia, Candida dubliniensis, and Candida glabrata Infected Pancreatic Pseudocyst. Cureus, 2020, 12, e8811.	0.2	1
135	Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors. Scientific Reports, 2021, 11, 21419.	1.6	9
136	Multi locus sequence typing of clinical Burkholderia pseudomallei isolates from Malaysia. PLoS Neglected Tropical Diseases, 2020, 14, e0008979.	1.3	11
137	Influence of tetracycline on arsenic mobilization and biotransformation in flooded soils. Environmental Pollution, 2022, 292, 118416.	3.7	14
138	Burkholderia in Transplant: Important to Speciate and Important to Treat. , 2020, , 1-19.		1

#	Article	IF	CITATIONS
139	<i>Burkholderiaceae</i> and Multidrug Resistance Genes Are Key Players in Resistome Development in a Germfree Soil Model. MSystems, 2021, 6, e0098821.	1.7	7
141	Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets. PLoS ONE, 2020, 15, e0241306.	1.1	5
142	New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics, 2021, 10, 1443.	1.5	6
143	Characterization of glyphosateâ€resistant <i>Burkholderia anthina</i> and <i>Burkholderia cenocepacia</i> isolates from a commercial Roundup® solution. Environmental Microbiology Reports, 2022, 14, 70-84.	1.0	11
144	Invasive <i>Burkholderia cepacia</i> Complex Infections among Persons Who Inject Drugs, Hong Kong, China, 2016–2019. Emerging Infectious Diseases, 2022, 28, 323-330.	2.0	7
145	Susceptibility of the deviants. Journal of Microbiology & Experimentation, 2019, 7, 306-308.	0.1	0
146	Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of <i>Burkholderia pseudomallei</i> DsbA. Acta Crystallographica Section D: Structural Biology, 2022, 78, 75-90.	1.1	2
147	Prolonged oral antimicrobial administration prevents doxorubicin-induced loss of active intestinal stem cells. Gut Microbes, 2022, 14, 2018898.	4.3	5
148	Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. Journal of Cystic Fibrosis, 2022, 21, 821-829.	0.3	8
149	Current Protocols in Laboratory Diagnosis, Genotyping, and Treatment of Burkholderia pseudomallei. Clinical Microbiology Newsletter, 2022, 44, 23-31.	0.4	2
150	Systematic review of ultrasound gel associatedÂBurkholderia cepacia complex outbreaks: Clinical presentation, sources and control of outbreak. American Journal of Infection Control, 2022, 50, 1253-1257.	1.1	9
151	Burkholderia cepacia Complex Lumbar Spondylodiscitis: A Rare Nosocomial Infection. Case Reports in Infectious Diseases, 2022, 2022, 1-4.	0.2	Ο
152	In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Antibiotics, 2022, 11, 291.	1.5	5
153	Human Cryptic Host Defence Peptide GVF27 Exhibits Anti-Infective Properties against Biofilm Forming Members of the Burkholderia cepacia Complex. Pharmaceuticals, 2022, 15, 260.	1.7	3
154	The <i>Burkholderia cenocepacia</i> iron starvation σ factor, OrbS, possesses an on-board iron sensor. Nucleic Acids Research, 2022, 50, 3709-3726.	6.5	3
155	Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Frontiers in Microbiology, 2022, 13, 826071.	1.5	6
156	Effects of exposure to trace pyriproxyfen on the intestinal bacterial diversity and immune signal pathways of silkworm (Bombyx mori) larvae. Journal of Asia-Pacific Entomology, 2022, 25, 101895.	0.4	3
172	Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. Biology, 2022, 11, 633.	1.3	14

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
173	In vitro activity of ceragenins against Burkholderia cepacia complex. Journal of Antibiotics, 2022, , .	1.0	0	
174	Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Molecular Microbiology, 2022, 117, 1384-1404.	1.2	7	
175	Susceptibility of <i>Burkholderia cepacia</i> Complex to Ceftazidime/Avibactam and Standard Drugs of Treatment for Cystic Fibrosis Patients. Microbial Drug Resistance, 2022, , .	0.9	3	
176	Contrasting treatment responses by Burkholderia cepacia complex-related deep pyoderma: a series of two cases. Open Veterinary Journal, 2022, 12, 308.	0.3	0	
177	Solarization's Effects on Antibiotic Resistance Genes in Manured Greenhouse Soils During Summer Fallow. SSRN Electronic Journal, 0, , .	0.4	0	
178	Evaluation of MALDI-TOF MS System for the Identification and Differentiation of Burkholderia cepacia Complex Species. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	0	
179	Impact of disinfectants on the intestinal bacterial symbionts and immunity of silkworm (Bombyx mori) Tj ETQ	q0 0 0 rgBT / 2.7	Ovgrlock 10	
180	Evaluating the Contribution of the Predicted Toxin–Antitoxin System HigBA to Persistence, Biofilm Formation, and Virulence in Burkholderia pseudomallei. Infection and Immunity, 0, , .	1.0	0	
181	Unveiling the risks and critical mechanisms of polyhexamethylene guanidine on the antibiotic resistance genes propagation during sludge fermentation process. Bioresource Technology, 2022, 359, 127488.	4.8	10	
182	Metabolomics Analysis of Bacterial Pathogen <i>Burkholderia thailandensis</i> and Mammalian Host Cells in Co-culture. ACS Infectious Diseases, 2022, 8, 1646-1662.	1.8	3	
183	A Pilot Study: Favorable Effects of Clostridium butyricum on Intestinal Microbiota for Adjuvant Therapy of Lung Cancer. Cancers, 2022, 14, 3599.	1.7	1	
184	Oridonin Attenuates Burkholderia cenocepacia Virulence by Suppressing Quorum-Sensing Signaling. Microbiology Spectrum, 2022, 10, .	1.2	2	
185	Plastisphere showing unique microbiome and resistome different from activated sludge. Science of the Total Environment, 2022, 851, 158330.	3.9	8	
186	Core–shell polycationic polyurea pharmadendrimers: new-generation of sustainable broad-spectrum antibiotics and antifungals. Biomaterials Science, 2022, 10, 5197-5207.	2.6	4	
187	Biochemical, structural, and computational studies of a Î ³ -carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Computational and Structural Biotechnology Journal, 2022, 20, 4185-4194.	1.9	9	
189	Computational Based Designing of a Multi-Epitopes Vaccine against Burkholderia mallei. Vaccines, 2022, 10, 1580.	2.1	4	
190	Rapid detection of Burkholderia cepacia complex carrying the 16S rRNA gene in clinical specimens by recombinase-aided amplification. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4	
192	Genomic diversity of resistant and virulent factors of Burkholderia pseudomallei clinical strains recovered from Guangdong using whole genome sequencing. Frontiers in Microbiology, 0, 13, .	1.5	2	

#	Article	IF	CITATIONS
193	Targeting the Bet-Hedging Strategy with an Inhibitor of Bacterial Efflux Capacity Enhances Antibiotic Efficiency and Ameliorates Bacterial Persistence In Vitro. Microorganisms, 2022, 10, 1966.	1.6	1
194	Discovery of Homogentisic Acid as a Precursor in Trimethoprim Metabolism and Natural Product Biosynthesis. ACS Chemical Biology, 0, , .	1.6	1
196	Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp European Journal of Medicinal Chemistry, 2023, 245, 114921.	2.6	6
197	Burkholderia vietnamiensis causing infections in noncystic fibrosis patients in a tertiary care hospital in Mexico. Diagnostic Microbiology and Infectious Disease, 2023, 105, 115866.	0.8	0
198	Efflux pumps activation caused by mercury contamination prompts antibiotic resistance and pathogen's virulence under ambient and elevated CO2 concentration. Science of the Total Environment, 2023, 863, 160831.	3.9	2
199	Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics, 2022, 14, 2619.	2.0	8
200	Workflow for Identification of <i>Burkholderia pseudomallei</i> Clinical Isolates in Myanmar. Japanese Journal of Infectious Diseases, 2023, 76, 106-112.	0.5	1
201	One Health surveillance approaches for melioidosis and glanders: The Malaysian perspective. Frontiers in Veterinary Science, 0, 9, .	0.9	1
202	Enzymatic pretreatment mitigates the dissemination of antibiotic resistance genes via regulating microbial populations and gene expressions during food waste fermentation. Chinese Chemical Letters, 2023, 34, 108058.	4.8	1
203	Challenges and opportunities in the development of novel antimicrobial therapeutics for cystic fibrosis. Journal of Medical Microbiology, 2022, 71, .	0.7	3
204	Antibacterial Activity of a Natural Clay Mineral against Burkholderia cepacia Complex and Other Bacterial Pathogens Isolated from People with Cystic Fibrosis. Microorganisms, 2023, 11, 150.	1.6	7
205	Low-Diversity Microbiota in Apical Periodontitis and High Blood Pressure Are Signatures of the Severity of Apical Lesions in Humans. International Journal of Molecular Sciences, 2023, 24, 1589.	1.8	5
206	Phage-antibiotic synergy reduces Burkholderia cenocepacia population. BMC Microbiology, 2023, 23, .	1.3	5
207	Expression of virulence and antimicrobial related proteins in Burkholderia mallei and Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2023, 17, e0011006.	1.3	1
208	Disarm The Bacteria: What Temperate Phages Can Do. Current Issues in Molecular Biology, 2023, 45, 1149-1167.	1.0	4
209	<i>In vitro</i> susceptibility of nonfermenting Gram-negative rods to meropenem–vaborbactam and delafloxacin. Future Microbiology, 2023, 18, 117-126.	1.0	1
210	Prevalence of Burkholderia cepacia recovered from clinical specimens in the Zainoel Abidin general hospital, Banda Aceh, Indonesia. Iranian Journal of Microbiology, 0, , .	0.8	0
212	Assessment of adaptive immune responses of dairy cows with Burkholderia contaminans-induced mastitis. Frontiers in Microbiology, 0, 14, .	1.5	1

#	Article	IF	CITATIONS
213	The <i>Burkholderia contaminans</i> prevalent phenotypes as possible markers of poor clinical outcomes in chronic lung infection of children with cystic fibrosis. Pathogens and Disease, 2023, 81, .	0.8	0
214	Emergence of meropenem and levofloxacin resistance in Burkholderia pseudomallei in Taiwan. Journal of Infection, 2023, , .	1.7	1
215	Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) as an Indispensable Tool in Diagnostic Bacteriology: A Comparative Analysis With Conventional Technique. Cureus, 2023, , .	0.2	0
218	Burkholderia (Glanders and Melioidosis) Attack. , 2024, , 775-778.		Ο
222	Editorial: Burkholderia spptransmission, pathogenesis, host-pathogen interaction, prevention and treatment. Frontiers in Microbiology, 0, 14, .	1.5	0