Nonclassical Routes for Amide Bond Formation

Chemical Reviews 116, 12029-12122 DOI: 10.1021/acs.chemrev.6b00237

Citation Report

#	Article	IF	CITATIONS
3	Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation. Journal of the American Chemical Society, 2017, 139, 2286-2295.	6.6	70
4	A Cross-Coupling Approach to Amide Bond Formation from Esters. ACS Catalysis, 2017, 7, 2176-2180.	5.5	124
5	Solvent-, and Catalyst-free Acylation of Anilines with Meldrum's Acids: ANeat Access to Anilides. ChemistrySelect, 2017, 2, 1770-1773.	0.7	10
6	Chemoselective N-acetylation of primary aliphatic amines promoted by pivalic or acetic acid using ethyl acetate as an acetyl donor. Tetrahedron Letters, 2017, 58, 1181-1184.	0.7	7
7	A General Method for Two-Step Transamidation of Secondary Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (<i>N</i> -Heterocyclic Carbene) Complexes. Organic Letters, 2017, 19, 2158-2161.	2.4	138
8	An Efficient One–pot Procedure for the Direct Preparation of 4,5â€Dihydroisoxazoles from Amides. Advanced Synthesis and Catalysis, 2017, 359, 1990-1995.	2.1	40
9	Design of Boronic Acid–Base Complexes as Reusable Homogeneous Catalysts in Dehydrative Condensations between Carboxylic Acids and Amines. Asian Journal of Organic Chemistry, 2017, 6, 1191-1194.	1.3	22
10	Ni-Catalyzed Reductive Cross-Coupling of Amides with Aryl Iodide Electrophiles via C–N Bond Activation. Organic Letters, 2017, 19, 2536-2539.	2.4	101
11	Cp*Rh ^{III} â€Catalyzed Directed Amidation of Aldehydes with Anthranils. European Journal of Organic Chemistry, 2017, 2017, 3699-3706.	1.2	35
12	A more critical role for silicon in the catalytic Staudinger amidation: silanes as non-innocent reductants. Chemical Communications, 2017, 53, 7982-7985.	2.2	24
13	Palladiumâ€Catalyzed Carbonylative Synthesis of Amides from Aryltriazenes under Additiveâ€Free Conditions. European Journal of Organic Chemistry, 2017, 2017, 3992-3995.	1.2	21
14	Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation. Chemistry - A European Journal, 2017, 23, 10280-10284.	1.7	31
15	Organocatalytic Direct <i>N</i> -Acylation of Amides with Aldehydes under Oxidative Conditions. Journal of Organic Chemistry, 2017, 82, 6940-6945.	1.7	29
16	Synthesis of N-acetoxy-N-arylamides via diacetoxyiodobenzene promoted double acylation reaction of hydroxylamines with aldehydes. Organic and Biomolecular Chemistry, 2017, 15, 5337-5344.	1.5	4
17	Direct N-acylation of sulfoximines with carboxylic acids catalyzed by the B ₃ NO ₂ heterocycle. Chemical Communications, 2017, 53, 7447-7450.	2.2	20
18	Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nature Communications, 2017, 8, 15655.	5.8	78
19	Amine Activation: <i>N</i> â€Arylamino Acid Amide Synthesis from Isothioureas and Amino Acids. Advanced Synthesis and Catalysis, 2017, 359, 2481-2498.	2.1	15
20	Metalâ€Free Synthesis of <i>N</i> â€Aryl Amides using Organocatalytic Ringâ€Opening Aminolysis of Lactones. ChemSusChem, 2017, 10, 1969-1975.	3.6	23

	Сіт	CITATION REPORT	
#	Article	IF	Citations
21	Direct amidation of esters with nitroarenes. Nature Communications, 2017, 8, 14878.	5.8	122
22	Sequential Oneâ€Pot Synthesis of Dipeptides through the Transient Formation of CDIâ€ <i>N</i> â€Pro αâ€Aminoesters. Advanced Synthesis and Catalysis, 2017, 359, 1963-1968.	tected 2.1	13
23	Facile synthesis of N-acyl 2-aminobenzothiazoles by NHC-catalyzed direct oxidative amidation of aldehydes. Chemical Communications, 2017, 53, 1478-1481.	2.2	31
24	Nickel/Photoredox-Catalyzed Amidation via Alkylsilicates and Isocyanates. ACS Catalysis, 2017, 7, 7957-7961.	5.5	56
25	Diphenylsilane as a coupling reagent for amide bond formation. Green Chemistry, 2017, 19, 5060-5064	4. 4.6	50
26	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie, 2017, 129, 15188-15192.	1.6	39
27	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie - International Edition, 2017, 56, 14992-14996.	7.2	141
28	The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 2017, 355, 120-136	0. 3.1	38
29	Cobalt-Catalyzed Cross-Coupling of α-Bromo Amides with Grignard Reagents. Organic Letters, 2017, 1 6068-6071.	19, 2.4	27
30	lodine catalyzed oxidation of alcohols and aldehydes to carboxylic acids in water: a metal-free route to the synthesis of furandicarboxylic acid and terephthalic acid. Green Chemistry, 2017, 19, 5548-5552	2. 4.6	64
31	Thio acid-mediated conversion of azides to amides – Exploratory studies en route to oroidin alkaloids. Tetrahedron Letters, 2017, 58, 3913-3918.	0.7	6
32	Rethinking the Dehydrogenative Amide Synthesis. ACS Catalysis, 2017, 7, 6656-6662.	5.5	53
33	Substrate-Controlled Chemoselective Reactions of Isocyanoacetates with Amides and Lactams. Journal of Organic Chemistry, 2017, 82, 9693-9703.	1.7	25
34	Direct, efficient NHC-catalysed aldehyde oxidative amidation: in situ formed benzils as unconventional acylating agents. Chemical Communications, 2017, 53, 10212-10215.	2.2	22
35	Chemoselective acylation of 2-amino-8-quinolinol in the generation of C2-amides or C8-esters. RSC Advances, 2017, 7, 41955-41961.	1.7	6
36	Iterative Design of a Biomimetic Catalyst for Amino Acid Thioester Condensation. Organic Letters, 2017, 19, 5122-5125.	2.4	15
37	Pd–PEPPSI: a general Pd–NHC precatalyst for Buchwald–Hartwig cross-coupling of esters and an (transamidation) under the same reaction conditions. Chemical Communications, 2017, 53, 10584-10	nides 2.2 587. 2.2	153
38	An aryne-based three-component access to α-aroylamino amides. Organic and Biomolecular Chemistry 2017, 15, 6604-6612.	/, 1.5	8

# 39	ARTICLE Synthesis of Amido Esters and Amido Phosphonates through Carbonylation of Diazo Compounds Followed by Nucleophilic Addition Reaction. European Journal of Organic Chemistry, 2017, 2017,	IF 1.2	CITATIONS
39	4035-4043.	1,2	13
40	Nickel-catalyzed transamidation of aliphatic amide derivatives. Chemical Science, 2017, 8, 6433-6438.	3.7	135
41	Direct Hydrogenation of a Broad Range of Amides under Baseâ€free Conditions using an Efficient and Selective Ruthenium(II) Pincer Catalyst. ChemCatChem, 2017, 9, 4275-4281.	1.8	23
42	Mechanism of Amide Bond Formation from Carboxylic Acids and Amines Promoted by 9-Silafluorenyl Dichloride Derivatives. Journal of Organic Chemistry, 2017, 82, 9087-9096.	1.7	18
43	Sunlight assisted direct amide formation via a charge-transfer complex. Chemical Communications, 2017, 53, 10128-10131.	2.2	18
44	Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives. Organic Letters, 2017, 19, 6404-6407.	2.4	46
45	Hypervalent Iodine-Mediated Oxidative Rearrangement of N–H Ketimines: An Umpolung Approach to Amides. Journal of Organic Chemistry, 2017, 82, 11848-11853.	1.7	18
46	Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules, 2017, 22, 1969.	1.7	17
47	Oneâ€Pot Tandem Photoredox and Crossâ€Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie - International Edition, 2018, 57, 4622-4626.	7.2	62
48	One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie, 2018, 130, 4712-4716.	1.6	15
49	Efficient Catalystâ€Free Trans Sulfonamidation/Sulfonamide Metathesis under Mild Conditions. ChemistrySelect, 2018, 3, 2306-2310.	0.7	6
50	Direct amidation of non-activated phenylacetic acid and benzylamine derivatives catalysed by NiCl 2. Royal Society Open Science, 2018, 5, 171870.	1.1	7
51	Synthesis of thioureido peptidomimetics employing alkyl azides and dithiocarbamates. Organic and Biomolecular Chemistry, 2018, 16, 2258-2263.	1.5	4
52	Direct Formation of Amides from Carboxylic Acids and Amines Catalyzed by Niobium(V) Oxalate Hydrate. ChemistrySelect, 2018, 3, 2599-2603.	0.7	8
53	Lipase-catalyzed amidation of carboxylic acid and amines. Tetrahedron Letters, 2018, 59, 2086-2090.	0.7	16
54	The <i>ortho</i> -substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines. Chemical Communications, 2018, 54, 5410-5413.	2.2	71
55	Interception of Secondary Amide Ylide with Sulfonamides: Catalyst-Controlled Synthesis of <i>N</i> -Sulfonylamidine Derivatives. Organic Letters, 2018, 20, 2663-2666.	2.4	26
56	Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides. Journal of Organic Chemistry, 2018, 83, 5731-5750.	1.7	23

#	Article	IF	CITATIONS
57	Forging Amides Through Metalâ€Catalyzed C–C Coupling with Isocyanates. European Journal of Organic Chemistry, 2018, 2018, 3051-3064.	1.2	44
58	Palladium-catalysed aminocarbonylation/cyclization of iodoalkenes toward N-propargylcarboxamides and oxazoles. Molecular Catalysis, 2018, 452, 68-74.	1.0	6
59	How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catalysis, 2018, 8, 4558-4568.	5.5	51
60	Thioacids – synthons for amide bond formation and ligation reactions: assembly of peptides and peptidomimetics. Organic and Biomolecular Chemistry, 2018, 16, 3524-3552.	1.5	24
61	Graphene oxide (GO) catalyzed transamidation of aliphatic amides: An efficient metal-free procedure. Tetrahedron Letters, 2018, 59, 899-903.	0.7	21
62	Mechanism and Rate-Determining Factors of Amide Bond Formation through Acyl Transfer of Mixed Carboxylic–Carbamic Anhydrides: A Computational Study. Journal of Organic Chemistry, 2018, 83, 2676-2685.	1.7	20
63	Synthesis of Secondary Amides through the Palladium(II)â€Catalyzed Aminocarbonylation of Arylboronic Acids with Amines or Hydrazines and Carbon Monoxide. European Journal of Organic Chemistry, 2018, 2018, 1720-1725.	1.2	17
64	Tetramethyl Orthosilicate (TMOS) as a Reagent for Direct Amidation of Carboxylic Acids. Organic Letters, 2018, 20, 950-953.	2.4	65
65	Catalytic Oligopeptide Synthesis. Organic Letters, 2018, 20, 612-615.	2.4	48
66	Synthesis of Histidineâ€Containing Oligopeptides via Histidineâ€Promoted Peptide Ligation. Chemistry - an Asian Journal, 2018, 13, 400-403.	1.7	7
67	I ₂ â€Triggered Reductive Generation of Nâ€Centered Iminyl Radicals: An Isatinâ€toâ€Quinoline Strategy for the Introduction of Primary Amides. Advanced Synthesis and Catalysis, 2018, 360, 1364-1369.	2.1	48
68	Catalytic Peptide Synthesis: Amidation of <i>N</i> -Hydroxyimino Esters. ACS Catalysis, 2018, 8, 2181-2187.	5.5	30
69	Base-promoted amide synthesis from aliphatic amines and ynones as acylation agents through C–C bond cleavage. Chemical Communications, 2018, 54, 1726-1729.	2.2	23
70	Transamidation of <i>N</i> -acyl-glutarimides with amines. Organic and Biomolecular Chemistry, 2018, 16, 1322-1329.	1.5	57
71	Visible light driven amide synthesis in water at room temperature from Thioacid and amine using CdS nanoparticles as heterogeneous Photocatalyst. Applied Organometallic Chemistry, 2018, 32, e4199.	1.7	22
72	Gas Chromatography–Mass Spectrometry Determination of Pregabalin in Human Plasma Using Derivatization Method. Chromatographia, 2018, 81, 501-508.	0.7	7
73	Bedford-Type Palladacycle-Catalyzed Miyaura Borylation of Aryl Halides with Tetrahydroxydiboron in Water. Journal of Organic Chemistry, 2018, 83, 1842-1851.	1.7	14
74	Inâ€situ Generated Ruthenium Catalyst Systems Bearing Diverse Nâ€Heterocyclic Carbene Precursors for Atomâ€Economic Amide Synthesis from Alcohols and Amines. Chemistry - an Asian Journal, 2018, 13, 440-448.	1.7	23

#	Article	IF	CITATIONS
75	Mechanistic insights into boron-catalysed direct amidation reactions. Chemical Science, 2018, 9, 1058-1072.	3.7	82
76	Cymeneâ€Osmium(II) Complexes with Aminoâ€Phosphane Ligands as Precatalysts for Nitrile Hydration Reactions. ChemistrySelect, 2018, 3, 4324-4329.	0.7	14
77	Palladium-Catalyzed Hydrocarbonylative C–N Coupling of Alkenes with Amides. Organic Letters, 2018, 20, 2208-2212.	2.4	32
78	Iridium(III)â€Catalyzed Regiocontrolled Direct Amidation of Isoquinolones and Pyridones. Advanced Synthesis and Catalysis, 2018, 360, 379-384.	2.1	68
79	An Efficient Protocol to Synthesize Nâ€Acylâ€enamides and â€Imines by Pdâ€Catalyzed Carbonylations. Chemistry - A European Journal, 2018, 24, 2164-2172.	1.7	6
80	A catalyst-free, waste-less ethanol-based solvothermal synthesis of amides. Green Chemistry, 2018, 20, 375-381.	4.6	12
81	Amide synthesis <i>via</i> nickel-catalysed reductive aminocarbonylation of aryl halides with nitroarenes. Chemical Science, 2018, 9, 655-659.	3.7	115
82	Copper-amino group complexes supported on silica-coated magnetite nanoparticles: efficient catalyst for oxidative amidation of methyl arenes. New Journal of Chemistry, 2018, 42, 3900-3908.	1.4	19
83	An expedient, chemoselective N-chloroacetylation of aminoalcohols under metal-free bio-compatible conditions. Green Chemistry Letters and Reviews, 2018, 11, 534-543.	2.1	3
84	Catalytic hydrogenation of carboxylic acids using low-valent and high-valent metal complexes. Chemical Communications, 2018, 54, 13319-13330.	2.2	24
85	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	1.6	18
86	A catalytic one-step synthesis of peptide thioacids: the synthesis of leuprorelin via iterative peptide–fragment coupling reactions. Chemical Communications, 2018, 54, 12222-12225.	2.2	7
87	Regioselectivity of aryl radical attack onto isocyanates and isothiocyanates. Organic and Biomolecular Chemistry, 2018, 16, 9011-9020.	1.5	9
88	An expedient and rapid green chemical synthesis of N-chloroacetanilides and amides using acid chlorides under metal-free neutral conditions. Green Chemistry Letters and Reviews, 2018, 11, 552-558.	2.1	9
89	Amide Activation in Ground and Excited States. Molecules, 2018, 23, 2859.	1.7	25
90	Exploitation of malonyl and succinyl chlorides in the dimerisation of ortho amino stilbenes. AIP Conference Proceedings, 2018, , .	0.3	1
91	A calix[4]arene based boronic acid catalyst for amide bond formation: proof of principle study. Arkivoc, 2018, 2018, 221-229.	0.3	1
92	Copperâ€Catalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angewandte Chemie - International Edition, 2018, 57, 15602-15605.	7.2	42

	Сітатіо	n Report	
# 93	ARTICLE Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by	IF 7.6	CITATIONS
	Selective N–C/O–C Cleavage. Accounts of Chemical Research, 2018, 51, 2589-2599. Highly selective transition-metal-free transamidation of amides and amidation of esters at room		
94	temperature. Nature Communications, 2018, 9, 4165.	5.8	164
95	Ruthenium-Based Catalytic Systems Incorporating a Labile Cyclooctadiene Ligand with N-Heterocyclic Carbene Precursors for the Atom-Economic Alcohol Amidation Using Amines. Molecules, 2018, 23, 2413.	1.7	10
96	Cu42Ge24Na4—A Giant Trimetallic Sesquioxane Cage: Synthesis, Structure, and Catalytic Activity. Catalysts, 2018, 8, 484.	1.6	14
97	Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 11435-11469	. 5.5	412
98	Copper atalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angewandte Chemie, 2018, 130, 15828-15831.	1.6	13
99	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie, 2018, 130, 12302-12306.	1.6	4
100	Rutheniumâ€Catalyzed Reductive Arylation ofNâ€{2â€Pyridinyl)amides with Isopropanol and Arylboronate Esters. Angewandte Chemie, 2018, 131, 492.	1.6	4
101	Triphenyl borate catalyzed synthesis of amides from carboxylic acids and amines. Tetrahedron, 2018, 74, 6954-6958.	1.0	16
102	In Situ Immobilized Sesamol-Quinone/Carbon Nanoblack-Based Electrochemical Redox Platform for Efficient Bioelectrocatalytic and Immunosensor Applications. ACS Omega, 2018, 3, 10823-10835.	1.6	23
103	Direct Transamidation Reactions: Mechanism and Recent Advances. Molecules, 2018, 23, 2382.	1.7	63
104	Dual roles of ynoates: desymmetrization of dicarboxylic acids using trialkylamines as alkyl equivalents. Organic Chemistry Frontiers, 2018, 5, 2955-2959.	2.3	18
105	Intramolecular Transamidation of Secondary Amides via Visible-Light-Induced Tandem Reaction. Organic Letters, 2018, 20, 5618-5621.	2.4	25
106	Magnetic Nanoparticle-Supported Cu–NHC Complex as an Efficient and Recoverable Catalyst for Nitrile Hydration. Catalysis Letters, 2018, 148, 3378-3388.	1.4	16
107	Recent advances in chemoselective acylation of amines. Tetrahedron Letters, 2018, 59, 2615-2621.	0.7	25
108	Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chemical Communications, 2018, 54, 6692-6704.	2.2	58
109	Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 2018, 20, 2933-2952.	4.6	114
110	The iridium-catalysed reductive coupling reaction of tertiary lactams/amides with isocyanoacetates. Organic Chemistry Frontiers, 2018, 5, 2051-2056.	2.3	31

#	Article	IF	CITATIONS
111	Synthesis of 3H-naphtho[2.1-b]pyran-2-carboxamides from cyclocoupling of β-naphthol, propargyl alcohols and isocyanide in the presence of Lewis acids. Tetrahedron, 2018, 74, 3776-3780.	1.0	9
112	In Situ Structural Elucidation and Selective Pb ²⁺ Ion Recognition of Polydopamine Film Formed by Controlled Electrochemical Oxidation of Dopamine. Langmuir, 2018, 34, 7048-7058.	1.6	17
113	Manganese-Catalyzed Direct Conversion of Ester to Amide with Liberation of H ₂ . Organic Letters, 2018, 20, 3381-3384.	2.4	30
114	Synthesis of brominated bisamides and their application to the suzuki coupling. Journal of Molecular Structure, 2018, 1171, 594-599.	1.8	7
115	Synthesis of Secondary Amides from Thiocarbamates. Organic Letters, 2018, 20, 4235-4239.	2.4	15
116	Boron Esterâ€Catalyzed Amidation of Carboxylic Acids with Amines: Mechanistic Rationale by Computational Study. Chemistry - an Asian Journal, 2018, 13, 2685-2690.	1.7	10
117	A versatile biosynthetic approach to amide bond formation. Green Chemistry, 2018, 20, 3426-3431.	4.6	52
118	Co-Catalyzed Synthesis of <i>N</i> -Sulfonylcarboxamides from Carboxylic Acids and Sulfonyl Azides. Journal of Organic Chemistry, 2018, 83, 9364-9369.	1.7	13
119	Acid/Base-Co-catalyzed Formal Baeyer–Villiger Oxidation Reaction of Ketones: Using Molecular Oxygen as the Oxidant. Organic Letters, 2018, 20, 4862-4866.	2.4	19
120	Palladium-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Amides from Styrenes and Nitroarenes. Organic Letters, 2018, 20, 4988-4993.	2.4	52
121	Computational study of the mechanism of amide bond formation <i>via</i> CS ₂ -releasing 1,3-acyl transfer. Organic and Biomolecular Chemistry, 2018, 16, 5808-5815.	1.5	10
122	Iridium-Catalyzed Aryl C–H Sulfonamidation and Amide Formation Using a Bifunctional Nitrogen Source. Organic Letters, 2018, 20, 4828-4832.	2.4	19
123	The Future of Bioorthogonal Chemistry. ACS Central Science, 2018, 4, 952-959.	5.3	367
124	Efficient Nâ€Heterocyclic Carbene/Ruthenium Catalytic Systems for the Alcohol Amidation with Amines: Involvement of Polyâ€Carbene Complexes?. ChemCatChem, 2018, 10, 4338-4345.	1.8	14
125	Are Aminomethyl Thioesters Viable Intermediates in Native Chemical Ligation Type Amide Bond Forming Reactions?. Australian Journal of Chemistry, 2018, 71, 697.	0.5	1
126	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie - International Edition, 2018, 57, 12126-12130.	7.2	15
127	Diboron-Catalyzed Dehydrative Amidation of Aromatic Carboxylic Acids with Amines. Organic Letters, 2018, 20, 4397-4400.	2.4	73
128	Chelation-assisted C–N cross-coupling of phosphinamides and aryl boronic acids with copper powder at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 4065-4070.	1.5	9

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
129	Nickel atalyzed Amide Bond Formation from Methyl Esters. Angewandte Chemie, 2018, 130, 13107-13111.	1.6	20
130	Integrative Photoreduction of CO ₂ with Subsequent Carbonylation: Photocatalysis for Reductive Functionalization of CO ₂ . ChemSusChem, 2018, 11, 3382-3387.	3.6	40
131	TsOH·H ₂ O-mediated <i>N</i> -amidation of quinoline <i>N</i> -oxides: facile and regioselective synthesis of <i>N</i> -(quinolin-2-yl)amides. Organic and Biomolecular Chemistry, 2018, 16, 6202-6205.	1.5	22
132	Hexagonal Mesoporous Silica Supported Ultrasmall Copper Oxides for Oxidative Amidation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 12935-12945.	3.2	14
133	Synthesis of Aliphatic Carboxamides Mediated by Nickel NN ₂ â€Pincer Complexes and Adaptation to Carbonâ€Isotope Labeling. Chemistry - A European Journal, 2018, 24, 14946-14949.	1.7	16
134	Nickelâ€Catalyzed Amide Bond Formation from Methyl Esters. Angewandte Chemie - International Edition, 2018, 57, 12925-12929.	7.2	81
135	Ni2B@Cu2O and Ni2B@CuCl2: two new simple and efficient nanocatalysts forÂthe green one-pot reductive acetylation of nitroarenes and direct N-acetylation of arylamines using solvent-free mechanochemical grinding. Research on Chemical Intermediates, 2018, 44, 7331-7352.	1.3	23
136	Palladium-Catalyzed Serendipitous Synthesis of Arylglyoxylic Amides from Arylglyoxylates andN,N-Dialkylamides in the Presence of Halopyridines. ACS Omega, 2018, 3, 8787-8793.	1.6	5
137	Mechanochemical synthesis of primary amides from carboxylic acids using TCT/NH4SCN. Tetrahedron Letters, 2018, 59, 3571-3573.	0.7	8
138	Airâ€stable Bis(pentamethylcyclopentadienyl) Zirconium Perfluorooctanesulfonate as an Efficient and Recyclable Catalyst for the Synthesis of Nâ€substituted Amides. ChemCatChem, 2018, 10, 3532-3538.	1.8	34
139	Biosynthesis of thiocarboxylic acid-containing natural products. Nature Communications, 2018, 9, 2362.	5.8	26
140	KO ^{<i>t</i>} Bu-Promoted Transition-Metal-Free Transamidation of Primary and Tertiary Amides with Amines. Organic Letters, 2019, 21, 6690-6694.	2.4	59
141	Direct Conversion of Carboxylic Acids to Various Nitrogen-Containing Compounds in the One-Pot Exploiting Curtius Rearrangement. Journal of Organic Chemistry, 2019, 84, 11323-11334.	1.7	17
142	Metal-, Photocatalyst-, and Light-Free Direct C–H Acylation and Carbamoylation of Heterocycles. Organic Letters, 2019, 21, 7119-7123.	2.4	47
143	Installation of -SO ₂ F groups onto primary amides. Beilstein Journal of Organic Chemistry, 2019, 15, 1907-1912.	1.3	8
144	Electronâ€Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry - A European Journal, 2019, 25, 13799-13810.	1.7	14
145	Metal-Free Transamidation of Secondary Amides by N–C Cleavage. Journal of Organic Chemistry, 2019, 84, 12091-12100.	1.7	66
146	Rh(III)-Catalyzed C–H Amidation of 2-Arylindoles with Dioxazolones: A Route to Indolo[1,2- <i>c</i>]quinazolines. Organic Letters, 2019, 21, 7038-7043.	2.4	45

#	Article	IF	CITATIONS
147	Substrate-Directed Lewis-Acid Catalysis for Peptide Synthesis. Journal of the American Chemical Society, 2019, 141, 12288-12295.	6.6	55
148	Selectivity controllable divergent synthesis of α,β-unsaturated amides and maleimides from alkynes and nitroarenes via palladium-catalyzed carbonylation. Journal of Catalysis, 2019, 375, 519-523.	3.1	27
149	Enzymeâ€Catalysed Synthesis of Secondary and Tertiary Amides. Advanced Synthesis and Catalysis, 2019, 361, 3895-3914.	2.1	76
150	Zirconium catalyzed amide formation without water scavenging. Applied Organometallic Chemistry, 2019, 33, e5062.	1.7	22
151	Direct Catalytic Reductive N-Alkylation of Amines with Carboxylic Acids: Chemoselective Enamine Formation and further Functionalizations. ACS Catalysis, 2019, 9, 7588-7595.	5.5	26
152	Rhodium-Catalyzed Synthesis of Amides from Functionalized Blocked Isocyanates. ACS Catalysis, 2019, 9, 8104-8109.	5.5	13
153	Recent Advances in the Functionalization of Hydrocarbons: Synthesis of Amides and its Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 1227-1262.	1.3	13
154	A Hydroperoxideâ€Mediated Decarboxylation of αâ€Ketoacids Enables the Chemoselective Acylation of Amines. Chemistry - A European Journal, 2019, 25, 15504-15507.	1.7	16
155	Direct Amidation of Carboxylic Acids with Nitroarenes. Journal of Organic Chemistry, 2019, 84, 13922-13934.	1.7	32
156	Water-Tolerant and Atom Economical Amide Bond Formation by Metal-Substituted Polyoxometalate Catalysts. ACS Catalysis, 2019, 9, 10245-10252.	5.5	49
157	Diffusion-Enhanced Amide Bond Formation on a Solid Support. Organic Process Research and Development, 2019, 23, 2733-2739.	1.3	8
158	Solventâ€Free Nâ€Alkylation of Amides with Alcohols Catalyzed by Nickel on Silica–Alumina. European Journal of Organic Chemistry, 2019, 2019, 6842-6846.	1.2	15
159	Organocatalytic, Enantioselective Reductive Bis-functionalization of Secondary Amides: One-Pot Construction of Chiral 2,2-Disubstituted 3-Iminoindoline. Organic Letters, 2019, 21, 7587-7591.	2.4	20
160	Rational Design of an Organocatalyst for Peptide Bond Formation. Journal of the American Chemical Society, 2019, 141, 15977-15985.	6.6	51
161	Efficient and phosphine-free bidentate N-heterocyclic carbene/ruthenium catalytic systems for the dehydrogenative amidation of alcohols and amines. Organic Chemistry Frontiers, 2019, 6, 563-570.	2.3	29
162	Manganese-mediated reductive amidation of esters with nitroarenes. Organic Chemistry Frontiers, 2019, 6, 756-761.	2.3	37
163	Catalytic asymmetric aza-Michael addition of fumaric monoacids with multifunctional thiourea/boronic acids. Organic and Biomolecular Chemistry, 2019, 17, 2331-2335.	1.5	23
164	Visible Light-induced Palladium-catalysis in Organic Synthesis. Chemistry Letters, 2019, 48, 181-191.	0.7	67

ARTICLE IF CITATIONS An alternative approach for preparation of amide-embedded stationary phase for reversed-phase liquid 165 1.8 17 chromatography. Journal of Chromatography A, 2019, 1593, 24-33. Palladium-catalyzed relay hydroaminocarbonylation of alkenes with hydroxylamine hydrochloride as an ammonia equivalent. Communications Chemistry, 2019, 2, . Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and 167 2.6 81 their biological evaluation. European Journal of Medicinal Chemistry, 2019, 167, 105-123. Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Advances, 168 2019, 9, 1536-1540. Innovative approach for the synthesis of N-substituted amides from nitriles and alcohols using propylphosphonic anhydride (T3P^{\hat{R}^{\otimes}}) under solvent-free conditions. Synthetic 169 1.1 12 Communications, 2019, 49, 2106-2116. Highly Chemoselective, Transition-Metal-Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N–C/O–C Cleavage. Journal of the American Chemical Society, 2019, 141, 6.6 Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic 171 1.6 8 Copper/Nitroxyl Catalysis. Angewandte Chemie, 2019, 131, 12339-12343. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic 7.2 Copper/Nitroxyl Catalysis. Angewandte Chémie - International Edition, 2019, 58, 12211-12215. Formamide catalyzed activation of carboxylic acids – versatile and cost-efficient amidation and 173 3.7 46 esterification. Chemical Science, 2019, 10, 7399-7406. Synthesis and investigation of 3,5-bis-linear and macrocyclic tripeptidopyridine candidates by using I-valine, N,N′-(3,5-pyridinediyldicarbonyl)bis-dimethyl ester as synthon. Zeitschrift Fur Naturforschung 174 - Section B Journal of Chemical Sciences, 2019, 74, 473-478. Ruthenium-Catalyzed Oxidative Amidation of Alkynes to Amides. Organic Letters, 2019, 21, 5346-5350. 175 2.4 28 Palladium-Catalyzed Amide Synthesis via Aminocarbonylation of Arylboronic Acids with Nitroarenes. 2.4 Organic Letters, 2019, 21, 4878-4881. Diboronic Acid Anhydrides as Effective Catalysts for the Hydroxy-Directed Dehydrative Amidation of 177 2.4 48 Carboxylic Acids. Organic Letters, 2019, 21, 4303-4308. Unearthing the Mechanism of Umpolung Amide Synthesis. CheM, 2019, 5, 1014-1016. 178 5.8 179 N-triflyl-propiolamides: Preparation and transamidation reactions. Tetrahedron, 2019, 75, 3586-3595. 1.0 18 Metal-free thioesterification of amides generating acyl thioesters. New Journal of Chemistry, 2019, 43, 1.4 14 9384-9388. Picolinamide Assisted Oxidation of CH₂ Groups Bound to Organic and Organometallic 181 1.1 5 Compounds Using Ferrocene as a Catalyst. Organometallics, 2019, 38, 2015-2021. A New Wave of Amide Bond Formations for Peptide Synthesis. Synthesis, 2019, 51, 2261-2277. 1.2 34

#	Article	IF	CITATIONS
183	TBHPâ€Initiated Transamidation of Secondary Amides via Câ^'N Bond Activation: A Metalâ€Free Approach. Asian Journal of Organic Chemistry, 2019, 8, 853-857.	1.3	14
184	Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds. ACS Catalysis, 2019, 9, 4426-4433.	5.5	69
185	Biocatalysis: A Pharma Perspective. Advanced Synthesis and Catalysis, 2019, 361, 2421-2432.	2.1	168
186	Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews, 2019, 119, 7328-7443.	23.0	367
187	α-Keto Acids: Acylating Agents in Organic Synthesis. Chemical Reviews, 2019, 119, 7113-7278.	23.0	151
188	[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald–Hartwig Cross-coupling (Transamidation) of Amides and Esters by N–C/O–C Activation. Organic Letters, 2019, 21, 3304-3309.	2.4	90
189	Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis. ChemSusChem, 2019, 12, 2570-2575.	3.6	17
190	POCl3 promoted metal-free synthesis of tertiary amides by coupling of carboxylic acids and N,N-disubstituted formamides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 236-240.	0.8	3
191	Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process. Organic Process Research and Development, 2019, 23, 588-594.	1.3	15
192	Chromium-Catalyzed Activation of Acyl C–O Bonds with Magnesium for Amidation of Esters with Nitroarenes. Organic Letters, 2019, 21, 1912-1916.	2.4	43
193	Graphene Oxide: A Metalâ€Free Carbocatalyst for the Synthesis of Diverse Amides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2019, 361, 2107-2116.	2.1	26
194	Clickable coupling of carboxylic acids and amines at room temperature mediated by SO ₂ F ₂ : a significant breakthrough for the construction of amides and peptide linkages. Organic and Biomolecular Chemistry, 2019, 17, 4087-4101.	1.5	55
195	Nickel atalyzed Dehydrogenative Couplings. ChemCatChem, 2019, 11, 2243-2259.	1.8	37
197	Direct Observation and Analysis of the Halo-Amino-Nitro Alkane Functional Group. CheM, 2019, 5, 1248-1264.	5.8	13
198	Carbon–Carbon Bond Formation of Trifluoroacetyl Amides with Grignard Reagents via C(O)–CF3 Bond Cleavage. Journal of Organic Chemistry, 2019, 84, 5635-5644.	1.7	14
199	Amide bond synthesis via silver(I) N-heterocyclic carbene-catalyzed and tert-butyl hydroperoxide-mediated oxidative coupling of alcohols with amines under base free conditions. Tetrahedron Letters, 2019, 60, 847-851.	0.7	10
200	Metal- and solvent-free synthesis of amides using substitute formamides as an amino source under mild conditions. Scientific Reports, 2019, 9, 2787.	1.6	9
201	All Non arbon B ₃ NO ₂ Exotic Heterocycles: Synthesis, Dynamics, and Catalysis. Chemistry - A European Journal, 2019, 25, 4648-4653.	1.7	34

		LPORT	
# 202	ARTICLE Challenges and outlook for catalytic direct amidation reactions. Nature Catalysis, 2019, 2, 98-102.	IF 16.1	Citations
204	BF ₃ ·OEt ₂ -Catalyzed Vinyl Azide Addition to in Situ Generated <i>N</i> Acyl Iminium Salts: Synthesis of 3-Oxoisoindoline-1-acetamides. Journal of Organic Chemistry, 2019, 84, 15865-15876.	1.7	15
205	Tantalum-Catalyzed Amidation of Amino Acid Homologues. Journal of the American Chemical Society, 2019, 141, 18926-18931.	6.6	26
206	Highly chemoselective, sterically sensitive NHC-catalysed amine acylation with pyridil. Chemical Communications, 2019, 55, 13526-13529.	2.2	1
207	Solvent- and catalyst-free transamidations of unprotected glycosyl carboxamides. Organic and Biomolecular Chemistry, 2019, 17, 9425-9429.	1.5	3
208	Direct amide synthesis <i>via</i> Ni-mediated aminocarbonylation of arylboronic acids with CO and nitroarenes. Chemical Communications, 2019, 55, 13709-13712.	2.2	26
209	Rational engineering of amide synthetase enables bioconversion to diverse xiamenmycin derivatives. Chemical Communications, 2019, 55, 14840-14843.	2.2	5
210	The mechanism and structure–activity relationship of amide bond formation by silane derivatives: a computational study. Organic and Biomolecular Chemistry, 2019, 17, 9232-9242.	1.5	10
211	Transition-metal free C3-amidation of quinoxalin-2(1 <i>H</i>)-ones using Selectfluor as a mild oxidant. Organic and Biomolecular Chemistry, 2019, 17, 10178-10187.	1.5	29
212	Synergistic Copper-Catalyzed Reductive Aminocarbonylation of Alkyl Iodides with Nitroarenes. Organic Letters, 2019, 21, 10106-10110.	2.4	48
213	Electrochemically Enabled Double C–H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Organic Letters, 2019, 21, 9841-9845.	2.4	64
214	Chemodivergent synthesis of N-(pyridin-2-yl)amides and 3-bromoimidazo[1,2-a]pyridines from α-bromoketones and 2-aminopyridines. RSC Advances, 2019, 9, 34671-34676.	1.7	17
215	Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines. Organic Letters, 2019, 21, 387-392.	2.4	54
216	Direct Câ^'H Carbamoylation of Nitrogen ontaining Heterocycles. Chemistry - A European Journal, 2019, 25, 2217-2221.	1.7	37
217	Neighboring Protonation Unveils Lewis Acidity in the B ₃ NO ₂ Heterocycle. Journal of the American Chemical Society, 2019, 141, 1546-1554.	6.6	35
218	Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Letters, 2019, 60, 40-43.	0.7	49
219	Carbonyl Compounds′ Journey to Amide Bond Formation. Chemistry - an Asian Journal, 2019, 14, 344-388.	1.7	53
220	Amide Bond Formation Catalyzed by Recyclable Copper Nanoparticles Supported on Zeolite Y under Mild Conditions. ChemCatChem, 2019, 11, 1487-1494.	1.8	14

#	Article	IF	CITATIONS
221	Synthesis of zanthoxylamide protoalkaloids and their in silico ADME-Tox screening and in vivo toxicity assessment in zebrafish embryos. European Journal of Pharmaceutical Sciences, 2019, 127, 291-299.	1.9	6
222	Copper atalyzed Site‧elective Oxidative Câ^'C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Advanced Synthesis and Catalysis, 2019, 361, 135-145.	2.1	26
223	Rutheniumâ€Catalyzed Reductive Arylation of N â€(2â€Pyridinyl)amides with Isopropanol and Arylboronate Esters. Angewandte Chemie - International Edition, 2019, 58, 482-487.	7.2	24
224	Katalytische reduktive Nâ€Alkylierungen unter Verwendung von CO ₂ und Carbonsärederivaten: Aktuelle Entwicklungen. Angewandte Chemie, 2019, 131, 12950-12968.	1.6	17
225	Synthesis of Amides by Mild Palladium-Catalyzed Aminocarbonylation of Arylsilanes with Amines Enabled by Copper(II) Fluoride. Journal of Organic Chemistry, 2019, 84, 338-345.	1.7	34
226	Catalytic Reductive Nâ€Alkylations Using CO ₂ and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie - International Edition, 2019, 58, 12820-12838.	7.2	101
227	Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions. Journal of the Iranian Chemical Society, 2019, 16, 393-400.	1.2	15
228	Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European Journal of Organic Chemistry, 2020, 2020, 10-27.	1.2	30
229	Reductive Amidation without an External Hydrogen Source Using Rhodium on Carbon Matrix as a Catalyst. ChemCatChem, 2020, 12, 112-117.	1.8	9
230	An unsymmetrical covalent organic polymer for catalytic amide synthesis. Dalton Transactions, 2020, 49, 179-186.	1.6	38
231	Why we might be misusing process mass intensity (PMI) and a methodology to apply it effectively as a discovery level metric. Green Chemistry, 2020, 22, 123-135.	4.6	69
232	Visible light-promoted copper catalyzed regioselective acetamidation of terminal alkynes by arylamines. Green Chemistry, 2020, 22, 1164-1170.	4.6	30
233	Organophotoredoxâ€Mediated Amide Synthesis by Coupling Alcohol and Amine through Aerobic Oxidation of Alcohol. Chemistry - A European Journal, 2020, 26, 3703-3708.	1.7	15
234	Buchwald–Hartwig cross-coupling of amides (transamidation) by selective N–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2020, 10, 710-716.	2.1	57
235	Mechanistic Insights into La-Catalyzed Amidation of Aldehyde with Amine. Organic Letters, 2020, 22, 705-708.	2.4	6
236	Copper catalyzed aryl amidation between N ^α -Fmoc-protected amino-acid azides and aryl boronic acids. Synthetic Communications, 2020, 50, 506-515.	1.1	1
237	Visible Light-Induced Amide Bond Formation. Organic Letters, 2020, 22, 371-375.	2.4	57
238	Chlorotropylium Promoted Conversions of Oximes to Amides and Nitriles. European Journal of Organic Chemistry, 2020, 2020, 311-315.	1.2	12

#	Article	IF	CITATIONS
239	Phenysilane and Silicon Tetraacetate: Versatile Promotors for Amide Synthesis. European Journal of Organic Chemistry, 2020, 2020, 388-392.	1.2	21
240	Transitionâ€Metalâ€Free Activation of Amides by Nâ^'C Bond Cleavage. Chemical Record, 2020, 20, 649-659.	2.9	75
241	Catalytic Dehydrative Peptide Synthesis with <i>gem</i> -Diboronic Acids. ACS Catalysis, 2020, 10, 683-688.	5.5	50
242	Direct Access to Chiral Secondary Amides by Copper-Catalyzed Borylative Carboxamidation of Vinylarenes with Isocyanates. Journal of the American Chemical Society, 2020, 142, 623-632.	6.6	63
243	Wellâ€defined Nâ€heterocyclic carbene/ruthenium complexes for the alcohol amidation with amines: The dual role of cesium carbonate and improved activities applying an added ligand. Applied Organometallic Chemistry, 2020, 34, e5323.	1.7	13
244	Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 2020, 10, 311-335.	5.5	96
245	Direct Transformation of Alkylarenes into <i>N</i> â€(Pyridineâ€2â€yl)amides by C(sp ³)–C(sp ³) Bond Cleavage. European Journal of Organic Chemistry, 2020, 2020, 6468-6473.	1.2	3
246	Catalytic, Metal-Free Amide Synthesis from Aldehydes and Imines Enabled by a Dual-Catalyzed Umpolung Strategy under Redox-Neutral Conditions. ACS Catalysis, 2020, 10, 12960-12966.	5.5	66
247	Diboronic Acid Anhydride-Catalyzed Direct Peptide Bond Formation Enabled by Hydroxy-Directed Dehydrative Condensation. Organic Letters, 2020, 22, 8658-8664.	2.4	33
248	An unprecedented cobalt-catalyzed selective aroylation of primary amines with aroyl peroxides. Tetrahedron Letters, 2020, 61, 152399.	0.7	5
249	Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril. ACS Sustainable Chemistry and Engineering, 2020, 8, 15703-15715.	3.2	29
250	Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. Journal of Medicinal Chemistry, 2020, 63, 12290-12358.	2.9	261
251	Synthesis of Thiolâ€Containing Oligopeptides via Tandem Activation of γâ€Thiolactones by Silverâ€DABCO Pair. Asian Journal of Organic Chemistry, 2020, 9, 1638-1649.	1.3	3
252	Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angewandte Chemie, 2020, 132, 18805-18813.	1.6	8
253	Decarboxylative/Oxidative Amidation of Aryl α-Ketocarboxylic Acids with Nitroarenes and Nitroso Compounds in Aqueous Medium. Organic Letters, 2020, 22, 9381-9385.	2.4	13
254	Recent developments in catalytic amide bond formation. Peptide Science, 2020, 112, e24210.	1.0	69
255	Oxidative Amidation of Aldehydes with Amines Catalysed by Fe(II) – Hydride Complex and N―Heterocyclic Carbenes (NHC). ChemistrySelect, 2020, 5, 9417-9423.	0.7	8
256	Peptide Bond-Forming Reaction via Amino Acid Silyl Esters: New Catalytic Reactivity of an Aminosilane. ACS Catalysis, 2020, 10, 9594-9603.	5.5	33

#	Article	IF	CITATIONS
257	An Electrochemical Beckmann Rearrangement: Traditional Reaction via Modern Radical Mechanism. ChemSusChem, 2020, 13, 4929-4936.	3.6	7
258	Visible-Light-Induced Beckmann Rearrangement by Organic Photoredox Catalysis. Organic Letters, 2020, 22, 6182-6186.	2.4	26
259	Enhancing native chemical ligation for challenging chemical protein syntheses. Current Opinion in Chemical Biology, 2020, 58, 37-44.	2.8	21
260	Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nature Communications, 2020, 11, 3893.	5.8	130
261	Graphene Oxide as a Metalâ€free Carbocatalyst for Direct Amide Synthesis from Carboxylic Acid and Amine Under Solventâ€Free Reaction Condition. ChemistrySelect, 2020, 5, 8295-8300.	0.7	4
262	Efficient cleavage of tertiary amide bonds via radical–polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chemical Science, 2020, 11, 12323-12328.	3.7	22
263	Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids. Organic Letters, 2020, 22, 8593-8597.	2.4	26
264	Room temperature clickable coupling electron deficient amines with sterically hindered carboxylic acids for the construction of amides. Tetrahedron, 2020, 76, 131724.	1.0	5
265	Highly Efficient Amide Michael Addition and Its Use in the Preparation of Tunable Multicolor Photoluminescent Polymers. ACS Applied Materials & Interfaces, 2020, 12, 50870-50878.	4.0	21
266	Catalyst and Additiveâ€Free Direct Amidation/Halogenation of Tertiary Arylamines with <i>N</i> â€haloimide/amides. Advanced Synthesis and Catalysis, 2020, 362, 5002-5008.	2.1	7
267	Copper-catalyzed carbonylative synthesis of pyrrolidine-containing amides from γ,δ-unsaturated aromatic oxime esters. Organic Chemistry Frontiers, 2020, 7, 2986-2990.	2.3	17
268	Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids. Chemical Communications, 2020, 56, 13145-13148.	2.2	22
269	Copper atalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie - International Edition, 2020, 59, 22441-22445.	7.2	50
270	Copper atalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie, 2020, 132, 22627-22631.	1.6	14
271	Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides. Organic and Biomolecular Chemistry, 2020, 18, 6958-6964.	1.5	14
272	Stereoselective Formal Hydroamidation of Si-Substituted Arylacetylenes with DIBAL-H and Isocyanates: Synthesis of (<i>E</i>)- and (<i>Z</i>)-α-Silyl-α,β-unsaturated Amides. Journal of Organic Chemistry, 2020, 85, 12024-12035.	1.7	10
273	Access to 2-pyridinylamide and imidazopyridine from 2-fluoropyridine and amidine hydrochloride. Organic and Biomolecular Chemistry, 2020, 18, 9292-9299.	1.5	1
274	Nickel-catalyzed aminocarbonylation of Aryl/Alkenyl/Allyl (pseudo)halides with isocyanides and H2O. Tetrahedron Letters, 2020, 61, 152605.	0.7	8

#	Article	IF	CITATIONS
275	Oneâ€Pot Synthesis of Enantioenriched βâ€Amino Secondary Amides via an Enantioselective [4+2] Cycloaddition Reaction of Vinyl Azides with <i>N</i> â€Acyl Imines Catalyzed by a Chiral BrÃ,nsted Acid. Chemistry - A European Journal, 2020, 26, 8230-8234.	1.7	11
276	Photoredoxâ€Catalyzed Addition of Carbamoyl Radicals to Olefins: A 1,4â€Dihydropyridine Approach. Chemistry - A European Journal, 2020, 26, 8239-8243.	1.7	32
277	Catalystâ€Free and Metalâ€Free Approach towards Synthesis of Amide―and Thioamide‣inked βâ€Carbolineâ€Pyridine Conjugates and Estimation of Their Photophysical Properties. ChemistrySelect, 2020, 5, 5172-5179.	0.7	9
278	Electrochemical Amide Bond Formation from Benzaldehydes and Amines: Oxidation by Cathodicâ€Generated Hydrogen Peroxide. European Journal of Organic Chemistry, 2020, 2020, 3844-3846.	1.2	6
279	Effect of ligand tautomerism on Suzuki reactions. Chemical Data Collections, 2020, 28, 100420.	1.1	0
280	Minimizing HCN in DIC/Oxyma-Mediated Amide Bond-Forming Reactions. Organic Process Research and Development, 2020, 24, 1341-1349.	1.3	21
281	Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using Cooperative Chiral Amine–Boronic Acid Catalysts. Angewandte Chemie - International Edition, 2020, 59, 17256-17260.	7.2	19
282	Amide Synthesis through the In Situ Generation of Chloro- and Imido-Phosphonium Salts. ACS Omega, 2020, 5, 15734-15745.	1.6	8
283	Lignocellulosic Biomass Upgrading into Valuable Nitrogen-Containing Compounds by Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 17008-17025.	1.8	31
284	Fast Amide Couplings in Water: Extraction, Column Chromatography, and Crystallization Not Required. Organic Letters, 2020, 22, 5737-5740.	2.4	53
285	Green transamidation catalysed by graphene oxide under concentrated solar irradiation. Environmental Chemistry Letters, 2020, 18, 1731-1735.	8.3	7
286	Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. European Journal of Organic Chemistry, 2020, 2020, 4641-4651.	1.2	156
287	Organocatalytic Multicomponent Synthesis of α/βâ€Dipeptide Derivatives. Chemistry - A European Journal, 2020, 26, 8541-8545.	1.7	9
288	Ir ^{III} -Catalyzed direct syntheses of amides and esters using nitriles as acid equivalents: a photochemical pathway. New Journal of Chemistry, 2020, 44, 5303-5308.	1.4	7
289	<i>N</i> -Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 5475-5485.	1.7	21
290	Pd/C-Catalyzed Carbonylative Synthesis of α-Carbonyl-α′-Amide Sulfoxonium Ylides from Azides. Journal of Organic Chemistry, 2020, 85, 5733-5740.	1.7	12
291	Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Organic Letters, 2020, 22, 3245-3250.	2.4	30
292	Game Change from Reagent- to Substrate-Controlled Peptide Synthesis. Bulletin of the Chemical Society of Japan, 2020, 93, 759-767.	2.0	40

CITATION REPORT ARTICLE IF CITATIONS Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using 1.6 5 Cooperative Chiral Amineâ€"Boronic Acid Catalysts. Angewandte Chemie, 2020, 132, 17409-17413. Iron Catalyzed [3+2] Cycloaddition of Tetrahydroisoquinoline: Synthesis of Dihydropyrrolo[2,1―a 1.3 jisoquinolines. Asian Journal of Organic Chemistry, 2020, 9, 1617-1622. Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science 2.1 15 and Technology, 2020, 10, 6116-6128. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angewandte 49 Chemie - International Edition, 2020, 59, 18646-18654. Direct Solvothermal Synthesis of Phase-Pure Colloidal NiO Nanocrystals. Chemistry of Materials, 3.2 18 2020, 32, 2004-2013. Amide Synthesis by Nickel/Photoredox atalyzed Direct Carbamoylation of (Hetero)Aryl Bromides. Angewandte Chemie - International Edition, 2020, 59, 5248-5253. Rhodium-Catalyzed Transarylation of Benzamides: C–C Bond vs C–N Bond Activation. ACS Catalysis, 299 5.5 27 2020, 10, 3398-3403. Solvent-Free Iron(III) Chloride-Catalyzed Direct Amidation of Esters. Molecules, 2020, 25, 1040. 1.7 10 Zn-Catalyzed Nicotinate-Directed Transamidations in Peptide Synthesis. ACS Catalysis, 2020, 10, 301 5.5 25 4280-4289. Amide Synthesis by Nickel/Photoredoxâ€Catalyzed Direct Carbamoylation of (Hetero)Aryl Bromides. 1.6 Angewandte Chemie, 2020, 132, 5286-5291. Nickel-catalyzed reductive amidation of aryl-triazine ethers. Chemical Communications, 2020, 56, 303 2.2 10 1992-1995. Identification of the Side Products That Diminish the Yields of the Monoamidated Product in Metal-Catalyzed C–H Amidation of 2-Phenylpyridine with Arylisocyanates. Journal of Organic Chemistry, 2020, 85, 2680-2687. How Strong is Hydrogen Bonding to Amide Nitrogen?. ChemPhysChem, 2020, 21, 651-658. 305 1.0 12 Palladium-Mediated CO2 Extrusion Followed by Insertion of Isocyanates for the Synthesis of Benzamides: Translating Fundamental Mechanistic Studies To Develop a Catalytic Protocol. Organometallics, 2020, 39, 453-467. 1.1 Untapped Opportunities of Resinâ€toâ€Resin Transfer Reactions (RRTR) for the Convergent Assembly of 0 1.7 Multivalent Peptide Conjugates. Chemistry - A European Journal, 2020, 26, 4701-4705. Synthesis of C6-Substituted Isoquinolino[1,2-<i>b</i>]quinazolines via Rh(III)-Catalyzed Câ€"H 308 Annulation with Sulfoxonium Ylides. Journal of Organic Chemistry, 2020, 85, 3192-3201. Nickel-Catalyzed Deaminative Acylation of Activated Aliphatic Amines with Aromatic Amides via C–N 309 2.4 54 Bond Activation. Organic Letters, 2020, 22, 950-955.

Solidâ€Phase Total Synthesis of Yaku'amideâ€...B Enabled by Traceless Staudinger Ligation. Angewandte Chemie, 2020, 132, 4594-4601.

307

293

294

295

297

#	Article	IF	CITATIONS
311	Solidâ€Phase Total Synthesis of Yaku'amideâ€B Enabled by Traceless Staudinger Ligation. Angewandte Chemie - International Edition, 2020, 59, 4564-4571.	7.2	28
312	Palladium-catalyzed carbonylative synthesis of $\hat{I}\pm, \hat{I}^2$ -unsaturated amides from aryl azides and alkenylaluminum reagent. Journal of Catalysis, 2020, 383, 160-163.	3.1	12
313	Ultrafast amidation of esters using lithium amides under aerobic ambient temperature conditions in sustainable solvents. Chemical Science, 2020, 11, 6500-6509.	3.7	33
314	The Staudinger Ligation. Chemical Reviews, 2020, 120, 4301-4354.	23.0	153
315	Intermediate formation enabled regioselective access to amide in the Pd-catalyzed reductive aminocarbonylation of olefin with nitroarene. Chinese Journal of Catalysis, 2020, 41, 1152-1160.	6.9	14
316	Design, synthesis and biological evaluation of novel 3,4-dihydro-2(1H)-quinolinone derivatives as potential chitin synthase inhibitors and antifungal agents. European Journal of Medicinal Chemistry, 2020, 195, 112278.	2.6	16
317	Sustainable Amidation Reactions – Recent Advances. European Journal of Organic Chemistry, 2020, 2020, 2501-2516.	1.2	42
318	Amide transformation as an efficient postpolymerization modification approach for the synthesis of functional polyacetylenes. Polymer Chemistry, 2020, 11, 3427-3433.	1.9	2
319	Synthesis and biological evaluation of new indole and pyrrole carboxamides based on amino acids. Arkivoc, 2020, 2019, 163-175.	0.3	1
320	Chemoselective Amideâ€Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angewandte Chemie, 2021, 133, 7100-7105.	1.6	2
321	Synthesis of 1-aroyl-3-methylsulfanyl-5-amino-1,2,4-triazoles and their analysis by spectroscopy, X-ray crystallography and theoretical calculations. Journal of Molecular Structure, 2021, 1226, 129317.	1.8	14
322	Repurposing the 3â€Isocyanobutanoic Acid Adenylation Enzyme SfaB for Versatile Amidation and Thioesterification. Angewandte Chemie - International Edition, 2021, 60, 2030-2035.	7.2	3
323	Repurposing the 3â€lsocyanobutanoic Acid Adenylation Enzyme SfaB for Versatile Amidation and Thioesterification. Angewandte Chemie, 2021, 133, 2058-2063.	1.6	0
324	Divergent Solidâ€Phase Synthesis and Biological Evaluation of Yaku'amide B and Its Seven E / Z Isomers. Chemistry - A European Journal, 2021, 27, 1088-1093.	1.7	8
325	pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chemical Communications, 2021, 57, 73-76.	2.2	6
326	Reagent-free aerobic oxidative synthesis of amides from aldehydes and isothiocyanates. Organic Chemistry Frontiers, 2021, 8, 697-701.	2.3	17
327	Traceless selenocarboxylates for the one-pot synthesis of amides and derivatives. Tetrahedron, 2021, 79, 131834.	1.0	2
328	Regio―and Enantioselective Niâ€Catalyzed Formal Hydroalkylation, Hydrobenzylation, and Hydropropargylation of Acrylamides to αâ€Tertiary Amides. Angewandte Chemie, 2021, 133, 1623-1628.	1.6	16

#	Article	IF	CITATIONS
329	Efficient and accessible silane-mediated direct amide coupling of carboxylic acids and amines. Green Chemistry, 2021, 23, 288-295.	4.6	20
330	Cobaltâ€Catalyzed 1,4â€Aryl Migration/Desulfonylation Cascade: Synthesis of αâ€Aryl Amides. Chemistry - A European Journal, 2021, 27, 4004-4008.	1.7	10
331	Chemoselective Amideâ€Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angewandte Chemie - International Edition, 2021, 60, 7024-7029.	7.2	14
332	Regio―and Enantioselective Niâ€Catalyzed Formal Hydroalkylation, Hydrobenzylation, and Hydropropargylation of Acrylamides to αâ€Tertiary Amides. Angewandte Chemie - International Edition, 2021, 60, 1599-1604.	7.2	87
333	Aerobic oxidation of primary amines to amides catalyzed by an annulated mesoionic carbene (MIC) stabilized Ru complex. Catalysis Science and Technology, 2021, 11, 7018-7028.	2.1	6
334	Efficient Synthesis of Biologically Active Peptides Based on Micro-flow Amide Bond Formation. , 2021, , 139-160.		0
335	Oxidative peptide bond formation of glycine–amino acid using 2-(aminomethyl)malononitrile as a glycine unit. Chemical Communications, 2021, 57, 4283-4286.	2.2	6
336	Diversification of α-ketoamides via transamidation reactions with alkyl and benzyl amines at room temperature. Organic and Biomolecular Chemistry, 2021, 19, 7134-7140.	1.5	15
337	Metal-free approach for hindered amide-bond formation with hypervalent iodine(<scp>iii</scp>) reagents: application to hindered peptide synthesis. Green Chemistry, 2021, 23, 848-855.	4.6	18
338	Pyrrole carboxamide introduction in the total synthesis of pyrrole–imidazole alkaloids. Organic and Biomolecular Chemistry, 2021, 19, 2603-2621.	1.5	5
339	Discrimination of enantiomers of amides with two stereogenic centers enabled by chiral bisthiourea derivatives using ¹ H NMR spectroscopy. Organic and Biomolecular Chemistry, 2021, 19, 6697-6706.	1.5	4
340	Recent Advances in Ynamide Coupling Reagent. Chinese Journal of Organic Chemistry, 2021, 41, 873.	0.6	11
341	Visible light-mediated synthesis of amides from carboxylic acids and amine-boranes. Green Chemistry, 2021, 23, 3595-3599.	4.6	27
342	Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Organic and Biomolecular Chemistry, 2021, 19, 7621-7626.	1.5	6
343	Fe-mediated synthesis of <i>N</i> -aryl amides from nitroarenes and acyl chlorides. RSC Advances, 2021, 11, 15290-15295.	1.7	10
344	A case study of Pdâ‹ ⁻ Pd intramolecular interaction in a benzothiazole based palladacycle; catalytic activity toward amide synthesis <i>via</i> an isocyanide insertion pathway. New Journal of Chemistry, 2021, 45, 3290-3297.	1.4	5
345	The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114.	3.2	35
346	Amide bond formation: beyond the dilemma between activation and racemisation. Chemical Communications, 2021, 57, 6346-6359.	2.2	27

#	Article	IF	CITATIONS
347	<i>N</i> -Heterocyclic carbene (NHC) catalyzed amidation of aldehydes with amines <i>via</i> the tandem <i>N</i> -hydroxysuccinimide ester formation. New Journal of Chemistry, 2021, 45, 7486-7490.	1.4	9
348	Direct amidation of acid fluorides using germanium amides. Dalton Transactions, 2021, 50, 4490-4493.	1.6	4
349	Silicon compounds as stoichiometric coupling reagents for direct amidation. Organic and Biomolecular Chemistry, 2021, 19, 6746-6760.	1.5	16
350	Copper-Catalyzed Decarboxylative Cross-Coupling of Carboxylic Acids and Arylcarbamoyl Chlorides. Chinese Journal of Organic Chemistry, 2021, 41, 1146.	0.6	0
351	Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes. Molecules, 2021, 26, 188.	1.7	18
352	BrÄnsted Acid Organocatalyzed Three-Component Hydroamidation Reactions of Vinyl Ethers. Journal of Organic Chemistry, 2021, 86, 4171-4181.	1.7	2
353	Visibleâ€Lightâ€Mediated Oxidative Amidation of Aldehydes by Using Magnetic CdS Quantum Dots as a Photocatalyst. Chemistry - A European Journal, 2021, 27, 5483-5491.	1.7	52
354	Palladium Catalyzed Cascade Azidation/Carbonylation of Aryl Halides with Sodium Azide for the Synthesis of Amides. Chemistry - an Asian Journal, 2021, 16, 503-506.	1.7	9
355	Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands. Polyhedron, 2021, 195, 114979.	1.0	5
356	Palladium Catalyzed Aminocarbonylation of Benzylic Ammonium Triflates with Nitroarenes: Synthesis of Phenylacetamides. Advanced Synthesis and Catalysis, 2021, 363, 2061-2065.	2.1	16
357	Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. Molecules, 2021, 26, 1813.	1.7	4
358	Transition-Metal-Catalyzed Hydroaminocarbonylations of Alkenes and Alkynes. Trends in Chemistry, 2021, 3, 218-230.	4.4	42
359	Radical-Mediated Activation of Esters with a Copper/Selectfluor System: Synthesis of Bulky Amides and Peptides. Journal of Organic Chemistry, 2021, 86, 5401-5411.	1.7	12
360	Zwitterionâ€Catalyzed Aminoâ€Dibromination of Nitroalkenes: Scope, Mechanism, and Application to The Synthesis of Glycinamides. Asian Journal of Organic Chemistry, 2021, 10, 1131-1140.	1.3	6
361	Chemoselective Reactions of Isocyanates with Secondary Amides: One-Pot Construction of 2,3-Dialkyl-Substituted Quinazolinones. Journal of Organic Chemistry, 2021, 86, 5345-5353.	1.7	8
362	Visible-light induced one-pot hydrogenation and amidation of nitroaromatics with carboxylic acids over 2D MXene-derived Pt/N-TiO2/Ti3C2. Molecular Catalysis, 2021, 504, 111490.	1.0	5
363	Ammonia-borane as a Catalyst for the Direct Amidation of Carboxylic Acids. Organic Letters, 2021, 23, 2938-2942.	2.4	25
364	Hydration of Aliphatic Nitriles Catalyzed by an Osmium Polyhydride: Evidence for an Alternative Mechanism. Inorganic Chemistry, 2021, 60, 7284-7296.	1.9	9

#	Article	IF	CITATIONS
365	Pd-Catalyzed Oxidative Aminocarbonylation of Arylboronic Acids with Unreactive Tertiary Amines via C–N Bond Activation. Journal of Organic Chemistry, 2021, 86, 14028-14035.	1.7	14
366	Nal-mediated oxidative amidation of benzyl alcohols/aromatic aldehydes to benzamides via electrochemical reaction. Tetrahedron Letters, 2021, 70, 153017.	0.7	3
367	Co ₂ (CO) ₈ as a Solid CO (g) Source for the Amino Carbonylation of (Hetero)aryl Halides with Highly Deactivated (Hetero)arylamines. Journal of Organic Chemistry, 2021, 86, 5530-5537.	1.7	20
368	<i>N</i> -Chloro- <i>N</i> -sodio-carbamates as a Practical Amidating Reagent for Scalable and Sustainable Amidation of Aldehydes under Visible Light. Organic Process Research and Development, 2021, 25, 1176-1183.	1.3	8
369	Transitionâ€metalâ€catalyzed dehydrogenative coupling of alcohols and amines: A novel and atomâ€economical access to amides. Journal of the Chinese Chemical Society, 2021, 68, 723-737.	0.8	25
370	CAL-B-mediated efficient synthesis of a set of valuable amides by direct amidation of phenoxy- and aryl-propionic acids. Chemical Papers, 2021, 75, 4045-4053.	1.0	2
371	Enantioselective Catalytic C-H Amidations: An Highlight. Catalysts, 2021, 11, 471.	1.6	12
372	Covalent Amide-Bonded Nanoflares for High-Fidelity Intracellular Sensing and Targeted Therapy: A Superstable Nanosystem Free of Nonspecific Interferences. Analytical Chemistry, 2021, 93, 7879-7888.	3.2	8
373	Synergistic Effect of NiLDH@YZ Hybrid and Mechanochemical Agitation on Glaser Homocoupling Reaction. Chemistry - A European Journal, 2021, 27, 8875-8885.	1.7	12
374	Substrate-Controlled Amide Bond Formation: Innovation of Peptide Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 382-390.	0.0	3
375	Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules, 2021, 26, 2957.	1.7	5
376	Double-Carrousel Mechanism for Mn-Catalyzed Dehydrogenative Amide Synthesis from Alcohols and Amines. ACS Catalysis, 2021, 11, 6155-6161.	5.5	19
377	Acid-Enabled Palladium-Catalyzed β-C(sp ³)–H Functionalization of Weinreb Amides. Journal of Organic Chemistry, 2021, 86, 7872-7880.	1.7	13
378	Palladium-Catalyzed Markovnikov Hydroaminocarbonylation of 1,1-Disubstituted and 1,1,2-Trisubstituted Alkenes for Formation of Amides with Quaternary Carbon. Journal of the American Chemical Society, 2021, 143, 7298-7305.	6.6	42
379	Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chemical Reviews, 2021, 121, 6802-6849.	23.0	42
380	Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis. Journal of the American Chemical Society, 2021, 143, 10374-10381.	6.6	35
381	Direct C3 Carbamoylation of 2 <i>H</i> â€Indazoles. European Journal of Organic Chemistry, 2021, 2021, 3382-3385.	1.2	11
382	Coâ€Catalysis for Hydroamidocarbonylation of Alkynes with Amides over a Bifunctional Ligandâ€Based Pd Catalyst. Chemistry - an Asian Journal, 2021, 16, 2113-2117.	1.7	4

#	Article	IF	CITATIONS
383	A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes. ACS Catalysis, 2021, 11, 7176-7185.	5.5	28
384	Synthesis of N-arylacetamides via amination of aryltriazenes with acetonitrile under metal-free and mild conditions. Arabian Journal of Chemistry, 2021, 14, 103158.	2.3	5
385	Near-Ambient-Temperature Dehydrogenative Synthesis of the Amide Bond: Mechanistic Insight and Applications. ACS Catalysis, 2021, 11, 7383-7393.	5.5	19
386	Ultrasonic Assisted Facile Synthesis of <i>N</i> â€Arylamides Using Nitriles and 1â€Aryltriazenes Precursors Promoted by BrAֻnsted Acidic Ionic Liquid under Metalâ€Free Conditions. ChemistrySelect, 2021, 6, 6548-6556.	0.7	5
387	Manganese(I) Catalyzed α-Alkenylation of Amides Using Alcohols with Liberation of Hydrogen and Water. Journal of Organic Chemistry, 2021, 86, 9994-10005.	1.7	10
388	Direct Amidation of Esters by Ball Milling**. Angewandte Chemie - International Edition, 2021, 60, 21868-21874.	7.2	46
389	Acyclic Twisted Amides. Chemical Reviews, 2021, 121, 12746-12783.	23.0	107
390	Direct Oxidative Amination of the Methyl C–H Bond in N-Heterocycles over Metal-Free Mesoporous Carbon. ACS Catalysis, 2021, 11, 10902-10912.	5.5	11
391	Manganese-Pincer-Catalyzed Nitrile Hydration, α-Deuteration, and α-Deuterated Amide Formation via Metal Ligand Cooperation. ACS Catalysis, 2021, 11, 10239-10245.	5.5	17
392	Direct Amidation of Esters by Ball Milling**. Angewandte Chemie, 2021, 133, 22039-22045.	1.6	8
393	Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Organic Letters, 2021, 23, 6825-6830.	2.4	28
394	Facile conversion of molecularly complex (hetero)aryl carboxylic acids into alkynes for accelerated SAR exploration. Chemistry - A European Journal, 2021, 27, 14816-14820.	1.7	3
395	Synthesis of Carboxylic Acids, Esters, and Amides from 1,1â€Đibromoalkenes via Oxidation of Alkynyl Boronate Intermediates. ChemistrySelect, 2021, 6, 8532-8536.	0.7	2
396	Potassium <i>tert</i> -Butoxide Promoted Synthesis of Dihydroquinazolinones. Journal of Organic Chemistry, 2021, 86, 14695-14704.	1.7	8
397	Investigation of Masked <i>N</i> â€Acylâ€ <i>N</i> â€isocyanates: Support for Oxadiazolones as Blocked <i>N</i> â€isocyanate Precursors. Chemistry - A European Journal, 2021, 27, 14051-14056.	1.7	5
398	Direct Access to Amides from Nitroâ€Compounds via Aminocarbonylation and Amidation Reactions: A Minireview. Chemical Record, 2021, 21, 4059-4087.	2.9	7
399	Design, synthesis and biological evaluation of novel diazaspirodecanone derivatives containing piperidine-4-carboxamide as chitin synthase inhibitors and antifungal agents. Bioorganic Chemistry, 2021, 114, 105108.	2.0	7
400	Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites. Journal of Catalysis, 2021, 401, 279-287.	3.1	25

#	Article	IF	CITATIONS
401	Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO ₂ Capture and Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 12682-12691.	5.5	8
402	Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application. Chinese Journal of Catalysis, 2021, 42, 2059-2067.	6.9	13
403	Zirconium Oxideâ€Catalyzed Direct Amidation of Unactivated Esters under Continuousâ€Flow Conditions. Advanced Synthesis and Catalysis, 2021, 363, 2529-2535.	2.1	14
404	Manganese Catalyzed Direct Amidation of Esters with Amines. Journal of Organic Chemistry, 2021, 86, 2339-2358.	1.7	36
405	Palladium-Catalyzed C–C Bond Activation of Cyclopropenone: Modular Access to Trisubstituted <i>α,β</i> -Unsaturated Esters and Amides. Journal of Organic Chemistry, 2021, 86, 2682-2695.	1.7	15
406	Weak base-promoted selective rearrangement of oxaziridines to amides <i>via</i> visible-light photoredox catalysis. Chemical Communications, 2021, 57, 9995-9998.	2.2	5
407	Transamidation of <i>N</i> -Benzyl- <i>N</i> -Boc-amides under Transition Metal-Free and Base-Free Conditions. Chinese Journal of Organic Chemistry, 2021, 41, 1658.	0.6	3
408	Direct C–H aminocarbonylation of <i>N</i> -heteroarenes with isocyanides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 2917-2922.	1.5	10
409	Solid-phase synthesis of coralmycin A/ <i>epi</i> -coralmycin A and desmethoxycoralmycin A. Organic and Biomolecular Chemistry, 2021, 19, 6291-6300.	1.5	3
410	Organocatalytic aminocarbonylation of α,β-unsaturated ketones with <i>N</i> , <i>N</i> -dimethyl carbamoylsilane. New Journal of Chemistry, 2021, 45, 7256-7260.	1.4	3
411	Biphasic electrochemical peptide synthesis. Chemical Science, 2021, 12, 12911-12917.	3.7	27
412	Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis. Chinese Journal of Organic Chemistry, 2021, 41, 4094.	0.6	0
413	Pyridine-Enabled C–N Bond Activation for the Rapid Construction of Amides and 4-Pyridylglyoxamides by Cooperative Palladium/Copper Catalysis. Journal of Organic Chemistry, 2020, 85, 8045-8054.	1.7	6
414	<i>N</i> -Acylcarbazole as a Selective Transamidation Reagent. Bulletin of the Chemical Society of Japan, 2020, 93, 993-999.	2.0	9
415	The Synthesis of Amides through Direct Amination of Aldehydes with Amines. Current Organic Chemistry, 2019, 23, 901-919.	0.9	6
416	Overcoming Hypoxia-Induced Chemoresistance in Cancer Using a Novel Glycoconjugate of Methotrexate. Pharmaceuticals, 2021, 14, 13.	1.7	9
417	Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation). ACS Sustainable Chemistry and Engineering, 2021, 9, 14937-14945.	3.2	21
418	Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals. ChemistrySelect, 2021, 6, 10274-10322.	0.7	11

#	Article	IF	CITATIONS
419	A CO ₂ -Catalyzed Transamidation Reaction. Journal of Organic Chemistry, 2021, 86, 16867-16881.	1.7	16
420	Generation of Mixed Anhydrides via Oxidative Fragmentation of Tertiary Cyclopropanols with Phenyliodine(III) Dicarboxylates. Molecules, 2021, 26, 140.	1.7	1
421	Green solvents for the formation of amide linkages. Organic and Biomolecular Chemistry, 2022, 20, 1137-1149.	1.5	26
422	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.0	0
423	Cleavage via Selective Catalytic Oxidation of Lignin or Lignin Model Compounds into Functional Chemicals. ChemEngineering, 2021, 5, 74.	1.0	1
424	Design, Synthesis, and Application of Multiboron Heterocycle to Direct Amidation Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 971-978.	0.0	3
425	Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Organic Chemistry Frontiers, 2022, 9, 311-319.	2.3	5
426	Preparation of porphyrin and phthalocyanine conjugates for biomedical applications. Journal of Porphyrins and Phthalocyanines, 2021, 25, 917-929.	0.4	4
427	Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester. Results in Chemistry, 2022, 4, 100253.	0.9	2
428	Catalystâ€Controlled Regiodivergent Synthesis of α/βâ€Dipeptide Derivatives via <i>N</i> â€Allylic Alkylation of <i>Oâ€</i> Alkyl Hydroxamates with MBH Carbonates. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
429	Nickel-catalyzed reductive aminocarbonylation of vinyl triflates with nitro compounds for the synthesis of α,β-unsaturated amides. Organic Chemistry Frontiers, 2021, 8, 6974-6978.	2.3	22
430	Water-removable ynamide coupling reagent for racemization-free syntheses of peptides, amides, and esters. Green Chemistry, 2021, 23, 9916-9921.	4.6	17
431	Amide bond formation in aqueous solution: direct coupling of metal carboxylate salts with ammonium salts at room temperature. Organic and Biomolecular Chemistry, 2021, 19, 10073-10080.	1.5	6
432	Mechanistic Study of Cu-Catalyzed Addition Reaction of Isocyanates. Chinese Journal of Organic Chemistry, 2021, 41, 4347.	0.6	4
433	Synthesis of alkynamides through reaction of alkyl- or aryl-substituted alkynylaluminums with isocyanates. Organic and Biomolecular Chemistry, 2021, 20, 139-151.	1.5	6
434	TBAI-catalyzed C–N bond formation through oxidative coupling of benzyl bromides with amines: a new avenue to the synthesis of amides. Synthetic Communications, 2022, 52, 424-432.	1.1	2
435	NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization. Organic Letters, 2022, 24, 1169-1174.	2.4	20
436	Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules, 2022, 27, 517.	1.7	29

#	Article	IF	CITATIONS
437	Umpolung strategies for the functionalization of peptides and proteins. Chemical Science, 2022, 13, 2809-2823.	3.7	19
438	Iron-catalyzed hydroaminocarbonylation of alkynes: Selective and efficient synthesis of primary α,β-unsaturated amides. Chinese Chemical Letters, 2022, 33, 4842-4845.	4.8	18
439	Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. ChemSusChem, 2022, 15, .	3.6	12
440	Redox-neutral dehydrogenative cross-coupling of alcohols and amines enabled by nickel catalysis. Organic Chemistry Frontiers, 2022, 9, 1703-1710.	2.3	8
441	Chemoselective Transamidation of Thioamides by Transitionâ€Metalâ€Free Nâ^'C(S) Transacylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
442	Copper(II)-β-cyclodextrin immobilized on graphitic carbon nitride nanosheets as a highly effective catalyst for tandem oxidative amidation of benzylic alcohols. Scientific Reports, 2022, 12, 2331.	1.6	1
443	Chemoselective Transamidation of Thioamides by Transitionâ€Metalâ€Free N–C(S) Transacylation. Angewandte Chemie, 0, , .	1.6	2
444	Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nature Communications, 2021, 12, 5964.	5.8	30
445	Highly efficient Markovnikov hydroaminocarbonylation of alkenes and alkynes catalyzed by a "soluble―heterogeneous Pd catalyst. Green Chemistry, 2022, 24, 4463-4469.	4.6	9
446	Zirconium oxo clusters as discrete molecular catalysts for the direct amide bond formation. Catalysis Science and Technology, 2022, 12, 3190-3201.	2.1	11
447	Palladium-catalyzed cascade Heck-type cyclization and reductive aminocarbonylation for the synthesis of functionalized amides. Organic and Biomolecular Chemistry, 2022, 20, 2605-2608.	1.5	7
448	Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Organic and Biomolecular Chemistry, 2022, 20, 2249-2254.	1.5	11
449	Two-Component Redox Organocatalyst for Peptide Bond Formation. Journal of the American Chemical Society, 2022, 144, 3637-3643.	6.6	16
450	Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. CheM, 2022, 8, 1906-1927.	5.8	18
451	Vanadium atalyzed Oxidative Conversion of Primary Aromatic Alcohols into Amides and Nitriles with Molecular Oxygen. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
452	Synthesis of Nâ€Aryl α–Ketoamides, α–Ketoesters, α–Ketothioesters and Their Applications in Quinoxalinone Preparation. Asian Journal of Organic Chemistry, 0, , .	1.3	4
453	Design, synthesis, and biological evaluation of novel spiro[pyrrolidine-2,3′-quinolin]-2′-one derivatives as potential chitin synthase inhibitors and antifungal agents. European Journal of Medicinal Chemistry, 2022, 233, 114208.	2.6	8
454	Electrophilic Sulfonium-Promoted Peptide and Protein Amidation in Aqueous Media. Organic Letters, 2022, 24, 581-586.	2.4	16

ARTICLE IF CITATIONS # Palladium-Catalyzed Tandem Hydrocarbonylative Lactamization and Cycloaddition Reaction for the 455 2.4 4 Construction of Bridged Polycyclic Lactams. Organic Letters, 2022, 24, 147-151. Photoredox-Catalyzed Synthesis of α-Amino Acid Amides by Imine Carbamoylation. Organic Letters, 2022, 2.4 24, 506-510. Computational Studies on the Mechanisms for Deaminative Amide Hydrogenation by Homogeneous 457 1.3 5 Bifunctional Catalysts. Topics in Catalysis, 2022, 65, 82-95. Palladium-Catalyzed Direct Dicarbonylation of Amines with Ethylene to Imides. Organic Letters, 2022, 2.4 24, 451-456. Amide Bond Formation via the Rearrangement of Nitrile Imines Derived from <i>N</i>-2-Nitrophenyl 459 2.4 5 Hydrazonyl Bromides. Organic Letters, 2022, 24, 334-338. Combined experimental and computational study of Al₂O₃ catalyzed transamidation of secondary amides with amines. RSC Advances, 2022, 12, 11255-11261. 1.7 The crystal structure of <i>N</i>-cyclohexyl-3-hydroxy-4-methoxybenzamide, C₁₄H₁₉NO₃. Zeitschrift Fur Kristallographie - New Crystal 462 0.1 1 Structures, 2022, . Copper-catalyzed hydroaminocarbonylation of benzylidenecyclopropanes: synthesis of 13,1²-unsaturated 10 amides. Chemical Communications, 2022, 58, 6534-6537. Facile synthesis of amides <i>via </i> 464 3.7 7 amines. Chemical Science, 2022, 13, 5913-5919. N[[Equation]]N' Acyl Migration in the Context of a Medicinal Chemistry Program. SSRN Electronic 0.4 Journal, O, , . Palladiumâ€Catalyzed Aminocarbonylation of Heteroaryl Iodides. ChemistrySelect, 2022, 7, . 466 2 0.7 Biomimetic Peptide Catalytic Bondâ€Forming Utilizing a Mild BrÃ,nsted Acid. Chemistry - A European Journal, 2022, 28, e202103989. Discovery of novel rostâ€4â€ene derivatives as potential plant activators for preventing phytopathogenic 468 bacterial infection: Design, synthesis and biological studies. Pest Management Science, 2022, 78, 1.7 14 3404-3415. Hydrogen bond mediated conversion of benzenenitriles and arylacetonitriles to amides: an 469 4.6 "on/in-water―reaction strategy. Green Chemistry, 2022, Ź4, 4981-4990. Copperâ€Catalyzed Carbonylative Crossâ€Coupling of Alkyl Iodides and Amines. Chemistry - A European 470 10 1.7 Journal, 2022, 28, . Paracetamol Synthesis for Active Learning of Amide Functional Groups in Undergraduate Chemistry 471 1.1 Laboratories. Journal of Chemical Education, 2022, 99, 2385-2391. A Photo- and Redox Actives Mesoporous 3d Covalent Organic Framework Enables Highly Efficient 472 0.4 0 Metal-Free Photoredox Catalysis. SSRN Electronic Journal, 0, , . Prebiotic Catalytic Peptide Ligation Yields Proteinogenic Peptides by Intramolecular Amide Catalyzed Hydrolysis Facilitating Regioselective Lysine Ligation in Neutral Water. Journal of the American Chemical Society, 2022, 144, 10151-10155. 473 6.6

#	Article	IF	CITATIONS
474	A Recent Progress for the Synthesis ofÂThioester Compounds. European Journal of Organic Chemistry, 0, , .	1.2	4
475	Advances in the synthesis of amides via alpha oxygenation of amines. Current Organic Chemistry, 2022, 26, .	0.9	Ο
476	Tunable Pd/C-catalyzed oxidative alkoxycarbonylation/aminocarbonylation of aryl hydrazines with alcohols/inert tertiary amines through C–N bond activation. New Journal of Chemistry, 2022, 46, 14421-14426.	1.4	4
478	Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Organic Process Research and Development, 2022, 26, 1562-1689.	1.3	46
479	Thiourea-Catalyzed Amidation of Esters: A New Method for the Preparation of Amides. Letters in Organic Chemistry, 2022, 19, .	0.2	0
480	Palladium-catalyzed four-component difluoroalkylative carbonylation of aryl olefins and ethylene. Journal of Catalysis, 2022, 413, 163-167.	3.1	13
481	Mechanochemical halogenation of unsymmetrically substituted azobenzenes. Beilstein Journal of Organic Chemistry, 0, 18, 680-687.	1.3	6
482	Cage-like manganesesilsesquioxanes: features of their synthesis, unique structure, and catalytic activity in oxidative amidations. Inorganic Chemistry Frontiers, 2022, 9, 4525-4537.	3.0	10
483	Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chemical Communications, 2022, 58, 8322-8339.	2.2	11
484	Catalytic <i>N</i> -methyl amidation of carboxylic acids under cooperative conditions. RSC Advances, 2022, 12, 20550-20554.	1.7	Ο
485	Metal-free synthesis of secondary amides using <i>N</i> -Boc- <i>O</i> -tosylhydroxylamine as nitrogen source <i>via</i> Beckmann rearrangement. New Journal of Chemistry, 2022, 46, 14782-14785.	1.4	4
486	Mild Amide Synthesis Using Nitrobenzene under Neutral Conditions. Organic Letters, 2022, 24, 4766-4771.	2.4	24
487	[NN]â€Chelate nickel complexes with Schiff base ligands: Synthesis, structure and catalytic activity in green amidation reaction. Applied Organometallic Chemistry, 2022, 36, .	1.7	1
488	Substrate-controlled selective acylation of quinazolinones: Access to 2-benzamido-N-formylbenzamides and 3-benzoylquinazolinones. Tetrahedron Letters, 2022, 103, 153988.	0.7	1
489	An Umpolung Route to Amides from αâ€Aminonitriles under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2022, 364, 2872-2882.	2.1	5
490	Synthesis of Clycouronamides by the Transamidation Approach at Room Temperature. Asian Journal of Organic Chemistry, 0, , .	1.3	4
491	Protocol for the preparation of amorphous manganese oxide and its application as heterogeneous catalyst in the direct synthesis of amides and nitriles. STAR Protocols, 2022, 3, 101564.	0.5	0
492	A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. Journal of Catalysis, 2022, 413, 692-702.	3.1	4

#	Article	IF	CITATIONS
493	Design and synthesis of new bis(1,2,4-triazolo[3,4- <i>b</i>][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Advances, 2022, 12, 23644-23660.	1.7	11
494	Synthesis and Characterization of Magnetized Di(Pyridin-2-Yl)Amine-Copper (II) Complex and Its Catalytic Applications in Synthesis of Ynones and Amides. Polycyclic Aromatic Compounds, 0, , 1-16.	1.4	0
495	N → N' acyl migration in the context of a medicinal chemistry program. Tetrahedron, 2022, , 132950.	1.0	1
496	Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium. Angewandte Chemie, 2022, 134, .	1.6	4
497	Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
498	Synthesis of ruthenium complexes and their catalytic applications: A review. Arabian Journal of Chemistry, 2022, 15, 104165.	2.3	21
499	Synthesis of 3,3′-bisindoles <i>via</i> demethylenation. Organic Chemistry Frontiers, 2022, 9, 5281-5284.	2.3	3
500	Visible-light promoted photocatalyst-free aerobic α-oxidation of tertiary amines to amides. Organic and Biomolecular Chemistry, 2022, 20, 8031-8036.	1.5	7
501	Green and sustainable visible light-mediated formation of amide bonds: an emerging niche in organic chemistry. New Journal of Chemistry, 2022, 46, 16220-16242.	1.4	4
502	Efficient catalyst-free direct amidation of non-activated carboxylic acids from carbodiimides. Organic and Biomolecular Chemistry, 0, , .	1.5	0
503	Cu-catalysed transamidation of unactivated aliphatic amides. Organic and Biomolecular Chemistry, 2022, 20, 6931-6940.	1.5	4
504	Catalyst-free highly regioselective hydrated ring-opening and formylation of quinazolinones. Organic and Biomolecular Chemistry, 2022, 20, 6654-6658.	1.5	0
505	Taming photocatalysis in flow: easy and speedy preparation of α-aminoamide derivatives. Green Chemistry, 2022, 24, 6613-6618.	4.6	7
506	Siloxane-containing derivatives of benzoic acid: chemical transformation of the carboxyl group. New Journal of Chemistry, 2022, 46, 18041-18047.	1.4	2
507	Cuâ€Oxide Nanoparticles Catalyzed Synthesis of Nitriles and Amides from Alcohols and Ammonia in Presence of Air. Advanced Sustainable Systems, 2022, 6, .	2.7	2
508	A Boron-Nitrogen Double Transborylation Strategy for Borane-Catalyzed Hydroboration of Nitriles. Journal of Organic Chemistry, 2022, 87, 12386-12396.	1.7	7
509	BODIPY Photocatalyzed Beckmann Rearrangement and Hydrolysis of Oximes under Visible Light. Journal of Organic Chemistry, 2022, 87, 11958-11967.	1.7	5
510	Ynamideâ€Mediated Peptide Bond Formation: Mechanistic Study and Synthetic Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15

#	Article	IF	CITATIONS
511	Development of a Catalytic Ester Activation Protocol for the Efficient Formation of Amide Bonds using an Arâ^'I/HFâ‹pyridine/ <i>m</i> CPBA System. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
512	Hydration of Nitriles Catalyzed by Ruthenium Complexes: Role of Dihydrogen Bonding Interactions in Promoting Base-Free Catalysis. Inorganic Chemistry, 2022, 61, 15463-15474.	1.9	8
513	Mechanistic Understanding of KO ^t Buâ€Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
514	Ynamideâ€Mediated Peptide Bond Formation: Mechanistic Study and Synthetic Applications. Angewandte Chemie, 0, , .	1.6	0
515	Preparation of <i>N</i> -Aryl Amides by Epimerization-Free Umpolung Amide Synthesis. Journal of the American Chemical Society, 2022, 144, 16708-16714.	6.6	15
516	Amine Activation: "Inverse―Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds. Journal of Organic Chemistry, 2022, 87, 12148-12163.	1.7	3
517	Beckmann Rearrangement with Improved Atom Economy, Catalyzed by Inexpensive, Reusable, Brol̀·nsted Acidic Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2022, 10, 13568-13575.	3.2	8
518	Dynamic environment at the Zr _{6} oxo cluster surface is key for the catalytic formation of amide bonds. Catalysis Science and Technology, 2023, 13, 100-110.	2.1	5
519	Metal-Free Synthesis of Carbamoylated Chroman-4-Ones via Cascade Radical Annulation of 2-(Allyloxy)arylaldehydes with Oxamic Acids. Molecules, 2022, 27, 7049.	1.7	5
521	Direct Boronic Acid Promoted Amidation of Carboxylic Acids with Poorly Nucleophilic Amines. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
522	Homogeneous catalysis with polyhydride complexes. Chemical Society Reviews, 2022, 51, 9717-9758.	18.7	9
523	Precise control of the site selectivity in ruthenium-catalyzed C–H bond amidations using cyclic amides as powerful directing groups. Organic Chemistry Frontiers, 2022, 10, 42-53.	2.3	1
524	Pd-Catalyzed Double Carbopalladation/syn-Insertion Cascades toward Pragmatic Synthesis of Aminated Polyheterocyclic 1,2-benzothiazepine 1-oxides. Synthesis, 0, , .	1.2	0
525	K ₂ CO ₃ -accelerated amidation of carboxylic acids using α-oxo ketene- <i>N</i> , <i>S</i> -acetals as amine surrogates. Organic Chemistry Frontiers, 2023, 10, 686-698.	2.3	1
526	High-valent Cu(<scp>iii</scp>)–CF ₃ compound-mediated esterification reaction. Organic and Biomolecular Chemistry, 2023, 21, 935-939.	1.5	3
527	Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chemical Communications, 0, , .	2.2	1
528	Synthesis, In Silico and In Vivo Toxicity Assessment of Functionalized Pyridophenanthridinones via Sequential MW-Assisted Intramolecular Friedel-Crafts Alkylation and Direct C–H Arylation. Molecules, 2022, 27, 8112.	1.7	2
529	Boron Catalysis in the Transformation of Carboxylic Acids and Carboxylic Acid Derivatives. European Journal of Organic Chemistry, 2023, 26, .	1.2	6

#	Article	IF	CITATIONS
530	Photoresponsive Carbonâ€Azobenzene Hybrids: A Promising Material for Energy Devices. ChemPhysChem, 2023, 24, .	1.0	5
531	Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via an Elusive Mechanistic Pathway. ACS Catalysis, 2023, 13, 647-658.	5.5	9
532	Practical povidone iodine catalyzed transamidation from primary amides and amines. Tetrahedron Letters, 2023, 116, 154312.	0.7	5
533	Progress in C-C and C-Heteroatom Bonds Construction Using Alcohols as Acyl Precursors. Molecules, 2022, 27, 8977.	1.7	2
534	Regioselective reductive transamination of peptidic amides enabled by a dual Zr(IV)–H catalysis. CheM, 2023, 9, 869-880.	5.8	1
535	Functionalized Tetrazoles as Latent Active Esters in the Synthesis of Amide Bonds. Organic Letters, 2022, 24, 9491-9496.	2.4	3
536	Direct Aldimine Oxidative Reaction: A General Approach toward Amides. Asian Journal of Organic Chemistry, 0, , .	1.3	0
537	Recent advances in polyoxometalates acid-catalyzed organic reactions. Chinese Chemical Letters, 2023, 34, 108097.	4.8	20
538	Enantioselective Copper-Catalyzed Borylative Amidation of Allenes. Journal of the American Chemical Society, 2022, 144, 22850-22857.	6.6	12
539	Mechanochemical Defluorinative Arylation of Trifluoroacetamides: An Entry to Aromatic Amides. Journal of Organic Chemistry, 2023, 88, 863-870.	1.7	3
540	<i>N</i> -Cyano sulfilimine functional group as a nonclassical amide bond bioisostere in the design of a potent analogue to anthranilic diamide insecticide. RSC Advances, 2023, 13, 2004-2009.	1.7	1
541	DMAPO/Boc ₂ Oâ€Mediated Oneâ€Pot Direct <i>N</i> â€Acylation of Less Nucleophilic <i>N</i> â€Heterocycles with Carboxylic Acids. ChemCatChem, 2023, 15, .	1.8	5
542	Boron atalyzed αâ€Functionalizations of Carboxylic Acids. Chemical Record, 2023, 23, .	2.9	1
543	Active ester-based peptide bond formation and its application in peptide synthesis. Organic Chemistry Frontiers, 2023, 10, 1817-1846.	2.3	11
544	Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS Organic & Inorganic Au, 2023, 3, 74-91.	1.9	6
545	Chemoselective Ru-Catalyzed Oxidative Lactamization <i>vs</i> Hydroamination of Alkynylamines: Insights from Experimental and Density Functional Theory Studies. Journal of Organic Chemistry, 2023, 88, 1185-1193.	1.7	3
546	Aqueous micellar technology: an alternative beyond organic solvents. Chemical Communications, 2023, 59, 2842-2853.	2.2	15
547	Less Is More: N(BOH) ₂ Configuration Exhibits Higher Reactivity than the B ₃ NO ₂ Heterocycle in Catalytic Dehydrative Amide Formation. Organic Letters, 2023, 25, 694-697.	2.4	10

#	Article	IF	CITATIONS
548	Modular Access to Quaternary α-Hydroxyl Acetates by Catalytic Cross-Coupling of Alcohols. ACS Catalysis, 2023, 13, 2061-2068.	5.5	2
549	Photocatalytic dehydrations for the Ritter reaction. Organic Chemistry Frontiers, 2023, 10, 1375-1379.	2.3	4
550	Taming diamines and acyl chlorides by carbon dioxide in selective mono-acylation reactions. Green Chemistry, 2023, 25, 1332-1338.	4.6	2
551	The Indenyl Effect: Accelerated Câ^'H Amidation of Arenes via Ind*Rh ^{III} Nitrene Transfer Catalysis**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
552	The Indenyl Effect: Accelerated Câ€H Amidation of Arenes via Ind*Rh(III) Nitrene Transfer Catalysis. Angewandte Chemie, 0, , .	1.6	0
553	A facile strategy to fabricate antibacterial hydrophobic, high-barrier, cellulose papersheets for food packaging. International Journal of Biological Macromolecules, 2023, 236, 123630.	3.6	3
554	Systematic covalent crosslinking of graphene oxide membranes using 1,3,5 triazine 2,4,6 triamine for enhanced structural intactness and improved nanofiltration performance. Results in Engineering, 2023, 18, 101036.	2.2	4
555	N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools?. Bioengineering, 2023, 10, 222.	1.6	0
556	Direct Catalytic Amidations from Carboxylic Acid and Ester Derivatives: A Review. Catalysts, 2023, 13, 366.	1.6	17
557	Cyclotrimetaphosphate-assisted ruthenium catalyst for the hydration of nitriles and oxidation of primary amines to amides under aerobic conditions in water. Organic and Biomolecular Chemistry, 2023, 21, 2429-2439.	1.5	2
558	Amidation by reactive extrusion for the synthesis of active pharmaceutical ingredients teriflunomide and moclobemide. Chemical Communications, 2023, 59, 3439-3442.	2.2	7
559	A unified approach to benzo[<i>c</i>]phenanthridines <i>via</i> the cascade dual-annulation/formylation of 2-alkynyl/alkenylbenzonitriles. Chemical Communications, 2023, 59, 3723-3726.	2.2	2
560	B ₂ (OH) ₄ -Mediated Reductive Transamidation of <i>N</i> -Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis. Journal of Organic Chemistry, 2023, 88, 3714-3723.	1.7	7
561	Biocatalytic amide bond formation. Green Chemistry, 2023, 25, 2958-2970.	4.6	20
562	Recent Advances in Carbonâ€Nitrogen/Carbonâ€Oxygen Bond Formation Under Transitionâ€Metalâ€Free Conditions. Chemical Record, 2023, 23, .	2.9	4
563	Catalytic utilization of converter gas – an industrial waste for the synthesis of pharmaceuticals. Chemical Science, 2023, 14, 4346-4350.	3.7	3
564	An Efficient Lightâ€Mediated Protocol for the Direct Amide Bond Formation via a Novel Carboxylic Acid Photoactivation Mode by Pyridine Br ₄ . Chemistry - A European Journal, 2023, 29, .	1.7	6
565	Catalytic and Sustainable Amide Bond Formation using a DABCO/Dichlorotriazine System. ChemCatChem, 2023, 15, .	1.8	2

#	Article	IF	CITATIONS
573	Solid-Phase Peptide Synthesis – Evaluation of Resin Loading and Preparation of an Amide <i>C</i> -Terminal Dipeptide. Journal of Chemical Education, 2023, 100, 2430-2434.	1.1	0
580	Decarboxylative Amidation of Aryl/Heteroarylacetic Acids via Activated Esters through Traceless α-Functionalized Benzylic Radicals. Organic Letters, 2023, 25, 3402-3406.	2.4	2
592	FeCl ₃ -catalyzed oxidative amidation of benzylic C–H bonds enabled by a photogenerated chlorine-radical. Chemical Communications, 2023, 59, 10299-10302.	2.2	3
602	Continuous-Flow Dehydrative Amidation between Carboxylic Acids and Amines using Modified Mixed Metal Oxides as Solid Acid Catalysts. Catalysis Science and Technology, 0, , .	2.1	0
606	Electrochemical reductive cascade cyclization of <i>o</i> -alkynylated derivatives for saturated amides/amines. Chemical Communications, 2023, 59, 11125-11128.	2.2	1
609	Synthesis of naturally occurring seven-membered nitrogen heterocycles and related bioactive compounds. Studies in Natural Products Chemistry, 2023, , 189-235.	0.8	Ο
615	Green metrics in mechanochemistry. Chemical Society Reviews, 2023, 52, 6680-6714.	18.7	14
635	Reductive transamidation of tertiary amides with nitroarenes enabled by magnesium and chlorosilane. Organic and Biomolecular Chemistry, 2023, 21, 9337-9340.	1.5	1
642	Hydroxy-directed peptide bond formation from α-amino acid-derived inert esters enabled by boronic acid catalysis. Chemical Communications, 2024, 60, 448-451.	2.2	1
644	Peptide coupling using recyclable bicyclic benziodazolone. Chemical Communications, 0, , .	2.2	1
645	Hydrogenation of amides to amines by heterogeneous catalysis: a review. Green Chemistry, 2024, 26, 2341-2364.	4.6	0
666	The low loading of metal in metal–organic framework-derived NiN _{<i>x</i>} @NC promotes amide formation through C–N coupling. Chemical Communications, 2024, 60, 2544-2547.	2.2	0