Animal models of metabolic syndrome: a review

Nutrition and Metabolism 13, 65 DOI: 10.1186/s12986-016-0123-9

Citation Report

#	Article	IF	CITATIONS
1	Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism: Clinical and Experimental, 2017, 72, 83-93.	3.4	34
2	Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomedicine and Pharmacotherapy, 2017, 89, 1242-1251.	5.6	51
3	When Enough Is Enough: Decision Criteria for Moving a Known Drug into Clinical Testing for a New Indication in the Absence of Preclinical Efficacy Data. Assay and Drug Development Technologies, 2017, 15, 354-361.	1.2	4
4	<i>Dipteryx alata</i> Vogel May Improve Lipid Profile and Atherogenic Indices in Wistar Rats <i>Dipteryx alata</i> and Atherogenic Indices. Journal of Medicinal Food, 2017, 20, 1121-1126.	1.5	9
5	Examining a role for PKG lα oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Free Radical Biology and Medicine, 2017, 110, 390-398.	2.9	8
6	Vitamin E As a Potential Interventional Treatment for Metabolic Syndrome: Evidence from Animal and Human Studies. Frontiers in Pharmacology, 2017, 8, 444.	3.5	89
7	Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Frontiers in Physiology, 2017, 8, 431.	2.8	26
8	Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLoS ONE, 2017, 12, e0178315.	2.5	26
9	Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: evidence from natural isotope abundances of nitrogen and carbon in tissue proteins. British Journal of Nutrition, 2018, 119, 981-991.	2.3	19
10	Obesity, Cortisol Excess, and the Hypothalamic–Pituitary–Adrenal Axis. , 2018, , 37-48.		Ο
11	Losartan prevents the imbalance between renal dopaminergic and renin angiotensin systems induced by fructose overload. I-Dopa/dopamine index as new potential biomarker of renal dysfunction. Metabolism: Clinical and Experimental, 2018, 85, 271-285.	3.4	17
12	An Experimental Model of Diet-Induced Metabolic Syndrome in Rabbit: Methodological Considerations, Development, and Assessment. Journal of Visualized Experiments, 2018, , .	0.3	3
13	E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes. Molecular Metabolism, 2018, 11, 104-112.	6.5	25
14	Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage. Journal of Nutritional Biochemistry, 2018, 51, 47-55.	4.2	9
15	Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity, 2018, 42, 746-754.	3.4	31
16	Improving Metabolic Health Through Precision Dietetics in Mice. Genetics, 2018, 208, 399-417.	2.9	44
17	The Effects of a Modified High-carbohydrate High-fat Diet on Metabolic Syndrome Parameters in Male Rats. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 205-212.	1.2	43
18	Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile. Endocrine Connections, 2018, 7, 36-46.	1.9	10

#	Article	IF	CITATIONS
19	Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiological Genomics, 2018, 50, 35-51.	2.3	13
20	Rodent Models of Obesity and Diabetes. , 2018, , .		Ο
21	Biochemical and Morphological Parameters of Inbred/Outbred Lines and DBCB Tetrahybrid Mouse in High-Sugar In Vivo Model of Metabolic Syndrome. Bulletin of Experimental Biology and Medicine, 2018, 166, 96-101.	0.8	2
22	Telmisartan is effective to ameliorate metabolic syndrome in rat model – a preclinical report. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2018, Volume 11, 901-911.	2.4	7
23	Maternal fructose induces gender-dependent changes in both LXRα promoter methylation and cholesterol metabolism in progeny. Journal of Nutritional Biochemistry, 2018, 61, 163-172.	4.2	24
24	Characterisation of a Mouse Model of Breast Cancer with Metabolic Syndrome. In Vivo, 2018, 32, 1071-1080.	1.3	7
25	Interspecific Differences in Behavioral Responses and Neuromotorics between Laboratory Rodents Receiving Rations with Easily Digested Carbohydrates. Bulletin of Experimental Biology and Medicine, 2018, 165, 5-9.	0.8	7
26	Galangin's potential as a functional food ingredient. Journal of Functional Foods, 2018, 46, 490-503.	3.4	27
27	Effect of infliximab and tocilizumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomedicine and Pharmacotherapy, 2018, 105, 182-186.	5.6	29
28	Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits. Analytical Cellular Pathology, 2018, 2018, 1-16.	1.4	10
29	Effects of <i>Moringa oleifera</i> leaf powder on metabolic syndrome induced in male Wistar rats: a preliminary study. Journal of International Medical Research, 2018, 46, 3327-3336.	1.0	22
30	The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients, 2018, 10, 235.	4.1	26
31	Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS ONE, 2018, 13, e0192416.	2.5	28
32	Involvement of the hepatic branch of the vagus nerve in the regulation of plasma adipokine levels in rats fed a high-fructose diet. Journal of Nutritional Biochemistry, 2019, 71, 90-97.	4.2	6
33	Intra-Abdominal Fat Adipocyte Hypertrophy through a Progressive Alteration of Lipolysis and Lipogenesis in Metabolic Syndrome Rats. Nutrients, 2019, 11, 1529.	4.1	14
34	Visceral adiposity links cerebrovascular dysfunction to cognitive impairment in middle-aged mice. Neurobiology of Disease, 2019, 130, 104536.	4.4	19
35	Diet-Induced Rabbit Models for the Study of Metabolic Syndrome. Animals, 2019, 9, 463.	2.3	24
36	Full Transcriptome Profiling of the Liver of Fat-, Fructose- and Cholesterol-Fed C57Black/6J Mice. Russian Journal of Genetics, 2019, 55, 399-410.	0.6	2

#	Article	IF	CITATIONS
37	High-Carbohydrate Diets Affect Accumulation of Lipofuscin-Like Pigment in the Kidneys of Mice and Rats: Autofluorescence Confocal Microscopy Analysis. Bulletin of Experimental Biology and Medicine, 2019, 167, 628-633.	0.8	0
38	Comparative Analysis of JNK1 Expression in Liver Cells in Rats of Different Lines Receiving Excess of Easily Digested Carbohydrates: Confocal Microscopy. Bulletin of Experimental Biology and Medicine, 2019, 167, 698-701.	0.8	0
39	The effects of l-Carnosine on development of metabolic syndrome in rats. Life Sciences, 2019, 237, 116905.	4.3	21
40	<i>Artemisia herba-alba</i> aqueous extract improves insulin sensitivity and hepatic steatosis in rodent model of fructose-induced metabolic syndrome. Archives of Physiology and Biochemistry, 2021, 127, 541-550.	2.1	8
41	Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Frontiers in Neuroscience, 2019, 13, 788.	2.8	153
42	Comparative Whole-Transcriptome Profiling of Liver Tissue from Wistar Rats Fed with Diets Containing Different Amounts of Fat, Fructose, and Cholesterol. Biochemistry (Moscow), 2019, 84, 1093-1106.	1.5	4
43	Rat Models of Metabolic Syndrome. Methods in Molecular Biology, 2019, 2018, 269-285.	0.9	21
44	Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Frontiers in Physiology, 2019, 10, 639.	2.8	27
45	Thermoneutral temperature reduces liver volume but increases fat content in a mammalian hibernator. Journal of Thermal Biology, 2019, 83, 172-177.	2.5	0
46	Preventive Effects of the Marine Microalga Phaeodactylum tricornutum, Used as a Food Supplement, on Risk Factors Associated with Metabolic Syndrome in Wistar Rats. Nutrients, 2019, 11, 1069.	4.1	25
47	Impaired Activity of Ryanodine Receptors Contributes to Calcium Mishandling in Cardiomyocytes of Metabolic Syndrome Rats. Frontiers in Physiology, 2019, 10, 520.	2.8	16
48	Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2019, 73, e87-e120.	2.7	177
49	Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019, 11, 644.	4.1	52
50	Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 2019, 17, 33.	3.8	82
51	Prospects for Using the Natural Antioxidant Compounds in the Obesity Treatment. , 2019, , .		3
52	Sildenafil citrate long-term treatment effects on cardiovascular reactivity in a SHR experimental model of metabolic syndrome. PLoS ONE, 2019, 14, e0223914.	2.5	6
53	Heterogeneity in Metabolic Responses to Dietary Fructose. Frontiers in Genetics, 2019, 10, 945.	2.3	9
54	Xylooligosaccharide supplementation decreases visceral fat accumulation and modulates cecum microbiome in mice. Journal of Functional Foods, 2019, 52, 138-146.	3.4	38

#	Article	IF	CITATIONS
55	The analysis of surface saccharide profiles through fluorescein-labelled lectins in a rat pancreatic tissue with established metabolic syndrome model. Biyokimya Dergisi, 2019, 44, 98-104.	0.5	0
56	Purified ingredient-based high-fat diet is superior to chow-based equivalent in the induction of metabolic syndrome. Journal of Food Biochemistry, 2019, 43, e12717.	2.9	5
57	Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behavioural Brain Research, 2020, 378, 112270.	2.2	16
58	Placental structure in gestational diabetes mellitus. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165535.	3.8	66
59	Effects of co-administered melatonin, fructose and bisphenol A (BPA) on rat epididymis and sperm characteristics. Biotechnic and Histochemistry, 2020, 95, 18-26.	1.3	15
60	Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. European Journal of Nutrition, 2020, 59, 2617-2629.	3.9	32
61	Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. European Journal of Nutrition, 2020, 59, 151-165.	3.9	19
62	Comparative effectiveness of phosphodiesterase 3, 4, and 5 inhibitors in amelioration of highâ€fat dietâ€induced nonalcoholic fatty liver in rats. Fundamental and Clinical Pharmacology, 2020, 34, 353-364.	1.9	6
63	Hyperlipidaemia and cardioprotection: Animal models for translational studies. British Journal of Pharmacology, 2020, 177, 5287-5311.	5.4	43
64	Rat Models of Obesity, Metabolic Syndrome, and Diabetes. , 2020, , 987-1002.		1
65	Protective Effects of Eicosapentaenoic Acid Plus Hydroxytyrosol Supplementation Against White Adipose Tissue Abnormalities in Mice Fed a High-Fat Diet. Molecules, 2020, 25, 4433.	3.8	17
66	Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of Chrysanthemum morifolium Ramat Leaves and Its Constituent Luteolin in High-Fat Diet-Induced Dyslipidemic Mice. Nutrients, 2020, 12, 2973.	4.1	16
67	Gymnaster Koraiensis Extract Alleviated Metabolic Syndrome Symptoms and Stimulated UCP1â€Independent Energy Consumption via AMPK Activation in White Adipose Tissue. Molecular Nutrition and Food Research, 2020, 64, 2000490.	3.3	3
68	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	4.1	45
69	Managing obesity through natural polyphenols: A review. Future Foods, 2020, 1-2, 100002.	5.4	48
70	Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease. Journal of Functional Foods, 2020, 74, 104209.	3.4	11
71	Modeling Dietâ€Induced Metabolic Syndrome in Rodents. Molecular Nutrition and Food Research, 2020, 64, e2000249.	3.3	17
72	Exercise and caloric restriction improve cardiovascular and erectile function in rats with metabolic syndrome. International Journal of Impotence Research, 2020, , .	1.8	6

#	Article	IF	CITATIONS
73	Vitamin C: A Review on its Role in the Management of Metabolic Syndrome. International Journal of Medical Sciences, 2020, 17, 1625-1638.	2.5	37
74	Comparative study of dietary fat: lard and sugar as a better obesity and metabolic syndrome mice model. Archives of Physiology and Biochemistry, 2023, 129, 449-459.	2.1	14
75	Regulation of Vascular Smooth Muscle Contractions in the Model of Metabolic Syndrome. Bulletin of Experimental Biology and Medicine, 2020, 170, 196-199.	0.8	4
76	Highâ€fat dietâ€induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Diseases and Translational Medicine, 2020, 6, 198-207.	1.2	18
77	Dietâ€induced rodent models of obesityâ€related metabolic disorders—A guide to a translational perspective. Obesity Reviews, 2020, 21, e13081.	6.5	37
78	Brain insulin resistance impairs hippocampal plasticity. Vitamins and Hormones, 2020, 114, 281-306.	1.7	17
79	Biochemical and histopathological assessment of liver in a rat model of metabolic syndrome induced by highâ€carbohydrate highâ€fat diet. Journal of Food Biochemistry, 2020, 44, e13371.	2.9	4
80	Exercise Training Protocols in Rabbits Applied in Cardiovascular Research. Animals, 2020, 10, 1263.	2.3	3
81	A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Scientific Reports, 2020, 10, 12915.	3.3	7
82	The Effect of Quercetin on Metabolism and Behavioral Responses in Mice with Normal and Impaired Leptin Reception. Biology Bulletin, 2020, 47, 407-416.	0.5	1
83	Metabolic Alterations Predispose to Seizure Development in High-Fat Diet-Treated Mice: the Role of Metformin. Molecular Neurobiology, 2020, 57, 4778-4789.	4.0	11
84	Intestinal fructose absorption: Modulation and relation to human diseases. PharmaNutrition, 2020, 14, 100235.	1.7	3
85	The effect of high-fat diet and 13-cis retinoic acid application on lipid profile, glycemic response and oxidative stress in female Lewis rats. PLoS ONE, 2020, 15, e0238600.	2.5	8
86	Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Molecular and Cellular Biochemistry, 2020, 475, 261-276.	3.1	35
87	The metabolic dysfunction of white adipose tissue induced in mice by a high-fat diet is abrogated by co-administration of docosahexaenoic acid and hydroxytyrosol. Food and Function, 2020, 11, 9086-9102.	4.6	25
88	Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for N-Acetyltransferase 2. Toxicology Reports, 2020, 7, 1319-1330.	3.3	6
89	Pulmonary vascular smooth muscle contraction in the rat model of metabolic syndrome. IOP Conference Series: Earth and Environmental Science, 2020, 548, 042036.	0.3	0
90	Metabolic Syndrome Triggered by Fructose Diet Impairs Neuronal Function and Vascular Integrity in ApoE-KO Mouse Retinas: Implications of Autophagy Deficient Activation. Frontiers in Cell and Developmental Biology, 2020, 8, 573987.	3.7	8

		Citation Report		
#	Article		IF	CITATIONS
91	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9,	2401.	4.1	18
92	Hypolipidemic and Hypoglycaemic Effect of Wholemeal Bread with Amaranth (Amarant	hus dubius) Tj ETQq1 1 (0.784314 r 4.3	gBŢ /Overlo
93	Body condition and poxvirus infection predict circulating glucose levels in a colorful sor inhabits urban and rural environments. Journal of Experimental Zoology Part A: Ecologic Integrative Physiology, 2020, 333, 561-568.	gbird that al and	1.9	9
94	The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfu Current Therapies. Frontiers in Pharmacology, 2020, 11, 148.	nction, and	3.5	43
95	There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribut Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms, 2020	on of 8, 416.	3.6	18
96	Low utilization of glucose in the liver causes diet-induced hypercholesterolemia in exog hypercholesterolemic rats. PLoS ONE, 2020, 15, e0229669.	enously	2.5	6
97	Chronic inhibition of phosphodiesterase 5 with tadalafil affords cardioprotection in a m of metabolic syndrome: role of nitric oxide. Molecular and Cellular Biochemistry, 2020,		3.1	12
98	Combined treatments with metformin and phosphodiesterase inhibitors alleviate nonal liver disease in high-fat diet fed rats: a comparative study. Canadian Journal of Physiolog Pharmacology, 2020, 98, 498-505.	coholic fatty y and	1.4	3
99	Biochemical and nutritional overview of diet-induced metabolic syndrome models in rat best choice?. Nutrition and Diabetes, 2020, 10, 24.	s: what is the	3.2	60
100	Pitolisant protects mice chronically treated with corticosterone from some behavioral b metabolic changes in corticosterone-induced depression model. Pharmacology Biochen Behavior, 2020, 196, 172974.	ut not histry and	2.9	5
101	Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Pr Diagnosis, 2020, 40, 1109-1125.	enatal	2.3	33
102	Targeting the Liverâ€Brain Axis with Hopâ€Derived Flavonoids Improves Lipid Metabolis Performance in Mice. Molecular Nutrition and Food Research, 2020, 64, e2000341.	m and Cognitive	3.3	17
103	Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. American Journ - Heart and Circulatory Physiology, 2020, 318, H590-H603.	al of Physiology	3.2	16
104	Characterization of Rat ILCs Reveals ILC2 as the Dominant Intestinal Subset. Frontiers in 2020, 11, 255.	n Immunology,	4.8	10
105	Ameliorative activity of Adansonia digitata fruit on high sugar/high fat diet-simulated M Syndrome model in male Wistar rats. Biomedicine and Pharmacotherapy, 2020, 125, 10	etabolic)9968.	5.6	16
106	18α-Glycyrrhetinic acid (GA) ameliorates fructose-induced nephropathy in mice by sup stress, dyslipidemia and inflammation. Biomedicine and Pharmacotherapy, 2020, 125, 1	oressing oxidative 09702.	5.6	15
107	Antibiotic Treatment Does Not Ameliorate the Metabolic Changes in Rats Presenting Dy Consuming a High Fructose Diet. Nutrients, 2020, 12, 203.	/sbiosis After	4.1	10
108	Molecular changes in hepatic metabolism in ZDSD rats–A new polygenic rodent mod metabolic syndrome, and diabetes. Biochimica Et Biophysica Acta - Molecular Basis of D 1866, 165688.	el of obesity, isease, 2020,	3.8	8

#	Article	IF	CITATIONS
109	Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS ONE, 2020, 15, e0228115.	2.5	14
110	Maternal Resveratrol Treatment Re-Programs and Maternal High-Fat Diet-Induced Retroperitoneal Adiposity in Male Offspring. International Journal of Environmental Research and Public Health, 2020, 17, 2780.	2.6	18
111	Beneficial Effects of Cornelian Cherries on Lipid Profile and NO/ROS Balance in Obese Zucker Rats: Comparison with CoQ10. Molecules, 2020, 25, 1922.	3.8	6
112	Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. Journal of Molecular and Cellular Cardiology, 2020, 143, 15-25.	1.9	11
113	Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in wistar rats. Biology Open, 2020, 9, .	1.2	14
114	A comprehensive study of phospholipid fatty acid rearrangements in the metabolic syndrome: correlations to organ dysfunction. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	10
115	Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 774-788.	2.7	7
116	Immunobiology of T Cells in Sjögren's Syndrome. Clinical Reviews in Allergy and Immunology, 2021, 60, 111-131.	6.5	46
117	Protective effect of <i>Curcuma amada</i> acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutritional Neuroscience, 2021, 24, 212-225.	3.1	16
118	Cardiometabolic Syndrome: An Update on Available Mouse Models. Thrombosis and Haemostasis, 2021, 121, 703-715.	3.4	10
119	The use of combined high-fructose diet and glyphosate to model rats type 2 diabetes symptomatology. Toxicology Mechanisms and Methods, 2021, 31, 126-137.	2.7	8
120	Plant secondary metabolites for preferential targeting among various stressors of metabolic syndrome. Studies in Natural Products Chemistry, 2021, , 221-261.	1.8	5
121	Diosmetin attenuates metabolic syndrome and left ventricular alterations <i>via</i> the suppression of angiotensin II/AT 1 receptor/gp ^{91phox} /p-NF-ήB protein expression in high-fat diet fed rats. Food and Function, 2021, 12, 1469-1481.	4.6	14
122	Simultaneous Determination of Multiple Reactive Carbonyl Species in High Fat Diet-Induced Metabolic Disordered Mice and the Inhibitory Effects of Rosemary on Carbonyl Stress. Journal of Agricultural and Food Chemistry, 2021, 69, 1123-1131.	5.2	10
123	Effects of High Intakes of Fructose and Galactose, with or without Added Fructooligosaccharides, on Metabolic Factors, Inflammation, and Gut Integrity in a Rat Model. Molecular Nutrition and Food Research, 2021, 65, e2001133.	3.3	10
124	Dietary and metabolic risk of neuropsychiatric disorders: insights from animal models. British Journal of Nutrition, 2021, 126, 1771-1787.	2.3	8
125	Interaction of Obesity and Hypertension on Cardiac Metabolic Remodeling and Survival Following Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e018212.	3.7	10
126	Tadalafil ameliorates bladder overactivity by restoring insulin-activated detrusor relaxation via the bladder mucosal IRS/PI3K/AKT/eNOS pathway in fructose-fed rats. Scientific Reports, 2021, 11, 8202.	3.3	12

#	Article	IF	CITATIONS
127	Maternal Quercetin Consumption during Pregnancy May Help Regulate Total Cholesterol/HDL-Cholesterol Ratio without Effect on Cholesterol Levels in Male Progeny Consuming High-Fat Diet. Nutrients, 2021, 13, 1242.	4.1	2
128	The effect of single clove Black garlic on the hemostasis status and lipid profile in male Sprague Dawley rats with non-alcoholic fatty liver disease. Potravinarstvo, 0, 15, 387-395.	0.6	3
130	Metabolic syndrome in adult male rats induced by feeding beef tallow-enriched homemade diet with fructose-containing drinking water. Comparative Clinical Pathology, 2021, 30, 541-547.	0.7	1
131	Obesity Development and Signs of Metabolic Abnormalities in Young Göttingen Minipigs Consuming Energy Dense Diets Varying in Carbohydrate Quality. Nutrients, 2021, 13, 1560.	4.1	3
132	A Review on Obesity Management through Natural Compounds and a Green Nanomedicine-Based Approach. Molecules, 2021, 26, 3278.	3.8	28
133	Antihyperglycemic and cholesterol-lowering potential of dietary fibre from lemongrass (Cymbopogon) Tj ETQq1	1 0,78431 0.5	4 rgBT /Ove
134	The effects of two types of Western diet on the induction of metabolic syndrome and cardiac remodeling in obese rats. Journal of Nutritional Biochemistry, 2021, 92, 108625.	4.2	7
135	Development of rat metabolic syndrome models: A review. Veterinary World, 2021, 14, 1774-1783.	1.7	11
136	Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	4.0	3
137	The starch-rich diet causes lipidemia while the fat-rich diet induces visceral adiposity, meta-inflammation, and insulin resistance differentially in immune biased mouse strains. Food Bioscience, 2021, 42, 101136.	4.4	3
138	Delay first active-phase meal, breakfast-skipping model, increases the risk of metabolic disorders in females rats. Biological Rhythm Research, 0, , 1-16.	0.9	1
139	In Silico-Based Design and In Vivo Evaluation of an Anthranilic Acid Derivative as a Multitarget Drug in a Diet-Induced Metabolic Syndrome Model. Pharmaceuticals, 2021, 14, 914.	3.8	5
140	Black raspberry (<i>Rubus occidentalis</i>) attenuates inflammatory markers and vascular endothelial dysfunction in Wistar rats fed a highâ€fat diet with fructose solution. Journal of Food Biochemistry, 2021, 45, e13917.	2.9	3
141	Rodent models of metabolic disorders: considerations for use in studies of neonatal programming. British Journal of Nutrition, 2022, 128, 802-827.	2.3	1
142	Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Current Diabetes Reviews, 2021, 17, e140421192834.	1.3	2
143	Biochemical and Behavioral Consequences of Ethanol Intake in a Mouse Model of Metabolic Syndrome. International Journal of Molecular Sciences, 2021, 22, 807.	4.1	2
144	The Marine Microalga, Tisochrysis lutea, Protects against Metabolic Disorders Associated with Metabolic Syndrome and Obesity. Nutrients, 2021, 13, 430.	4.1	15
145	Transcriptomic and metabonomic profiling reveal the anti-obesity effects of Chikusetsusaponin V, a compound extracted from Panax japonicus. Journal of Pharmacy and Pharmacology, 2021, 73, 60-69.	2.4	4

#	Article	IF	CITATIONS
146	Impact of a high-fat diet on the fatty acid composition of the retina. Experimental Eye Research, 2020, 196, 108059.	2.6	19
148	Emerging Therapeutic Targets for Metabolic Syndrome: Lessons from Animal Models. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 481-489.	1.2	4
149	Development of an Experimental Model of Metabolic Syndrome in Sprague Dawley Rat. Research Journal of Life Science, 2017, 4, 76-86.	0.1	14
150	Rodent models of obesity. Minerva Endocrinologica, 2020, 45, 243-263.	1.8	20
151	Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Critical Reviews in Food Science and Nutrition, 2023, 63, 3634-3652.	10.3	11
152	Tale of two kinases: Protein kinase A and Ca ²⁺ /calmodulin-dependent protein kinase II in pre-diabetic cardiomyopathy. World Journal of Diabetes, 2021, 12, 1704-1718.	3.5	2
153	Preclinical safety evaluation of drone brood homogenate and justification of pharmacological action. Pharmacia, 2021, 68, 771-777.	1.2	0
154	Free-floating Immunostaining of Mouse Brains. Journal of Visualized Experiments, 2021, , .	0.3	3
155	The Effect of Used Form and Level Green Cincau Leaves (Cycleabarbata L. Miers) as Feed Additive on Broiler Performance Production. Research Journal of Life Science, 2017, 4, 87-96.	0.1	0
156	Protective Effects of Olea europaea Fruit Extracts on Metabolic Disorders Associated With Sucrose-Induced Metabolic Syndrome in Rats. Avicenna Journal of Medical Biochemistry, 2018, 6, 8-14.	0.3	1
157	Chronic Consumption of Fructose Dysregulates Genes Related to Glucose and Lipid Metabolism in Prostate Tissue. Sains Malaysiana, 2018, 47, 2501-2507.	0.5	1
158	Ameliorative effect of fermented Pentaclethra macrophylla (African oil bean seed) on high fat diet and sucrose drink induced metabolic syndrome in male New Zealand rabbits Journal of Basic and Applied Research in Biomedicine, 2019, 5, 42-48.	0.3	1
161	Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Frontiers in Cardiovascular Medicine, 2020, 7, 82.	2.4	12
162	The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats. Biomedicines, 2021, 9, 1552.	3.2	3
163	Effect of Phytopreparations Based on Bioreactor-Grown Cell Biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on Carbohydrate and Lipid Metabolism in Type 2 Diabetes Mellitus. Nutrients, 2021, 13, 3811.	4.1	10
164	Dietary Fresh and Boiled Mangkokan Leaves (Nothopanax Scutellarius) Normalized Body Weight, Serum Lipid Profile and Malondialdehyde in Metabolic Syndrome Rats. Current Research in Nutrition and Food Science, 2020, 8, 889-902.	0.8	2
165	RNA and metabolic disorders. , 2020, , 175-199.		1
166	Value of Vitamin D Administration Versus Suppressing Gut Microbiota in Modifying Metabolic Associated Osteoarthritis in Rats. Medical Journal of the University of Cairo Faculty of Medicine, 2020, 88, 849-857.	0.0	0

	CITATION RE	PORT	
#	ARTICLE The Roles of Carbohydrate Response Element Binding Protein in the Relationship between	IF	CITATIONS
167	Carbohydrate Intake and Diseases. International Journal of Molecular Sciences, 2021, 22, 12058.	4.1	11
168	From Mice to Humans: The Study of Obesity. Frontiers for Young Minds, 0, 8, .	0.8	1
169	Elevated CCL2 causes Leydig cell malfunction in metabolic syndrome. JCI Insight, 2020, 5, .	5.0	12
170	EVALUATION OF THE EFFECT OF CARNOSINE AND ALPHA-LIPOIC ACID ON THE HEMATOLOGICAL PARAMETERS OF WISTAR RATS WITH INDUCED FATTY LIVER DISEASE. , 2020, , .		0
171	Chemerin stimulates aortic smooth muscle cell proliferation and migration via activation of autophagy in VSMCs of metabolic hypertension rats. American Journal of Translational Research (discontinued), 2019, 11, 1327-1342.	0.0	11
172	Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complementary Medicine and Therapies, 2021, 21, 292.	2.7	2
173	Alterations in Antioxidant Defence Systems and Metal Profiles in Liver of Rats with Metabolic Syndrome Induced with High-Sucrose Diet. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 13-20.	1.1	0
174	High-fat/high-carbohydrate-diet short- and middle-term effects on gerbil adrenal zona fasciculata histology. Tissue and Cell, 2022, 75, 101729.	2.2	1
175	Food obesogens as emerging metabolic disruptors; A toxicological insight. Journal of Steroid Biochemistry and Molecular Biology, 2022, 217, 106042.	2.5	3
176	Đ•ĐºÑĐ¿ĐµÑ€Đ¸Đ¼ĐµĐ½Ñ,Đ°Đ»ÑŒĐ½Đµ Đ¼Đ¾Đ ĐµĐ»ÑŽĐ²Đ°Đ½Đ½Ñ•Đ¼ĐµÑ,Đ°Đ±Đ¾Đ»Ñ−Ñ‡Đ½Đ¾	4 09.19 3/4 Ñ	Ð,й∕₂ÐʹÑ€₿
177	Microsomal triglyceride transfer protein inhibitor lomitapide-induced liver toxicity is ameliorated by Triiodothyronine treatment following improved bile homeostasis and β-oxidation. Toxicology and Applied Pharmacology, 2022, 434, 115825.	2.8	5
178	Fructose prevents the development of hyperglycemia in WBN/Kob diabetic fatty rats via maintaining high insulin levels. Clinical and Experimental Pharmacology and Physiology, 2022, , .	1.9	0
179	Purified diet <i>versus</i> whole food diet and the inconsistent results in studies using animal models. Food and Function, 2022, 13, 4286-4301.	4.6	3
180	Murine Models of Obesity. Obesities, 2022, 2, 127-147.	0.8	14
182	Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacological Research, 2022, 178, 106163.	7.1	36
183	Obesity II: Establishing causal links between chemical exposures and obesity. Biochemical Pharmacology, 2022, 199, 115015.	4.4	62
184	Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. Biology, 2022, 11, 559.	2.8	8
185	Highâ€fat dietâ€induced metabolic syndrome increases ligatureâ€induced alveolar bone loss in mice. Oral Diseases, 2023, 29, 1312-1323.	3.0	5

#	Article	IF	CITATIONS
186	High Fructose and High Fat Diet Impair Different Types of Memory through Oxidative Stress in a Sex- and Hormone-Dependent Manner. Metabolites, 2022, 12, 341.	2.9	3
189	The Metabolic Syndrome Puzzles; Possible Pathogenesis and Management. Current Diabetes Reviews, 2023, 19, .	1.3	8
190	Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients, 2022, 14, 1903.	4.1	7
191	Dietary intervention improves health metrics and life expectancy of the genetically obese Titan mouse. Communications Biology, 2022, 5, 408.	4.4	4
192	Role of PPAR-Î ³ in diabetes-induced testicular dysfunction, oxidative DNA damage and repair in leptin receptor-deficient obese type 2 diabetic mice. Chemico-Biological Interactions, 2022, 361, 109958.	4.0	2
193	Reactivity of the Thyroid System to Short-Term Stress in Wistar Rats with Visceral Obesity and Restricted Social Activity. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 465-475.	0.6	0
194	Natural Mineral Waters and Metabolic Syndrome: Insights From Obese Male and Female C57BL/6 Mice on Caloric Restriction. Frontiers in Nutrition, 2022, 9, .	3.7	2
195	Metabolic Syndrome: Lessons from Rodent and Drosophila Models. BioMed Research International, 2022, 2022, 1-13.	1.9	6
196	Curcuminoids for Metabolic Syndrome: Meta-Analysis Evidences Toward Personalized Prevention and Treatment Management. Frontiers in Nutrition, 0, 9, .	3.7	11
197	The Potential of the Marine Microalga Diacronema lutheri in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats. Molecules, 2022, 27, 4246.	3.8	8
198	A pilot dynamic analysis of formative factors of nephrolithiasis related to metabolic syndrome: evidence in a rat model. Renal Failure, 2022, 44, 1134-1143.	2.1	1
199	Multi-Tissue Time-Domain NMR Metabolomics Investigation of Time-Restricted Feeding in Male and Female Nile Grass Rats. Metabolites, 2022, 12, 657.	2.9	1
200	7,8-Dihydroxyflavone alleviates Endoplasmic Reticulum Stress in cafeteria diet-induced metabolic syndrome. Life Sciences, 2022, 306, 120781.	4.3	1
201	Resistance to Obesity in SOD1 Deficient Mice with a High-Fat/High-Sucrose Diet. Antioxidants, 2022, 11, 1403.	5.1	5
202	Astaxanthin Carotenoid Modulates Oxidative Stress in Adipose-Derived Stromal Cells Isolated from Equine Metabolic Syndrome Affected Horses by Targeting Mitochondrial Biogenesis. Biomolecules, 2022, 12, 1039.	4.0	5
203	Development of High Fat Diet-Induced Hyperinsulinemia in Mice Is Enhanced by Co-treatment With a TLR7 Agonist. Frontiers in Physiology, 0, 13, .	2.8	2
204	Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunology, 2022, 15, 1071-1084.	6.0	9
205	Nutrigenetic Interaction of Spontaneously Hypertensive Rat Chromosome 20 Segment and High-Sucrose Diet Sensitizes to Metabolic Syndrome. Nutrients, 2022, 14, 3428.	4.1	0

#	Article	IF	CITATIONS
206	Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. Journal of Nutritional Biochemistry, 2022, 110, 109119.	4.2	8
207	Differential proteomic analysis of mouse cerebrums with high-fat diet (HFD)-induced hyperlipidemia. PeerJ, 0, 10, e13806.	2.0	2
208	Fructose, a trigger of metabolic diseases?—a narrative review. , 0, , 51-71.		0
209	Differential effects of omegaâ€3 PUFAS on tumor progression at early and advanced stages in TRAMP mice. Prostate, 0, , .	2.3	1
210	Evaluation of Hypoglycemic Activity and Sub-Acute Toxicity of the Novel Biochanin A–Chromium(III) Complex. Molecules, 2022, 27, 5786.	3.8	4
211	Gut Microbes Are Associated with the Vascular Beneficial Effects of Dietary Strawberry on Metabolic Syndromeâ€Induced Vascular Inflammation. Molecular Nutrition and Food Research, 2022, 66, .	3.3	6
212	Early Functional Changes in Rat Arteries and Microcirculatory Vessels while Modeling Metabolic Syndrome. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 1471-1481.	0.6	1
213	The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models. Pharmaceutics, 2022, 14, 2088.	4.5	1
214	Anacardium occidentale Bark as an Antidiabetic Agent. Plants, 2022, 11, 2637.	3.5	4
215	Therapeutic potential of reserpine in metabolic syndrome: An evidence based study. Pharmacological Research, 2022, 186, 106531.	7.1	5
216	Metabolomics Provides Insights into Renoprotective Effects of Semaglutide in Obese Mice. Drug Design, Development and Therapy, 0, Volume 16, 3893-3913.	4.3	2
217	Experimental Animal Models: Tools To Investigate Antidiabetic Activity. Current Pharmaceutical Design, 2022, 29, .	1.9	0
218	EVALUATION OF THE EFFECTS OF N-ACETYLCYSTEINE ON SERUM GLUCOSE, LIPID PROFILE, AND BODYÂWEIGHT INÂRATS WITH FRUCTOSE-INDUCED METABOLIC SYNDROME. Military Medical Science Letters (Vojenske) Tj ETQ	୮ Iq መጩ ዐ rgE	3T¢Overlock
219	Appetite–regulating hormones in rats with fructose-induced metabolic changes. Pharmacia, 2023, 70, 1-7.	1.2	0
220	Microplastic-induced gut microbiota and serum metabolic disruption in Sprague-Dawley rats. Environmental Pollution, 2023, 320, 121071.	7.5	9
221	<i>Pluchea indica</i> Leaf Extract Alleviates Dyslipidemia and Hepatic Steatosis by Modifying the Expression of Lipid Metabolism-Related Genes in Rats Fed a High Fat-High Fructose Diet. Preventive Nutrition and Food Science, 2022, 27, 384-398.	1.6	0
222	Nanocontroller-mediated dissolving hydrogel that can sustainably release cold-mimetic menthol to induce adipocyte browning for treating obesity and its related metabolic disorders. Biomaterials, 2023, 297, 122120.	11.4	1
223	Hypoglycemic and hypolipidemic effect of pentaamino acid fullerene C60 derivative in rats with metabolic disorder. Journal of Bioenergetics and Biomembranes, 2023, 55, 93-101.	2.3	1

#	Article	IF	CITATIONS
224	High fat diet is protective against kidney injury in hypertensive-diabetic mice, but leads to liver injury. PLoS ONE, 2023, 18, e0281123.	2.5	2
226	Standard procedures for blood withdrawal in conscious male rats induce stress and profoundly affect glucose tolerance and secretion of glucoregulatory hormones. Molecular Metabolism, 2023, 69, 101689.	6.5	Ο
227	Intra-pituitary follicle-stimulating hormone signaling regulates hepatic lipid metabolism in mice. Nature Communications, 2023, 14, .	12.8	7
228	Reactivity of Mesenteric Arteries in the Development of Metabolic Syndrome in Rats Fed on a High-Fat Diet. Journal of Evolutionary Biochemistry and Physiology, 2023, 59, 154-164.	0.6	0
229	Macrophage-Driven Inflammation in Metabolic Osteoarthritis: Implications for Biomarker and Therapy Development. International Journal of Molecular Sciences, 2023, 24, 6112.	4.1	4
230	Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. , 2023, 9, .		5
231	Dihydrosphingolipids are associated with steatosis and increased fibrosis damage in non-alcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2023, , 159318.	2.4	1
232	SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression. Chinese Medical Journal, 0, Publish Ahead of Print, .	2.3	1
233	In Vivo Tissue Lipid Uptake in Antisense Oligonucleotide (ASO)-Treated Mice. Methods in Molecular Biology, 2023, , 1-13.	0.9	0
234	Modelling idiopathic intracranial hypertension in rats: contributions of high fat diet and testosterone to intracranial pressure and cerebrospinal fluid production. Fluids and Barriers of the CNS, 2023, 20, .	5.0	6
235	Antiatherogenic Potential of Transcranial Electrical Stimulation in a High-Fructose/High-Fat Diet: Experimental Randomized Trial. Kuban Scientific Medical Bulletin, 2023, 30, 65-75.	0.4	0
236	Weight Loss Supplements. Molecules, 2023, 28, 5357.	3.8	2
237	Metabolism effector links in diet-induced and genetically-based obesity: A full-transcriptome study of liver tissue in experimental models in rodents. Acta Biomedica Scientifica, 2023, 8, 25-41.	0.2	0
238	The toxic mechanism of 6:2 Cl-PFESA in adolescent male rats: Endocrine disorders and liver inflammation regulated by the gut microbiota-gut-testis/liver axis. Journal of Hazardous Materials, 2023, 459, 132155.	12.4	0
239	Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (<scp>MMPs</scp>) in liver fibrosis. Phytotherapy Research, 0, , .	5.8	0
240	Metabolic syndrome and erectile dysfunction: a systematic review and meta-analysis study. Journal of Endocrinological Investigation, 2023, 46, 2195-2211.	3.3	7
241	High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 0, , .	1.8	0
242	Effects of Long-term High-Ergosterol Intake on the Cholesterol and Vitamin D Biosynthetic Pathways of Rats Fed a High-Fat and High-Sucrose Diet. Biological and Pharmaceutical Bulletin, 2023, , .	1.4	0

#	Article	IF	CITATIONS
243	Benefits of Chronic Administration of a Carbohydrate-Free Diet on Biochemical and Morphometric Parameters in a Rat Model of Diet-Induced Metabolic Syndrome. Metabolites, 2023, 13, 1085.	2.9	0
244	Sex differences in obesity-induced renal lipid accumulation revealed by lipidomics: a role of adiponectin/AMPK axis. Biology of Sex Differences, 2023, 14, .	4.1	0
245	A combined extract containing Schisandra chinensis (SCE) reduced hepatic triglyceride accumulation in rats fed a high-sucrose diet. Food Science and Biotechnology, 0, , .	2.6	0
246	The interplay between leptin, glucocorticoids, and <scp>GLP1</scp> regulates food intake and feeding behaviour. Biological Reviews, 0, , .	10.4	0
247	Metabolic syndrome: comparison of three diet-induced experimental models. Pharmacia, 2023, 70, 1539-1548.	1.2	0
248	Use of high-fat high-fructose diet for a model of metabolic syndrome in Wistar rats: challenges remain. Acta Veterinaria Brno, 2023, 92, 389-396.	0.5	0
249	Differences in vasomotor function of mesenteric arteries between Ossabaw minipigs with predisposition to metabolic syndrome and Göttingen minipigs. American Journal of Physiology - Heart and Circulatory Physiology, 2024, 326, H408-H417.	3.2	1
250	Intrinsic running capacity associates with hippocampal electrophysiology and long-term potentiation in rats. Neuroscience Letters, 2024, 823, 137665.	2.1	0
251	Altered Autonomic Function in Metabolic Syndrome: Interactive Effects of Multiple Components. Journal of Clinical Medicine, 2024, 13, 895.	2.4	0
252	Technical challenges in small animal models mimicking human ischemic cardiovascular diseases. Cardiology Plus, 2024, 9, 9-11.	0.7	0