The PyCBC search for gravitational waves from compact

Classical and Quantum Gravity 33, 215004 DOI: 10.1088/0264-9381/33/21/215004

Citation Report

#	Article	IF	CITATIONS
1	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
2	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
3	Towards mitigating the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences. Physical Review D, 2016, 94, .	1.6	12
4	SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITORÂAND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226. Astrophysical Journal, 2017, 835, 82.	1.6	32
5	Obtaining gravitational waves from inspiral binary systems using LIGO data. European Physical Journal Plus, 2017, 132, 1.	1.2	5
6	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
7	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
8	Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Physical Review D, 2017, 95, .	1.6	45
9	Gravitational-wave observations from ground-based detectors. International Journal of Modern Physics A, 2017, 32, 1744002.	0.5	1
10	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
11	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
12	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
13	Detectability of gravitational waves from binary black holes: Impact of precession and higher modes. Physical Review D, 2017, 95, .	1.6	68
14	Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars. Classical and Quantum Gravity, 2017, 34, 245003.	1.5	11
15	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
16	Observing gravitational waves with a single detector. Classical and Quantum Gravity, 2017, 34, 155007.	1.5	19
17	Data Access for LIGO on the OSC. , 2017, , .		18
18	Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences. Physical Review D, 2017, 95, .	1.6	29

ARTICLE IF CITATIONS # A unified approach to I⁺² discriminators for searches of gravitational waves from compact binary 19 1.6 8 coalescences. Physical Review D, 2017, 96, . Classifier for gravitational-wave inspiral signals in nonideal single-detector data. Physical Review D, 1.6 9 2017,96,. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries 21 1.6 30 including the effect of subdominant modes. Physical Review D, 2017, 96, . GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal 3.0 968 Letters, 2017, 851, L35. Where Are LIGO's Big Black Holes?. Astrophysical Journal Letters, 2017, 851, L25. 23 3.0 160 Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries 1.6 with nonprecessing spins. Physical Review D, 2017, 96, . Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the 25 1.6 148 Sensitivity of the PyCBC Search. Astrophysical Journal, 2017, 849, 118. The first confirmed gravitational wave detection in LIGO's second observational run. Science China: 2.0 26 Physics, Mechanics and Astronomy, 2017, 60, 1. BOSS-LDG: A Novel Computational Framework That Brings Together Blue Waters, Open Science Grid, 27 6 Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery., 2017, , A blind search for a common signal in gravitational wave detectors. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 013-013. Degeneracy of gravitational waveforms in the context of GW150914. Journal of Cosmology and 29 1.9 14 Astroparticle Physics, 2018, 2018, 007-007. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first 1.5 94 observing run. Classical and Quantum Gravity, 2018, 35, 065010. Deep neural networks to enable real-time multimessenger astrophysics. Physical Review D, 2018, 97, . $\mathbf{31}$ 1.6 166 Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. Physical Review Letters, 2018, 120, 141103. 140 Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and 33 100 1.6 characterization of eccentric binary black hole mergers. Physical Review D, 2018, 97, . Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 230 2018, 778, 64-70. Searching for the full symphony of black hole binary mergers. Physical Review D, 2018, 97, . 35 1.6 46 Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Physical Review D, 2018, 97, .

#	Article	IF	CITATIONS
37	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
38	Image-based deep learning for classification of noise transients in gravitational wave detectors. Classical and Quantum Gravity, 2018, 35, 095016.	1.5	63
39	Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Classical and Quantum Gravity, 2018, 35, 014002.	1.5	72
40	Techniques for gravitational-wave detection of compact binary coalescence. , 2018, , .		0
41	Localization of transient gravitational wave sources: beyond triangulation. Classical and Quantum Gravity, 2018, 35, 105002.	1.5	21
42	Improving performance of SEOBNRv3 by â^1⁄4300×. Classical and Quantum Gravity, 2018, 35, 155003.	1.5	10
43	Characterization of low-significance gravitational-wave compact binary sources. Physical Review D, 2018, 98, .	1.6	10
44	Observational Implications of Lowering the LIGO-Virgo Alert Threshold. Astrophysical Journal Letters, 2018, 861, L24.	3.0	7
45	Estimation of the sensitive volume for gravitational-wave source populations using weighted Monte Carlo integration. Classical and Quantum Gravity, 2018, 35, 145009.	1.5	51
46	Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches. Classical and Quantum Gravity, 2018, 35, 155017.	1.5	32
47	SciTokens. , 2018, , .		11
48	Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection. Journal of the Korean Physical Society, 2018, 73, 1197-1210.	0.3	2
49	A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226. Astrophysical Journal, 2018, 857, 143.	1.6	7
50	Container solutions for HPC Systems. , 2018, , .		12
51	Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems. Classical and Quantum Gravity, 2018, 35, 145010.	1.5	85
52	Expanding the LISA Horizon from the Ground. Physical Review Letters, 2018, 121, 251102.	2.9	33
53	Discovering intermediate-mass black hole lenses through gravitational wave lensing. Physical Review D, 2018, 98, .	1.6	58
54	Driving unmodeled gravitational-wave transient searches using astrophysical information. Physical Review D, 2018, 98, .	1.6	4

ARTICLE IF CITATIONS # Very fast stochastic gravitational wave background map making using folded data. Physical Review D, 1.6 27 55 2018,98,. Gravitational-wave astrophysics with effective-spin measurements: Asymmetries and selection biases. 1.6 Physical Review D, 2018, 98, . Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data. 57 1.6 14 Physical Review D, 2018, 98, . Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Physical Review D, 2018, 98, . Measuring eccentricity in binary black hole inspirals with gravitational waves. Physical Review D, 59 1.6 85 2018, 98, . Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics. Physical Review D, 2018, 98, . 1.6 Mining gravitational-wave catalogs to understand binary stellar evolution: A new hierarchical 61 1.6 64 Bayesian framework. Physical Review D, 2018, 98, . Spin orientations of merging black holes formed from the evolution of stellar binaries. Physical 149 1.6 Review D, 2018, 98, . Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations. 63 12 1.6 Astrophysical Journal, 2018, 858, 79. Merger Rate Distribution of Primordial Black Hole Binaries. Astrophysical Journal, 2018, 864, 61. 1.6 Enhancing confidence in the detection of gravitational waves from compact binaries using signal 19 65 1.6 coherence. Physical Review D, 2018, 98, . Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 056-056. GPU-acceleration on a low-latency binary-coalescence gravitational wave search pipeline. Computer 67 3.0 11 Physics Communications, 2018, 231, 62-71. Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Physical Review D, 2018, 98, . 1.6 Potential observations of false deviations from general relativity in gravitational wave signals from 69 1.6 18 binary black holes. Physical Review D, 2018, 98,. Rapid detection of gravitational waves from compact binary mergers with PyCBC Live. Physical Review D, 2018, 98, . Investigating the Poor Match among Different Precessing Gravitational Waveforms. Universe, 2018, 4, 71 0.9 0 56. SAGE: finding IMBH in the black hole desert. Classical and Quantum Gravity, 2019, 36, 195005. 1.5

#	Article	IF	CITATIONS
73	Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers. Physical Review D, 2019, 100, .	1.6	25
74	Multi-detector null-stream-based \$chi^2\$ statistic for compact binary coalescence searches. Classical and Quantum Gravity, 2019, 36, 195012.	1.5	2
75	Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 2019, 100, .	1.6	136
76	Constraining the parameters of GW150914 and GW170104 with numerical relativity surrogates. Physical Review D, 2019, 99, .	1.6	32
77	New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO. Physical Review D, 2019, 100, .	1.6	121
78	Sub-threshold Binary Neutron Star Search in Advanced LIGO's First Observing Run. Astrophysical Journal Letters, 2019, 878, L17.	3.0	21
79	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
80	Are stellar-mass black-hole binaries too quiet for LISA?. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L94-L98.	1.2	60
81	The Reliability of the Low-latency Estimation of Binary Neutron Star Chirp Mass. Astrophysical Journal Letters, 2019, 884, L32.	3.0	18
82	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
83	Label switching problem in Bayesian analysis for gravitational wave astronomy. Physical Review D, 2019, 100, .	1.6	16
84	Constraining the Fraction of Binary Black Holes Formed in Isolation and Young Star Clusters with Gravitational-wave Data. Astrophysical Journal, 2019, 886, 25.	1.6	59
85	Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins. Physical Review D, 2019, 99, .	1.6	5
86	Characterization of numerical relativity waveforms of eccentric binary black hole mergers. Physical Review D, 2019, 100, .	1.6	17
87	Convolutional neural networks: A magic bullet for gravitational-wave detection?. Physical Review D, 2019, 100, .	1.6	79
88	Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders. , 2019, , .		25
89	SciTokens. , 2019, , .		5
90	Blip glitches in Advanced LIGO data. Classical and Quantum Gravity, 2019, 36, 155010.	1.5	84

# 91	ARTICLE GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	IF 2.8	Citations 2,022
92	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
93	Applicability Study of the PRIMAD Model to LIGO Gravitational Wave Search Workflows. , 2019, , .		1
94	Investigating Deep Neural Networks for Gravitational Wave Detection in Advanced LIGO Data. , 2019, , .		3
95	1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data. Astrophysical Journal, 2019, 872, 195.	1.6	144
96	Serendipitous discoveries of kilonovae in the LSST main survey: maximizing detections of sub-threshold gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4260-4273.	1.6	26
97	Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo's second observing run. Scientific Data, 2019, 6, 81.	2.4	7
98	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
99	Accelerating parameter inference with graphics processing units. Physical Review D, 2019, 99, .	1.6	38
100	Parameter estimation and statistical significance of echoes following black hole signals in the first Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	42
101	Multiband gravitational-wave event rates and stellar physics. Physical Review D, 2019, 99, .	1.6	73
102	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
103	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
104	PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals. Publications of the Astronomical Society of the Pacific, 2019, 131, 024503.	1.0	156
105	Prospects of detecting the nonlinear gravitational wave memory. Physical Review D, 2019, 99, .	1.6	24
106	Matched-filter study and energy budget suggest no detectable gravitational-wave â€~extended emission' from GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 485, 843-850.	1.6	8
107	Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters. Astrophysical Journal, 2019, 871, 91.	1.6	158
108	Bayesian inference analysis of unmodelled gravitational-wave transients. Classical and Quantum Gravity, 2019, 36, 035011.	1.5	4

#	Article	IF	CITATIONS
109	Improving the sensitivity of Advanced LIGO using noise subtraction. Classical and Quantum Gravity, 2019, 36, 055011.	1.5	69
110	Investigating the noise residuals around the gravitational wave event GW150914. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 019-019.	1.9	11
111	Digging the population of compact binary mergers out of the noise. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4008-4023.	1.6	30
112	Supporting High-Performance and High-Throughput Computing for Experimental Science. Computing and Software for Big Science, 2019, 3, 1.	1.3	9
113	Astrophysical signal consistency test adapted for gravitational-wave transient searches. Physical Review D, 2019, 100, .	1.6	6
114	Custom Execution Environments with Containers in Pegasus-Enabled Scientific Workflows. , 2019, , .		5
115	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 100, .	1.6	82
116	Gravitational wave detection without boot straps: A Bayesian approach. Physical Review D, 2019, 100, .	1.6	16
117	Template bank for compact binary coalescence searches in gravitational wave data: A general geometric placement algorithm. Physical Review D, 2019, 99, .	1.6	20
118	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
119	Using deep learning to localize gravitational wave sources. Physical Review D, 2019, 100, .	1.6	20
120	Stochastic gravitational wave backgrounds. Reports on Progress in Physics, 2019, 82, 016903.	8.1	176
121	Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Frontiers of Physics, 2020, 15, 1.	2.4	16
122	Gravitational wave denoising of binary black hole mergers with deep learning. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 800, 135081.	1.5	61
123	Constraining the Lensing of Binary Black Holes from Their Stochastic Background. Physical Review Letters, 2020, 125, 141102.	2.9	23
124	Modeling ringdown. II. Aligned-spin binary black holes, implications for data analysis and fundamental theory. Physical Review D, 2020, 102, .	1.6	23
125	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
126	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12

#	Article	IF	CITATIONS
127	A Search for Gravitational Waves from Binary Mergers with a Single Observatory. Astrophysical Journal, 2020, 897, 169.	1.6	29
128	Two-harmonic approximation for gravitational waveforms from precessing binaries. Physical Review D, 2020, 102, .	1.6	34
129	Neutron star mergers and how to study them. Living Reviews in Relativity, 2020, 23, 1.	8.2	31
130	Search for strongly lensed counterpart images of binary black hole mergers in the first two LIGO observing runs. Physical Review D, 2020, 102, .	1.6	35
131	Impact of eccentricity on the gravitational-wave searches for binary black holes: High mass case. Physical Review D, 2020, 102, .	1.6	29
132	An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1841-1852.	1.6	20
133	The astrophysical odds of GW151216. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1905-1910.	1.6	10
134	Chirp mass based glitch identification in long-duration gravitational-wave detection. Physical Review D, 2020, 102, .	1.6	2
135	Constraining the lensing of binary neutron stars from their stochastic background. Physical Review D, 2020, 102, .	1.6	6
136	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review</mml:math 	ml ææ ext>	<nasadamsub></nasadamsub>
137	Binary black holes in the pair instability mass gap. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1043-1049.	1.6	90
138	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
139	Detection and classification of supernova gravitational wave signals: A deep learning approach. Physical Review D, 2020, 102, .	1.6	35
140	Detection of gravitational-wave signals from binary neutron star mergers using machine learning. Physical Review D, 2020, 102, .	1.6	34
141	Setting the cornerstone for a family of models for gravitational waves from compact binaries: The dominant harmonic for nonprecessing quasicircular black holes. Physical Review D, 2020, 102, .	1.6	121
142	Numerical relativity injection analysis of signals from generically spinning intermediate mass black hole binaries in Advanced LIGO data. Physical Review D, 2020, 102, .	1.6	15
143	Rapid parameter estimation of gravitational waves from binary neutron star coalescence using focused reduced order quadrature. Physical Review D, 2020, 102, .	1.6	34
144	Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of the Intersection of Confidence Intervals Rule. Sensors, 2020, 20, 6920.	2.1	6

#	Article	IF	CITATIONS
145	Gravitational-wave selection effects using neural-network classifiers. Physical Review D, 2020, 102, .	1.6	19
146	Gravitational-wave inference in the catalog era: Evolving priors and marginal events. Physical Review D, 2020, 102, .	1.6	21
147	A nonparametric method to evaluate significance of events in search for gravitational waves with false discovery rate. Journal of Physics: Conference Series, 2020, 1468, 012222.	0.3	0
148	Reconstructing gravitational wave signals from binary black hole mergers with minimal assumptions. Physical Review D, 2020, 102, .	1.6	19
149	Machine-learning nonstationary noise out of gravitational-wave detectors. Physical Review D, 2020, 101, .	1.6	70
150	Ranking candidate signals with machine learning in low-latency searches for gravitational waves from compact binary mergers. Physical Review D, 2020, 101, .	1.6	11
151	2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data. Astrophysical Journal, 2020, 891, 123.	1.6	178
152	Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope. European Physical Journal C, 2020, 80, 1.	1.4	9
153	Gravitational-wave versus x-ray tests of strong-field gravity. Classical and Quantum Gravity, 2020, 37, 135008.	1.5	38
154	Precessing numerical relativity waveform surrogate model for binary black holes: A Gaussian process regression approach. Physical Review D, 2020, 101, .	1.6	22
155	Gravitational Waves From Binary Black Hole Mergers: Modeling and Observations. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
156	Search for Eccentric Binary Neutron Star Mergers in the First and Second Observing Runs of Advanced LIGO. Astrophysical Journal, 2020, 890, 1.	1.6	43
157	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
158	Some optimizations on detecting gravitational wave using convolutional neural network. Frontiers of Physics, 2020, 15, 1.	2.4	21
159	Gravitational wave interference via gravitational lensing: Measurements of luminosity distance, lens mass, and cosmological parameters. Physical Review D, 2020, 101, .	1.6	31
160	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
161	Triangular Norms for Gravitational Wave Data Fusion. IEEE Transactions on Fuzzy Systems, 2020, 28, 534-543.	6.5	4
162	Memory effect or cosmic string? Classifying gravitational-wave bursts with Bayesian inference. Physical Review D, 2020, 102, .	1.6	8

#	Article	IF	CITATIONS
163	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
164	Analytic waveforms for eccentric gravitational wave bursts. Classical and Quantum Gravity, 2020, 37, 075008.	1.5	12
165	Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference. Physical Review Letters, 2020, 124, 041102.	2.9	75
166	Core-Collapse supernova gravitational-wave search and deep learning classification. Machine Learning: Science and Technology, 2020, 1, 025014.	2.4	24
167	Fast evaluation of multidetector consistency for real-time gravitational wave searches. Physical Review D, 2020, 101, .	1.6	51
168	New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Physical Review D, 2020, 101, .	1.6	225
169	Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Physical Review D, 2020, 101,	1.6	60
170	Measuring gravitational-wave higher-order multipoles. Physical Review D, 2021, 103, .	1.6	33
171	Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 812, 136029.	1.5	29
172	Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2021, , 1-27.		3
173	Improved deep learning techniques in gravitational-wave data analysis. Physical Review D, 2021, 103, .	1.6	17
174	Improving Gravitational Wave Detection with 2D Convolutional Neural Networks. , 2021, , .		3
175	Stepwise-Refined Interval for Deep Learning to Process Sensor-Cloud Data with Noises. Lecture Notes in Computer Science, 2021, , 269-280.	1.0	0
176	Bayesian reconstruction of gravitational-wave signals from binary black holes with nonzero eccentricities. Classical and Quantum Gravity, 2021, 38, 065002.	1.5	7
177	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 2021, 13, 100658.	1.2	275
178	Modeling compact binary signals and instrumental glitches in gravitational wave data. Physical Review D, 2021, 103, .	1.6	36
179	Optimal χ2 discriminator against modeled noise transients in interferometric data in searches for binary black-hole mergers. Physical Review D, 2021, 103, .	1.6	2
180	Enhancing the gravitational-wave burst detection confidence in expanded detector networks with the BayesWave pipeline. Physical Review D, 2021, 103, .	1.6	5

#	Article	IF	CITATIONS
181	Searches for compact binary coalescence events using neural networks in the LIGO/Virgo second observation period. Physical Review D, 2021, 103, .	1.6	13
182	Detection of gravitational waves using Bayesian neural networks. Physical Review D, 2021, 103, .	1.6	25
183	Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger. Computing in Science and Engineering, 2021, 23, 73-82.	1.2	10
184	Charged black hole mergers: orbit circularisation and chirp mass bias. Classical and Quantum Gravity, 2021, 38, 075017.	1.5	12
185	Unveiling the spectrum of inspiralling binary black holes. Physical Review D, 2021, 103, .	1.6	8
186	Gravitational-wave surrogate models powered by artificial neural networks. Physical Review D, 2021, 103, .	1.6	26
187	Template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and the first observation run of Advanced Virgo. Physical Review D, 2021, 103, .	1.6	14
188	The MBTA pipeline for detecting compact binary coalescences in the third LIGO–Virgo observing run. Classical and Quantum Gravity, 2021, 38, 095004.	1.5	62
189	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	1.5	128
190	Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach. Sensors, 2021, 21, 3174.	2.1	5
191	Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. Physical Review D, 2021, 103, .	1.6	20
192	ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses. PeerJ, 2021, 9, e11376.	0.9	4
193	Probing planetary-mass primordial black holes with continuous gravitational waves. Physics of the Dark Universe, 2021, 32, 100836.	1.8	35
194	Reliability of parameter estimates in the first observing run of Advanced LIGO. Physical Review D, 2021, 103, .	1.6	1
195	Rapid and robust parameter inference for binary mergers. Physical Review D, 2021, 103, .	1.6	21
196	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
197	Prospects for Detecting Gravitational Waves from Eccentric Subsolar Mass Compact Binaries. Astrophysical Journal, 2021, 912, 53.	1.6	14
198	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453

#	Article	IF	CITATIONS
199	NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals. Machine Learning: Science and Technology, 2021, 2, 035018.	2.4	5
200	Deep learning model on gravitational waveforms in merging and ringdown phases of binary black hole coalescences. Physical Review D, 2021, 103, .	1.6	4
201	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
202	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	1.5	38
203	Constraining accretion efficiency in massive binary stars with LIGO –Virgo black holes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3873-3882.	1.6	15
204	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
205	Binary Black Hole Mergers from Young Massive and Open Clusters: Comparison to GWTC-2 Gravitational Wave Data. Astrophysical Journal Letters, 2021, 913, L29.	3.0	16
206	Generalised gravitational wave burst generation with generative adversarial networks. Classical and Quantum Gravity, 2021, 38, 155005.	1.5	11
207	Detecting the early inspiral of a gravitational-wave signal with convolutional neural networks. , 2021, , .		4
208	Search for Gravitational Waves from the Coalescence of Subsolar Mass and Eccentric Compact Binaries. Astrophysical Journal, 2021, 915, 54.	1.6	19
209	VAMANA: modeling binary black hole population with minimal assumptions. Classical and Quantum Gravity, 2021, 38, 155007.	1.5	18
210	Identification of Lensed Gravitational Waves with Deep Learning. Astrophysical Journal, 2021, 915, 119.	1.6	5
211	Anomaly detection in gravitational waves data using convolutional autoencoders. Machine Learning: Science and Technology, 2021, 2, 045014.	2.4	10
212	Merger-ringdown consistency: A new test of strong gravity using deep learning. Physical Review D, 2021, 104, .	1.6	11
213	Gravitational-wave searches in the era of Advanced LIGO and Virgo. Modern Physics Letters A, 2021, 36, 2130022.	0.5	4
214	Exploring gravitational-wave detection and parameter inference using deep learning methods. Classical and Quantum Gravity, 2021, 38, 155010.	1.5	11
215	Failure of the Fisher matrix when including tidal terms: Considering construction of template banks of tidally deformed binary neutron stars. Physical Review D, 2021, 104, .	1.6	5
216	Optimized PyCBC search for gravitational waves from intermediate-mass black hole mergers. Physical Review D, 2021, 104, .	1.6	10

#	Article	IF	CITATIONS
217	Bayesian inference of multimessenger astrophysical data: Methods and applications to gravitational waves. Physical Review D, 2021, 104, .	1.6	25
218	Eccentric binary neutron star search prospects for Cosmic Explorer. Physical Review D, 2021, 104, .	1.6	9
219	Detecting gravitational waves in data with non-stationary and non-Gaussian noise. Physical Review D, 2021, 104, .	1.6	28
220	Improving significance of binary black hole mergers in Advanced LIGO data using deep learning: Confirmation of GW151216. Physical Review D, 2021, 104, .	1.6	12
221	Search for Gravitational Waves from High-Mass-Ratio Compact-Binary Mergers of Stellar Mass and Subsolar Mass Black Holes. Physical Review Letters, 2021, 126, 021103.	2.9	29
222	GWpy: A Python package for gravitational-wave astrophysics. SoftwareX, 2021, 13, 100657.	1.2	30
223	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
224	Scalable auto-encoders for gravitational waves detection from time series data. Expert Systems With Applications, 2020, 151, 113378.	4.4	37
225	Utilizing aLIGO glitch classifications to validate gravitational-wave candidates. Classical and Quantum Gravity, 2020, 37, 145001.	1.5	27
226	Dynamic normalization for compact binary coalescence searches in non-stationary noise. Classical and Quantum Gravity, 2020, 37, 215014.	1.5	24
227	Accelerating the evaluation of inspiral–merger–ringdown waveforms with adapted grids. Classical and Quantum Gravity, 2021, 38, 015006.	1.5	26
228	iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors. Machine Learning: Science and Technology, 2021, 2, 015004.	2.4	18
229	A semisupervised machine learning search for never-seen gravitational-wave sources. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5408-5419.	1.6	11
230	Extending the PyCBC search for gravitational waves from compact binary mergers to a global network. Physical Review D, 2020, 102, .	1.6	58
231	Quantifying the effect of power spectral density uncertainty on gravitational-wave parameter estimation for compact binary sources. Physical Review D, 2020, 102, .	1.6	28
232	Establishing the significance of continuous gravitational-wave detections from known pulsars. Physical Review D, 2020, 102, .	1.6	13
233	Bayesian analysis of LIGO-Virgo mergers: Primordial versus astrophysical black hole populations. Physical Review D, 2020, 102, .	1.6	75
234	Gravitational-wave astronomy with an uncertain noise power spectral density. Physical Review Research, 2020, 2, .	1.3	21

	Сітл	ation Report	
#	Article	IF	CITATIONS
235	SAGE: using CubeSats for gravitational wave detection. , 2018, , .		2
236	Inferring Parameters of GW170502: The Loudest Intermediate-mass Black Hole Trigger in LIGO's O data. Astrophysical Journal, 2020, 900, 80.	1/02 1.6	10
237	Localization of Compact Binary Sources with Second-generation Gravitational-wave Interferometer Networks. Astrophysical Journal, 2020, 902, 71.	1.6	13
238	Does Matter Matter? Using the Mass Distribution to Distinguish Neutron Stars and Black Holes. Astrophysical Journal Letters, 2020, 899, L8.	3.0	38
239	Gravitational-wave Merger Forecasting: Scenarios for the Early Detection and Localization of Compact-binary Mergers with Ground-based Observatories. Astrophysical Journal Letters, 2020, 902, L29.	3.0	27
240	Fast Parameter Estimation of Binary Mergers for Multimessenger Follow-up. Astrophysical Journal Letters, 2020, 905, L9.	3.0	15
241	A nonparametric method to assess the significance of events in the search for gravitational waves with false discovery rate. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	1
242	A template-free approach for waveform extraction of gravitational wave events. Scientific Reports, 2021, 11, 20507.	1.6	5
243	Gravitational lensing of gravitational waves: effect of microlens population in lensing galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4869-4886.	1.6	27
244	Search for Gravitational Waves from the Coalescence of Subsolar-Mass Binaries in the First Half of Advanced LIGO and Virgo's Third Observing Run. Physical Review Letters, 2021, 127, 151101.	2.9	27
245	Gravitational Physics: From Quantum to Waves. , 2018, , 357-488.		0
246	GPU-Optimised Low-Latency Online Search for Gravitational Waves from Binary Coalescences. , 2018, ,		2
247	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	1.5	6
248	Digital Infrastructure in Astrophysics. , 2020, 52, .		2
249	Gravitational-Wave Observations by Advanced LIGO and Virgo. Journal of Physics: Conference Series, 2020, 1468, 012218.	0.3	0
250	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
251	The Mass Distribution of Neutron Stars in Gravitational-wave Binaries. Astrophysical Journal Letters, 2021, 921, L25.	3.0	25
252	Method for detecting highly eccentric binaries with a gravitational wave burst search. Physical Review D, 2021, 104, .	1.6	5

#	Article	IF	CITATIONS
254	Pearson cross-correlation in the first four black hole binary mergers. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 043-043.	1.9	1
255	3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers. Astrophysical Journal, 2021, 922, 76.	1.6	99
256	Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophysical Journal Letters, 2021, 921, L43.	3.0	36
258	Detection of Non-Stationary GW Signals in High Noise From Cohen's Class of Time–Frequency Representations Using Deep Learning. IEEE Access, 2022, 10, 2408-2428.	2.6	47
259	Discovering gravitational waves with Advanced LIGO. Contemporary Physics, 2020, 61, 229-255.	0.8	1
260	On Optimal Parameters for ICI-Based Adaptive Filtering Applied to the GWs in High Noise. , 2021, , .		2
261	Investigation of the effects of non-Gaussian noise transients and their mitigation in parameterized gravitational-wave tests of general relativity. Physical Review D, 2022, 105, .	1.6	8
262	Identification and removal of non-Gaussian noise transients for gravitational-wave searches. Physical Review D, 2022, 105, .	1.6	9
263	Detector Characterization and Mitigation of Noise in Ground-Based Gravitational-Wave Interferometers. Galaxies, 2022, 10, 12.	1.1	10
264	Generalized approach to matched filtering using neural networks. Physical Review D, 2022, 105, .	1.6	14
265	From one to many: A deep learning coincident gravitational-wave search. Physical Review D, 2022, 105, .	1.6	11
266	Search for topological defect dark matter with a global network of optical magnetometers. Nature Physics, 2021, 17, 1396-1401.	6.5	42
267	Real-time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using PyCBC Live. Astrophysical Journal, 2021, 923, 254.	1.6	30
268	Effective-one-body multipolar waveforms for eccentric binary black holes with nonprecessing spins. Physical Review D, 2022, 105, .	1.6	37
269	Interplay of spin-precession and higher harmonics in the parameter estimation of binary black holes. Physical Review D, 2022, 105, .	1.6	15
270	Hierarchical search for compact binary coalescences in the Advanced LIGO's first two observing runs. Physical Review D, 2022, 105, .	1.6	4
271	Understanding How Fast Black Holes Spin by Analyzing Data from the Second Gravitational-wave Catalogue. Astrophysical Journal, 2022, 928, 75.	1.6	14
272	Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network. Frontiers of Physics, 2022, 17, 1.	2.4	2

#	Article	IF	CITATIONS
273	Characterizing the Observation Bias in Gravitational-wave Detections and Finding Structured Population Properties. Astrophysical Journal, 2021, 922, 258.	1.6	13
274	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
275	Assessing gravitational-wave binary black hole candidates with Bayesian odds. Physical Review D, 2021, 104, .	1.6	8
276	Calibration uncertainty's impact on gravitational-wave observations. Physical Review D, 2022, 105, .	1.6	6
277	Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning. Physical Review D, 2022, 105, .	1.6	9
278	Ensemble of deep convolutional neural networks for real-time gravitational wave signal recognition. Physical Review D, 2022, 105, .	1.6	7
279	Hierarchical approach to matched filtering using a reduced basis. Physical Review D, 2022, 105, .	1.6	6
280	Hardware-accelerated inference for real-time gravitational-wave astronomy. Nature Astronomy, 2022, 6, 529-536.	4.2	3
281	Using machine learning to autotune chi-squared tests for gravitational wave searches. Physical Review D, 2022, 105, .	1.6	6
282	Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae. Astrophysical Journal, 2022, 931, 159.	1.6	4
283	Validation of denoising system using non-harmonic analysis and denoising convolutional neural network for removal of Gaussian noise from gravitational waves observed by LIGO. Astronomy and Computing, 2022, , 100607.	0.8	0
284	When models fail: An introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy. Publications of the Astronomical Society of Australia, 2022, 39, .	1.3	12
285	Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2022, , 1793-1819.		0
286	Environmental Noise in Gravitational-Wave Interferometers. , 2022, , 407-478.		0
287	Utilizing the null stream of the Einstein Telescope. Physical Review D, 2022, 105, .	1.6	12
288	Evidence for subdominant multipole moments and precession in merging black-hole-binaries from GWTC-2.1. Physical Review D, 2022, 106, .	1.6	12
289	Broad search for gravitational waves from subsolar-mass binaries through LIGO and Virgo's third observing run. Physical Review D, 2022, 106, .	1.6	21
290	Convolutional neural network for gravitational-wave early alert: Going down in frequency. Physical Review D, 2022, 106, .	1.6	6

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
291	New binary black hole mergers in the LIGO-Virgo O3a data. Physical Review D, 2022, 106, .	1.6	64
292	A Comprehensive Analysis of the Gravitational Wave Events with the Stacked Hilbert–Huang Transform: From Compact Binary Coalescence to Supernova. Astrophysical Journal, 2022, 935, 127.	1.6	5
293	Targeted search for the stochastic gravitational-wave background from the galactic millisecond pulsar population. Physical Review D, 2022, 106, .	1.6	8
294	Establishing significance of gravitational-wave signals from a single observatory in the PyCBC offline search. Classical and Quantum Gravity, 2022, 39, 215012.	1.5	8
295	Accurate modeling and mitigation of overlapping signals and glitches in gravitational-wave data. Physical Review D, 2022, 106, .	1.6	10
296	Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. Physical Review Letters, 2022, 129, .	2.9	21
297	Prospects for reconstructing the gravitational-wave signals from core-collapse supernovae with Advanced LIGO-Virgo and the BayesWave algorithm. Physical Review D, 2022, 106, .	1.6	1
298	A follow-up on intermediate-mass black hole candidates in the second LIGO–Virgo observing run with the Bayes Coherence Ratio. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5309-5317.	1.6	1
299	Gravitational lensing of gravitational waves: Probability of microlensing in galaxy-scale lens population. Monthly Notices of the Royal Astronomical Society, 2022, 517, 872-884.	1.6	4
300	Rapid localization of gravitational wave hosts with FIGARO. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 517, L5-L10.	1.2	4
301	Boosting the efficiency of parametric detection with hierarchical neural networks. Physical Review D, 2022, 106, .	1.6	1
302	Employing deep learning for detection of gravitational waves from compact binary coalescences. AIP Conference Proceedings, 2022, , .	0.3	1
303	Optimizing Large Gravitational-Wave Classifier Through a Custom Cross-System Mirrored Strategy Approach. , 2022, , .		0
304	Deep Learning–based Search for Microlensing Signature from Binary Black Hole Events in GWTC-1 and -2. Astrophysical Journal, 2022, 938, 157.	1.6	3
305	Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run. Classical and Quantum Gravity, 2022, 39, 245013.	1.5	22
306	RUNMON-RIFT: Adaptive configuration and healing for large-scale parameter inference. Astronomy and Computing, 2023, 42, 100664.	0.8	1
307	Observational limits on the rate of radiation-driven binary black hole capture events. Physical Review D, 2022, 106, .	1.6	6
308	Convolutional Transformer for Fast and Accurate Gravitational Wave Detection. , 2022, , .		2

#	Article	IF	CITATIONS
309	Addressing the challenges of detecting time-overlapping compact binary coalescences. Physical Review D, 2022, 106, .	1.6	5
310	Sensitivity of spin-aligned searches for neutron star-black hole systems using future detectors. Physical Review D, 2022, 106, .	1.6	3
311	Incorporating information from LIGO data quality streams into the PyCBC search for gravitational waves. Physical Review D, 2022, 106, .	1.6	2
312	Deep learning model based on a bidirectional gated recurrent unit for the detection of gravitational wave signals. Physical Review D, 2022, 106, .	1.6	1
313	First gravitational-wave search for intermediate-mass black hole mergers with higher-order harmonics. Physical Review D, 2022, 106, .	1.6	9
314	Parameter estimation of gravitational waves with a quantum metropolis algorithm. Classical and Quantum Gravity, 2023, 40, 045001.	1.5	1
315	Identifying glitches near gravitational-wave signals from compact binary coalescences using the Q-transform. Classical and Quantum Gravity, 2023, 40, 035008.	1.5	4
316	Deep learning network to distinguish binary black hole signals from short-duration noise transients. Physical Review D, 2023, 107, .	1.6	3
317	Beyond general relativity: Designing a template-based search for exotic gravitational wave signals. Physical Review D, 2023, 107, .	1.6	2
318	False alarms induced by Gaussian noise in gravitational wave detectors. Physical Review D, 2023, 107, .	1.6	5
319	Salient features of the optimised PyCBC IMBH search. , 2023, , .		0
320	Optimizing the placement of numerical relativity simulations using a mismatch predicting neural network. Physical Review D, 2023, 107, .	1.6	0
321	First machine learning gravitational-wave search mock data challenge. Physical Review D, 2023, 107, .	1.6	10
322	Rapid search for massive black hole binary coalescences using deep learning. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 841, 137904.	1.5	5
323	Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run. Monthly Notices of the Royal Astronomical Society, 2023, 524, 5984-5992.	1.6	2
324	Numerical relativity higher order gravitational waveforms of eccentric, spinning, nonprecessing binary black hole mergers. Physical Review D, 2023, 107, .	1.6	4
325	Artificial intelligence model for gravitational wave search based on the waveform envelope. Physical Review D, 2023, 107, .	1.6	2
326	Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Physical Review X, 2023, 13, .	2.8	195

#ARTICLEIFCITATIONS327Mock data study for next-generation ground-based detectors: The performance loss of matched
filtering due to correlated confusion noise. Physical Review D, 2023, 107, .1.693284-OCC: Catalog of Gravitational Waves from Compact Binary Mergers. Astrophysical Journal, 2023,
946, 59.1.638329Searches for mass-asymmetric compact binary coalescence events using neural networks in the
LIGO/Nirgo third observation period. Physical Review D, 2023, 107, .1.64

CITATION REPORT