Greenhouse Gas Emissions from Reservoir Water Surfa

BioScience 66, 949-964 DOI: 10.1093/biosci/biw117

Citation Report

#	Article	IF	CITATIONS
3	Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environmental Science & Technology, 2017, 51, 1267-1277.	10.0	91
4	Potential effects of landscape change on water supplies in the presence of reservoir storage. Water Resources Research, 2017, 53, 2679-2692.	4.2	18
5	Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Science of the Total Environment, 2017, 598, 959-972.	8.0	36
6	Pollutionâ€ŧolerant invertebrates enhance greenhouse gas flux in urban wetlands. Ecological Applications, 2017, 27, 1852-1861.	3.8	17
7	Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnology and Oceanography Letters, 2017, 2, 47-62.	3.9	116
8	Functional Communications. , 2017, , 141-154.		0
9	Environmentally sustainable WASH? Current discourse, planetary boundaries and future directions. Journal of Water Sanitation and Hygiene for Development, 2017, 7, 209-228.	1.8	13
10	How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?. Freshwater Biology, 2017, 62, 833-853.	2.4	257
11	Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 2017, 87, 379-409.	5.4	86
12	Sustainable Energy and Healthy Rivers. , 2017, , 112-124.		0
12 13	Sustainable Energy and Healthy Rivers. , 2017, , 112-124. Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666.	1.7	0
	Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the	1.7 8.7	
13	Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666.		4
13 14	 Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666. How Green is †Green' Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and 	8.7	4
13 14 15	 Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666. How Green is â€~Green' Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability. Environmental Sciences: Processes and Impacts, 2017, 19, 1278-1291. Seasonal and Spatial Dynamics of Gas Ebullition in a Temperate Waterâ€6torage Reservoir. Water 	8.7 3.5	4 161 9
13 14 15 16	 Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666. How Green is †Green†Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability. Environmental Sciences: Processes and Impacts, 2017, 19, 1278-1291. Seasonal and Spatial Dynamics of Gas Ebullition in a Temperate Waterâ€Storage Reservoir. Water Resources Research, 2017, 53, 8266-8276. Toward relaxed eddy accumulation measurements of sedimentâ€water exchange in aquatic ecosystems. 	8.7 3.5 4.2	4 161 9 19
13 14 15 16 17	 Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters. Acta Geochimica, 2017, 36, 658-666. How Green is †Green' Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability. Environmental Sciences: Processes and Impacts, 2017, 19, 1278-1291. Seasonal and Spatial Dynamics of Cas Ebulition in a Temperate Waterâ€Storage Reservoir. Water Resources Research, 2017, 53, 8266-8276. Toward relaxed eddy accumulation measurements of sedimentâ€water exchange in aquatic ecosystems. Geophysical Research Letters, 2017, 44, 8901-8909. Glacier shrinkage driving global changes in downstream systems. Proceedings of the National 	8.7 3.5 4.2 4.0	4 161 9 19 8

		CITATION REPORT		
#	Article		IF	Citations
21	Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy Greenhouse Gas Emissions. Environmental Management, 2017, 60, 615-629.	on	2.7	16
22	Role of gas ebullition in the methane budget of a deep subtropical lake: What can we le processâ€based modeling?. Limnology and Oceanography, 2017, 62, 2674-2698.	earn from	3.1	34
23	Global Challenges in Water Governance. , 2017, , .			22
24	Biological and land use controls on the isotopic composition of aquatic carbon in the L Mississippi River Basin. Global Biogeochemical Cycles, 2017, 31, 1271-1288.	lpper	4.9	22
26	Cross continental increase in methane ebullition under climate change. Nature Commu 8, 1682.	inications, 2017,	12.8	146
27	Organic carbon burial in global lakes and reservoirs. Nature Communications, 2017, 8,	1694.	12.8	307
28	Methane Bubble Size Distributions, Flux, and Dissolution in a Freshwater Lake. Environ & Technology, 2017, 51, 13733-13739.	nental Science	10.0	25
29	Management effects on greenhouse gas dynamics in fen ditches. Science of the Total B 2017, 578, 601-612.	Environment,	8.0	26
30	Designing flows to resolve human and environmental water needs in a dam-regulated r Communications, 2017, 8, 2158.	iver. Nature	12.8	144
31	Problems associated with the intensive use of some $\hat{a} {\in} \hat{\alpha} clean \hat{a} {\in} {\bullet} renewable$ energies. ,	2017,,.		Ο
32	Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological St Theory. Frontiers in Microbiology, 2017, 8, 1298.	oichiometry	3.5	53
33	The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 2	017, 12, e0182254.	2.5	153
34	Carbon Dioxide Emissions from the Littoral Zone of a Chinese Reservoir. Water (Switze 539.	rland), 2017, 9,	2.7	8
35	Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Reg Environmental Change, 2018, 18, 1901-1912.	gional	2.9	12
36	Greenhouse gas emissions of hydropower in the Mekong River Basin. Environmental Re 2018, 13, 034030.	search Letters,	5.2	63
37	Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limno Oceanography Letters, 2018, 3, 89-101.	blogy and	3.9	98
38	The C-biogeochemistry of a Midwestern USA agricultural impoundment in context: Lak intensively managed landscape critical zone observatory. Biogeochemistry, 2018, 138,	e Decatur in the 171-195.	3.5	11
39	Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of glob Limnology and Oceanography Letters, 2018, 3, 64-75.	bal change.	3.9	303

#	Article	IF	CITATIONS
40	Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 2018, 38, 183-205.	1.5	234
41	Spatially Explicit, Regionalâ€Scale Simulation of Lake Carbon Fluxes. Global Biogeochemical Cycles, 2018, 32, 1276-1293.	4.9	14
42	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	23.0	354
43	Methane production increases with warming and carbon additions to incubated sediments from a semiarid reservoir. Inland Waters, 2018, 8, 109-121.	2.2	13
44	Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501.	3.1	121
45	Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nature Climate Change, 2018, 8, 156-160.	18.8	130
46	Spatially Resolved Measurements of CO ₂ and CH ₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & Technology, 2018, 52, 607-615.	10.0	65
47	Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment. Environmental Science & Technology, 2018, 52, 2375-2384.	10.0	30
48	Global proliferation of small hydropower plants – science and policy. Frontiers in Ecology and the Environment, 2018, 16, 91-100.	4.0	262
49	<i>Chaoborus</i> spp. Transport CH ₄ from the Sediments to the Surface Waters of a Eutrophic Reservoir, But Their Contribution to Water Column CH ₄ Concentrations and Diffusive Efflux Is Minor. Environmental Science & Technology, 2018, 52, 1165-1173.	10.0	13
50	Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor. Environmental Science & Technology, 2018, 52, 6084-6097.	10.0	35
51	Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir. Science of the Total Environment, 2018, 636, 610-620.	8.0	25
52	Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 2018, 90, 945-956.	16.4	61
53	Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. , 2018, , 1-31.		6
54	Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Science of the Total Environment, 2018, 621, 1199-1207.	8.0	34
55	Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. Science of the Total Environment, 2018, 612, 392-404.	8.0	8
56	Spatial variability of methane (CH ₄) ebullition in a tropical hypereutrophic reservoir: silted areas as a bubble hot spot. Lake and Reservoir Management, 2018, 34, 105-114.	1.3	22
57	Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir. Ecosystems, 2018, 21, 657-674.	3.4	38

#	Article	IF	CITATIONS
58	The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Progress in Energy and Combustion Science, 2018, 64, 62-92.	31.2	184
59	Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems, 2018, 21, 1058-1071.	3.4	145
60	High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. Limnology and Oceanography, 2018, 63, S44.	3.1	58
61	Enteric nitrous oxide emissions from beef cattle. The Professional Animal Scientist, 2018, 34, 594-607.	0.7	5
62	Estimating Carbon Dioxide (CO2) Emissions from Reservoirs Using Artificial Neural Networks. Water (Switzerland), 2018, 10, 26.	2.7	25
63	pCO2 Dynamics of Stratified Reservoir in Temperate Zone and CO2 Pulse Emissions During Turnover Events. Water (Switzerland), 2018, 10, 1347.	2.7	7
64	The Intensively Managed Landscape Critical Zone Observatory: A Scientific Testbed for Understanding Critical Zone Processes in Agroecosystems. Vadose Zone Journal, 2018, 17, 1-21.	2.2	31
65	Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau. Biogeosciences, 2018, 15, 3857-3871.	3.3	14
66	Getting to Zero Carbon Emissions in the Electric Power Sector. Joule, 2018, 2, 2498-2510.	24.0	165
67	Impact of global major reservoirs on carbon cycle changes by using an advanced eco-hydrologic and biogeochemical coupling model. Ecological Modelling, 2018, 387, 172-186.	2.5	18
68	Large greenhouse gases emissions from China's lakes and reservoirs. Water Research, 2018, 147, 13-24.	11.3	167
69	Climatic Impacts of Wind Power. Joule, 2018, 2, 2618-2632.	24.0	70
70	Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river. Inland Waters, 2018, 8, 449-460.	2.2	5
71	The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrology and Earth System Sciences, 2018, 22, 5281-5298.	4.9	53
72	Impact of intensive fish farming on methane emission in a tropical hydropower reservoir. Climatic Change, 2018, 150, 195-210.	3.6	13
73	A Laboratory Investigation of a Domestic Hydropower Model. Proceedings (mdpi), 2018, 2, .	0.2	1
74	Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere. Biogeosciences, 2018, 15, 1775-1794.	3.3	15
75	Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France. Science of the Total Environment, 2018, 643, 247-259.	8.0	58

#	Article	IF	CITATIONS
76	Extreme drought boosts CO ₂ and CH ₄ emissions from reservoir drawdown areas. Inland Waters, 2018, 8, 329-340.	2.2	44
77	Uncharted waters: the rise of human-made aquatic environments in the age of the "Anthropocene― Anthropocene, 2018, 23, 29-42.	3.3	22
78	Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services. Environmental Pollution, 2018, 243, 940-952.	7.5	22
79	Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project. Energies, 2018, 11, 972.	3.1	36
80	Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia. Hydrology and Earth System Sciences, 2018, 22, 2839-2865.	4.9	43
81	Political ecology of Costa Rica's climate policy: contextualizing climate governance. Journal of Environmental Studies and Sciences, 2018, 8, 469-476.	2.0	1
82	Carbon dioxide emissions from cascade hydropower reservoirs along the Wujiang River, China. Inland Waters, 2018, 8, 157-166.	2.2	16
83	Accumulation of Terrestrial Dissolved Organic Matter Potentially Enhances Dissolved Methane Levels in Eutrophic Lake Taihu, China. Environmental Science & Technology, 2018, 52, 10297-10306.	10.0	76
84	Water and Climate in Latin America: Symposium Introduction. Journal of Environmental Studies and Sciences, 2018, 8, 435-440.	2.0	0
85	CO2 oversaturation and degassing using chambers and a new gas transfer velocity model from the Three Gorges Reservoir surface. Science of the Total Environment, 2018, 640-641, 908-920.	8.0	21
86	Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters, 2018, 8, 130-140.	2.2	58
87	Long-term prediction of greenhouse gas risk to the Chinese hydropower reservoirs. Science of the Total Environment, 2019, 646, 300-308.	8.0	65
88	Contribution of Flooded Soils to Sediment and Nutrient Fluxes in a Hydropower Reservoir (Sarrans,) Tj ETQq0 0 C) rgBT /Ove 3.4	erlock 10 Tf 5
89	Recent changes in chironomid communities and hypolimnetic oxygen conditions relate to organic carbon in subarctic ecotonal lakes. Science of the Total Environment, 2019, 646, 238-244.	8.0	9
90	Seasonal variations and intricate diel differences in the physio-chemical parameters and CO2 emissions from a typical karst groundwater-fed reservoir in southern China. Environmental Earth Sciences, 2019, 78, 1.	2.7	4
91	Methane emissions from contrasting urban freshwaters: Rates, drivers, and a wholeâ€city footprint. Global Change Biology, 2019, 25, 4234-4243.	9.5	44
92	Methane formation in tropical reservoirs predicted from sediment age and nitrogen. Scientific Reports, 2019, 9, 11017.	3.3	20
93	Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. Aquatic Sciences, 2019, 81, 1.	1.5	25

#	Article	IF	CITATIONS
95	Magnitudes and Drivers of Greenhouse Gas Fluxes in Floodplain Ponds During Drawdown and Inundation by the Three Gorges Reservoir. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2499-2517.	3.0	8
96	Debating dams: The World Commission on Dams 20 years on. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1396.	6.5	39
97	The Importance of Coarse Organic Matter and Depositional Environment to Carbon Burial Behind Dams in Mountainous Environments. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2118-2140.	2.8	3
98	Variability in the vertical distribution of chlorophyll in a spill-managed temperate reservoir. Lake and Reservoir Management, 2019, 35, 119-126.	1.3	5
99	Contrasting methane emissions from upstream and downstream rivers and their associated subtropical reservoir in eastern China. Scientific Reports, 2019, 9, 8072.	3.3	8
100	Seasonal variation of methane flux from Mozhaisk reservoir. IOP Conference Series: Earth and Environmental Science, 2019, 321, 012062.	0.3	0
101	Organic matter supply and bacterial community composition predict methanogenesis rates in temperate lake sediments. Limnology and Oceanography Letters, 2019, 4, 164-172.	3.9	20
102	Natural Lakes Are a Minor Global Source of N ₂ O to the Atmosphere. Global Biogeochemical Cycles, 2019, 33, 1564-1581.	4.9	40
103	Distribution and emission of N2O in the largest river-reservoir system along the Yellow River. Science of the Total Environment, 2019, 666, 1209-1219.	8.0	22
104	What Makes a Megaproject?. Environment and Society: Advances in Research, 2019, 10, 101-121.	1.4	17
105	Solar-power replacement as a solution for hydropower foregone in US dam removals. Nature Sustainability, 2019, 2, 872-878.	23.7	21
106	Comparison of 1D and 3D reservoir heat transport models and temperature effects on mass transport. Revista Brasileira De Recursos Hidricos, 0, 24, .	0.5	5
107	Big things come in small packages: why limnologists should care about small ponds. Acta Limnologica Brasiliensia, 0, 31, .	0.4	11
108	Hydropower dams can help mitigate the global warming impact of wetlands. Nature, 2019, 566, 315-317.	27.8	36
109	Control of the Hydraulic Load on Nitrous Oxide Emissions from Cascade Reservoirs. Environmental Science & Technology, 2019, 53, 11745-11754.	10.0	46
110	Dynamics of dissolved greenhouse gas response to seasonal water mixing in subtropical reservoirs. Environmental Monitoring and Assessment, 2019, 191, 639.	2.7	5
111	The carbon footprint of large- and mid-scale hydropower in China: Synthesis from five China's largest hydro-project. Journal of Environmental Management, 2019, 250, 109363.	7.8	15
112	Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications, 2019, 10, 4281.	12.8	126

#	Article	IF	CITATIONS
113	The unintended impact of ecosystem preservation on greenhouse gas emissions: Evidence from environmental constraints on hydropower development in the United States. PLoS ONE, 2019, 14, e0210483.	2.5	5
114	Methane dynamics and thermal response in impoundments of the Rhine River, Germany. Science of the Total Environment, 2019, 659, 1045-1057.	8.0	26
115	Global regulation of methane emission from natural lakes. Scientific Reports, 2019, 9, 255.	3.3	59
117	Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: Insights from high frequency water quality monitoring. Scientific Reports, 2019, 9, 6701.	3.3	16
118	Greenhouse gas measurement from Chinese freshwater bodies: AÂreview. Journal of Cleaner Production, 2019, 233, 368-378.	9.3	77
119	Physically controlled CO ₂ effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. Biogeosciences, 2019, 16, 2205-2219.	3.3	6
120	Methane formation and consumption by sediments in a cross-channel profile of a small river impoundment. Journal of Limnology, 2019, 78, .	1.1	5
121	High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir—identification of relevant triggers and seasonal patterns. Environmental Monitoring and Assessment, 2019, 191, 357.	2.7	9
122	Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil. Remote Sensing, 2019, 11, 827.	4.0	22
123	Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River. Water (Switzerland), 2019, 11, 1008.	2.7	17
124	Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China. Environmental Pollution, 2019, 251, 185-192.	7.5	38
125	Soils Drowned in Water Impoundments: A New Frontier. Frontiers in Environmental Science, 2019, 7, .	3.3	3
126	Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences, 2019, 16, 1657-1671.	3.3	106
127	Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9814-9819.	7.1	56
128	Greenhouse gas emissions from urban ponds are driven by nutrient status and hydrology. Ecosphere, 2019, 10, e02643.	2.2	49
129	Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications, 2019, 10, 1375.	12.8	299
130	Soil microbiome: a key player for conservation of soil health under changing climate. Biodiversity and Conservation, 2019, 28, 2405-2429.	2.6	183
131	Implications of Frailty for Peritransplant Outcomes in Kidney Transplant Recipients. Current Transplantation Reports, 2019, 6, 16-25.	2.0	30

#	ARTICLE	IF	CITATIONS
132	Continuous Measurement of Diffusive and Ebullitive Fluxes of Methane in Aquatic Ecosystems by an Open Dynamic Chamber Method. Environmental Science & Technology, 2019, 53, 5159-5167.	10.0	12
133	Methane Emissions from Artificial Waterbodies Dominate the Carbon Footprint of Irrigation: A Study of Transitions in the Food–Energy–Water–Climate Nexus (Spain, 1900–2014). Environmental Science & Technology, 2019, 53, 5091-5101.	10.0	38
134	Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in Life Cycle Assessment. Environmental Impact Assessment Review, 2019, 76, 36-46.	9.2	22
135	A review of carbon sink or source effect on artificial reservoirs. International Journal of Environmental Science and Technology, 2019, 16, 2161-2174.	3.5	21
136	Interaction between carbon dioxide emissions and eutrophication in a drinking water reservoir: A three-dimensional ecological modeling approach. Science of the Total Environment, 2019, 663, 369-379.	8.0	17
137	Reduced Mineralization of Terrestrial OC in Anoxic Sediment Suggests Enhanced Burial Efficiency in Reservoirs Compared to Other Depositional Environments. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 678-688.	3.0	15
138	Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables. Earth-Science Reviews, 2019, 191, 224-262.	9.1	163
139	Rendering Technical, Rendering Sacred: The Politics of Hydroelectric Development on British Columbia's Saaghii Naachii/Peace River. Global Environmental Politics, 2019, 19, 98-119.	3.0	20
140	Winter emissions of <scp>CO</scp> ₂ , <scp>CH</scp> ₄ , and N ₂ O from temperate agricultural dams: fluxes, sources, and processes. Ecosphere, 2019, 10, e02914.	2.2	18
141	Climate Impacts of Hydropower: Enormous Differences among Facilities and over Time. Environmental Science & Technology, 2019, 53, 14070-14082.	10.0	39
142	Terrestrial Vegetation Drives Methane Production in the Sediments of two German Reservoirs. Scientific Reports, 2019, 9, 15944.	3.3	14
143	Water reservoirs are important sinks for greenhouse gases. Dams and Reservoirs, 2019, 29, 128-132.	0.2	0
144	Regulation of carbon dioxide and methane in small agricultural reservoirs: optimizing potential for greenhouse gas uptake. Biogeosciences, 2019, 16, 4211-4227.	3.3	23
145	Methane Emission From the Surface of the Mozhaisk Valley-Type Reservoir. Geography and Natural Resources, 2019, 40, 247-255.	0.3	5
146	Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 1475-1512.	4.9	73
147	Ensuring Co-benefits for Biodiversity, Climate Change and Sustainable Development. Climate Change Management, 2019, , 151-166.	0.8	15
148	Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. Science of the Total Environment, 2019, 650, 394-407.	8.0	9
149	Methane diffusive fluxes from sediment exposed in a Brazilian tropical reservoir drawdown zone. Journal of South American Earth Sciences, 2019, 90, 463-470.	1.4	9

#	Article	IF	Citations
150	Modeling phosphorus in rivers at the global scale: recent successes, remaining challenges, and near-term opportunities. Current Opinion in Environmental Sustainability, 2019, 36, 68-77.	6.3	18
151	Abandoning the concept of renewable energy. Energy Policy, 2019, 127, 330-340.	8.8	158
152	CO2 emissions from hydroelectric reservoirs in the Tigris River basin, a semi-arid region of southeastern Turkey. Journal of Hydrology, 2019, 569, 782-794.	5.4	5
153	Primary energy consumption in desalination: The case of Gran Canaria. Desalination, 2019, 452, 219-229.	8.2	10
154	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	10.4	1,766
155	Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Science Reviews, 2019, 188, 240-248.	9.1	93
156	Status, trends and significance of American hydropower in the changing energy landscape. Renewable and Sustainable Energy Reviews, 2019, 101, 112-122.	16.4	23
157	Punching above their weight: Large release of greenhouse gases from small agricultural dams. Global Change Biology, 2019, 25, 721-732.	9.5	64
158	Methane and nitrous oxide emissions from the drawdown areas of the Three Gorges Reservoir. Science of the Total Environment, 2019, 660, 567-576.	8.0	13
159	Atmospheric change as a driver of change in the Canadian boreal zone ¹ . Environmental Reviews, 2019, 27, 346-376.	4.5	18
160	Nitrous oxide emissions from inland waters: Are IPCC estimates too high?. Global Change Biology, 2019, 25, 473-488.	9.5	119
161	Uncertainty analysis of gas flux measurements at air–water interface using floating chambers. Ecohydrology and Hydrobiology, 2019, 19, 475-486.	2.3	13
162	Polish River Basins and Lakes $\hat{a} {\in} ``$ Part I. Handbook of Environmental Chemistry, 2020, , .	0.4	6
163	A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renewable and Sustainable Energy Reviews, 2020, 117, 109434.	16.4	42
164	Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 661-687.	2.1	22
165	The importance of considering resource availability restrictions in energy planning: What is the footprint of electricity generation in the Middle East and North Africa (MENA)?. Science of the Total Environment, 2020, 717, 135035.	8.0	21
166	The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 2020, 172, 115465.	11.3	47
167	Lakes as nitrous oxide sources in the boreal landscape. Global Change Biology, 2020, 26, 1432-1445.	9.5	28

#	Article	IF	CITATIONS
168	A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform. Boundary-Layer Meteorology, 2020, 174, 433-464.	2.3	5
169	Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition. Environmental Microbiology, 2020, 22, 766-782.	3.8	66
170	Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity. Limnology and Oceanography, 2020, 65, 1336-1358.	3.1	50
171	Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005474.	3.0	26
172	Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Research, 2020, 186, 116319.	11.3	29
173	Dissolved CH ₄ coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyllÂ <i>a</i> in anoxic waters of reservoirs. Biogeosciences, 2020, 17, 3223-3245.	3.3	21
174	Ecosystem-Scale Oxygen Manipulations Alter Terminal Electron Acceptor Pathways in a Eutrophic Reservoir. Ecosystems, 2021, 24, 1281-1298.	3.4	7
175	Spatiotemporal distribution of nitrous oxide (N 2 O) emissions from cascade reservoirs in Lancangâ€Mekong River Yunnan section, Southwestern China. River Research and Applications, 2020, , .	1.7	5
176	Inland Waters. , 2020, , 293-360.		4
177	The Global Carbon and Oxygen Cycles. , 2020, , 453-481.		1
177 178	The Global Carbon and Oxygen Cycles. , 2020, , 453-481. The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961.	9.3	1
	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories	9.3 0.5	
178	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir		6
178 179	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period. E3S Web of Conferences, 2020, 163, 03010. Large increase in diffusive greenhouse gas fluxes from subtropical shallow aquaculture ponds	0.5	6 2
178 179 180	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period. E3S Web of Conferences, 2020, 163, 03010. Large increase in diffusive greenhouse gas fluxes from subtropical shallow aquaculture ponds during the passage of typhoons. Journal of Hydrology, 2020, 583, 124643. Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water	0.5 5.4	6 2 14
178 179 180 181	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period. E3S Web of Conferences, 2020, 163, 03010. Large increase in diffusive greenhouse gas fluxes from subtropical shallow aquaculture ponds during the passage of typhoons. Journal of Hydrology, 2020, 583, 124643. Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water Methane Concentrations. Frontiers in Microbiology, 2020, 11, 1536. Isotopic evidence for vertical diversification of methane production pathways in freshwater	0.5 5.4 3.5	6 2 14 14
178 179 180 181 182	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period. E3S Web of Conferences, 2020, 163, 03010. Large increase in diffusive greenhouse gas fluxes from subtropical shallow aquaculture ponds during the passage of typhoons. Journal of Hydrology, 2020, 583, 124643. Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water Methane Concentrations. Frontiers in Microbiology, 2020, 11, 1536. Isotopic evidence for vertical diversification of methane production pathways in freshwater sediments of Nielisz reservoir (Poland). Catena, 2020, 195, 104803. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate	0.5 5.4 3.5 5.0	6 2 14 14 14

#	Article	IF	CITATIONS
186	Estimation of Biomass and Soil Carbon Stock in the Hydroelectric Catchment of India and its Implementation to Climate Change. Journal of Sustainable Forestry, 2020, , 1-16.	1.4	18
187	Using stable nitrogen and oxygen isotopes to identify nitrate sources in the Lancang River, upper Mekong. Journal of Environmental Management, 2020, 274, 111197.	7.8	25
188	Comparison model learning methods for methane emission prediction of reservoirs on a regional field scale: Performance and adaptation of methods with different experimental datasets. Ecological Engineering, 2020, 157, 105990.	3.6	5
189	Large Spatial Variations in Diffusive CH ₄ Fluxes from a Subtropical Coastal Reservoir Affected by Sewage Discharge in Southeast China. Environmental Science & Technology, 2020, 54, 14192-14203.	10.0	26
190	Imbalanced Stoichiometric Reservoir Sedimentation Regulates Methane Accumulation in China's Three Gorges Reservoir. Water Resources Research, 2020, 56, e2019WR026447.	4.2	20
191	Evaluating the greenness of hydroelectric projects of Northeast India: a study with special reference to the Tipaimukh project. Decision, 2020, 47, 293-302.	1.5	1
192	Methane and Primary Productivity in Lakes: Divergence of Temporal and Spatial Relationships. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005864.	3.0	6
193	Diurnal Pumpedâ€Storage Operation Minimizes Methane Ebullition Fluxes From Hydropower Reservoirs. Water Resources Research, 2020, 56, e2020WR027221.	4.2	9
194	Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria. Sustainability, 2020, 12, 10380.	3.2	3
195	Spatial and Temporal Variability of Diffusive CO ₂ and CH ₄ Fluxes From the Amazonian Reservoir Petitâ€Saut (French Guiana) Reveals the Importance of Allochthonous Inputs for Longâ€Term C Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006602.	4.9	17
196	Hydropower dam operation strongly controls Lake Victoria's freshwater storage variability. Science of the Total Environment, 2020, 726, 138343.	8.0	35
197	Emission of greenhouse gases from French temperate hydropower reservoirs. Aquatic Sciences, 2020, 82, 1.	1.5	9
198	The carbon footprint of a Malaysian tropical reservoir: measured versus modelled estimates highlight the underestimated key role of downstream processes. Biogeosciences, 2020, 17, 515-527.	3.3	19
199	Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. Journal of Environmental Management, 2020, 271, 110997.	7.8	10
200	The Magnitude and Drivers of Methane Ebullition and Diffusion Vary on a Longitudinal Gradient in a Small Freshwater Reservoir. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005205.	3.0	19
201	Spatial and temporal dynamics of pCO ₂ and CO ₂ flux in tropical Lake Malawi. Limnology and Oceanography, 2020, 65, 1594-1607.	3.1	9
202	Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography, 2020, 65, 1623-1634.	3.1	32
203	Greenhouse gas fluxes from reservoirs determined by watershed lithology, morphometry, and anthropogenic pressure. Environmental Research Letters, 2020, 15, 044012.	5.2	13

ARTICLE IF CITATIONS # Calcite precipitation in Lake Powell reduces alkalinity and total salt loading to the Lower Colorado 204 3.1 12 River Basin. Limnology and Oceanography, 2020, 65, 1439-1455. The net GHG emissions of the China Three Gorges Reservoir: I. Pre-impoundment GHG inventories and carbon balance. Journal of Cleaner Production, 2020, 256, 120635. Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River. Water 206 11.3 32 Research, 2020, 173, 115582. River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 2020, 1, 103-116. 372 Accumulation of organic carbon in a large canyon reservoir in Karstic area, Southwest China. 208 5.3 7 Environmental Science and Pollution Research, 2020, 27, 25163-25172. Clobal CO2 emissions from dry inland waters share common drivers across ecosystems. Nature 209 12.8 Communications, 2020, 11, 2126. A Structured Approach for the Mitigation of Natural Methane Emissionsâ€"Lessons Learned from 210 2.7 7 Anthropogenic Emissions. Journal of Carbon Research, 2020, 6, 24. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, 11.3 south China. Water Research, 2020, 178, 115831. The Connection between a Suspended Sediments and Reservoir Siltation: Empirical Analysis in the 212 3.5 5 Maziarnia Reservoir, Poland. Resources, 2020, 9, 30. High organic carbon burial but high potential for methane ebullition in the sediments of an 3.3 Amazonian hydroelectric reservoir. Biogeosciences, 2020, 17, 1495-1505. Spatial and Temporal Variability of Nutrient Dynamics and Ecosystem Metabolism in a Hyper-eutrophic 214 19 3.4 Reservoir Differ Between a Wet and Dry Year. Ecosystems, 2021, 24, 68-88. Microalgae in a global world: New solutions for old problems?. Renewable Energy, 2021, 165, 842-862. 8.9 Energy and carbon fluxes from an oil sands pit lake. Science of the Total Environment, 2021, 752, 216 8.0 11 141966. Stable isotope evidence from archived fish scales indicates carbon cycle changes over the four-decade history of the ÅrÃmov Reservoir (Czechia). Science of the Total Environment, 2021, 755, 217 8.0 142550. On the effects of aviation on carbon-methane cycles and climate change during the period 2015-2100. 218 3.8 16 Atmospheric Pollution Research, 2021, 12, 184-194. Nitrate promotes the transfer of methaneâ€derived carbon from the methanotroph <i>Methylobacter</i> sp. to the methylotroph <i>Methylotenera</i> sp. in eutrophic lake water. 3.1 29 Limnology and Oceanography, 2021, 66, 878-891. Spatial variations in diffusive methane fluxes and the role of eutrophication in a subtropical shallow 220 8.0 26 lake. Science of the Total Environment, 2021, 759, 143495. Ecosystem maturity modulates greenhouse gases fluxes from artificial lakes. Science of the Total Environment, 2021, 760, 144046.

#	Article	IF	CITATIONS
222	Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere. Water Research, 2021, 190, 116738.	11.3	43
223	Wholeâ€ecosystem oxygenation experiments reveal substantially greater hypolimnetic methane concentrations in reservoirs during anoxia. Limnology and Oceanography Letters, 2021, 6, 33-42.	3.9	17
224	Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 2021, 136, 110433.	16.4	47
225	Community Solar: Strategies and Implementation for Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2021, , 188-205.	0.1	2
226	Would Africa's largest hydropower dam have profound environmental impacts?. Environmental Science and Pollution Research, 2021, 28, 8936-8944.	5.3	17
227	Hydropower Reservoirs—Benefits and Challenges. , 2021, , .		1
228	Regulation of CO2 fluxes along gradients of water saturation in irrigation canal sediments. Aquatic Sciences, 2021, 83, 1.	1.5	2
229	Enhancing natural cycles in agro-ecosystems to boost plant carbon capture and soil storage. Oxford Open Climate Change, 2021, 1, .	1.3	5
230	Why Zambia's System of Energy Provision Did Not Prevent the Power Outages of 2015 and 2016. , 2021, , 145-206.		1
231	Research progress of aerobic methane oxidation process in inland waters. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 1004-1017.	0.8	3
232	CH ₄ variation and main influencing factors of bottom water column in the middle section of Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 299-308.	0.8	1
233	Variability in fluorescent dissolved organic matter concentrations across diel to seasonal time scales is driven by water temperature and meteorology in a eutrophic reservoir. Aquatic Sciences, 2021, 83, 1.	1.5	6
234	Global Analysis of Durable Policies for Free-Flowing River Protections. Sustainability, 2021, 13, 2347.	3.2	17
235	A water-function-based framework for understanding and governing water resilience in the Anthropocene. One Earth, 2021, 4, 213-225.	6.8	21
236	Changing sources and processes sustaining surface CO ₂ and CH ₄ fluxes along a tropical river to reservoir system. Biogeosciences, 2021, 18, 1333-1350.	3.3	14
237	Nitrogen loss from a turbid river network based on N2 and N2O fluxes: Importance of suspended sediment. Science of the Total Environment, 2021, 757, 143918.	8.0	13
238	Density currents reduce nitrous oxide emissions in a tributary bay of Three Gorges Reservoir. Water Research, 2021, 190, 116750.	11.3	13
239	Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece,) Tj ETQq1 I	0,784314 3.2	4 rgBT /Over

#	Article	IF	CITATIONS
240	Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters, 2021, 16, 044010.	5.2	45
241	Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nature Communications, 2021, 12, 1730.	12.8	71
242	CO ₂ emissions from karst cascade hydropower reservoirs: mechanisms and reservoir effect. Environmental Research Letters, 2021, 16, 044013.	5.2	18
243	Human alteration of global surface water storage variability. Nature, 2021, 591, 78-81.	27.8	188
244	Higher Abundance of Sediment Methanogens and Methanotrophs Do Not Predict the Atmospheric Methane and Carbon Dioxide Flows in Eutrophic Tropical Freshwater Reservoirs. Frontiers in Microbiology, 2021, 12, 647921.	3.5	13
245	Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data. Environmental Science and Pollution Research, 2021, 28, 44973-44986.	5.3	5
246	Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios. Energy for Sustainable Development, 2021, 61, 217-229.	4.5	21
247	Late summer peak in <i>p</i> CO ₂ corresponds with catchment export of DOC in a temperate, humic lake. Inland Waters, 2021, 11, 234-249.	2.2	4
248	Smart Nutrient Retention Networks: a novel approach for nutrient conservation through water quality management. Inland Waters, 2022, 12, 138-153.	2.2	9
249	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	12.9	388
250	Modeling Future Land Use Development: A Lithuanian Case. Land, 2021, 10, 360.	2.9	5
251	Declining greenness in Arctic-boreal lakes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
252	Hotspots of Diffusive CO ₂ and CH ₄ Emission From Tropical Reservoirs Shift Through Time. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006014.	3.0	14
253	Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science, 2021, 9, .	3.3	6
254	Eutrophication effects on CH4 and CO2 fluxes in a highly urbanized tropical reservoir (Southeast,) Tj ETQq0 0 0 r	gBT ₃ Over	lock 10 Tf 50
255	The influence of lipid content and taxonomic affiliation on methane and carbon dioxide production from phytoplankton biomass in lake sediment. Limnology and Oceanography, 2021, 66, 1915-1925.	3.1	2
256	Interaction Between Oxygen Consumption and Carbon Dioxide Emission in a Subtropical Hypoxic Reservoir, Southeastern China. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006133.	3.0	9
257	Drivers of Methane Flux Differ Between Lakes and Reservoirs, Complicating Global Upscaling Efforts. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2019JG005600.	3.0	42

#	Article	IF	CITATIONS
258	Biodiversity impact assessment of two large dam projects in India under long term multi-scenarios simulation. Impact Assessment and Project Appraisal, 2021, 39, 335-347.	1.8	5
259	Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management. Sustainability, 2021, 13, 4498.	3.2	13
260	Methanogenesis exceeds <scp>CH₄</scp> consumption in eutrophic lake sediments. Limnology and Oceanography Letters, 2021, 6, 173-181.	3.9	23
261	A highly agricultural river network in Jurong Reservoir watershed as significant CO2 and CH4 sources. Science of the Total Environment, 2021, 769, 144558.	8.0	35
262	Assessment of changes in the ichthyofauna in a tropical reservoir in southâ€eastern Brazil: Consequences of global warming?. Ecology of Freshwater Fish, 2022, 31, 45-59.	1.4	6
263	Overall spatiotemporal dynamics of greenhouse gasses and oxygen in two subtropical reservoirs with contrasting trophic states. Water Research, 2021, 196, 117056.	11.3	7
264	Localized Pollution Impacts on Greenhouse Gas Dynamics in Three Anthropogenically Modified Asian River Systems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006124.	3.0	20
265	Biogeochemistry of Mediterranean Wetlands: A Review about the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions. Water (Switzerland), 2021, 13, 1510.	2.7	16
266	The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of the Total Environment, 2021, 768, 144582.	8.0	109
267	Diffusive CH4 fluxes from aquaculture ponds using floating chambers and thin boundary layer equations. Atmospheric Environment, 2021, 253, 118384.	4.1	7
268	Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience, 2021, 14, 402-408.	12.9	70
269	Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Global Biogeochemical Cycles, 2021, 35, e2020GB006717.	4.9	15
270	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	9.9	16
271	Mechanism of nitrous oxide (N2O) production during thermal stratification of a karst, deep-water reservoir in southwestern China. Journal of Cleaner Production, 2021, 303, 127076.	9.3	7
272	Unaccounted CO ₂ leaks downstream of a large tropical hydroelectric reservoir. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
273	Archimedes screw generators for sustainable microâ€hydropower production. International Journal of Energy Research, 2021, 45, 17480-17501.	4.5	10
274	Greenhouse gas emissions from an arid-zone reservoir and their environmental policy significance: Results from existing global models and an exploratory dataset. Environmental Science and Policy, 2021, 120, 53-62.	4.9	4
275	Yearâ€⊋020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (Gâ€res) Model. Global Biogeochemical Cycles, 2021, 35, e2020GB006888.	4.9	44

#	Article	IF	CITATIONS
276	Before and After: A Multiscale Remote Sensing Assessment of the Sinop Dam, Mato Grosso, Brazil. Earth, 2021, 2, 303-330.	2.2	3
277	How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Science Advances, 2021, 7, .	10.3	18
278	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
279	Comparative Study on Temperature Response of Hydropower Development in the Dryâ€Hot Valley. GeoHealth, 2021, 5, e2021CH000438.	4.0	0
280	Effect of buoyant turbulence and water quality factors on the CO2 net atmospheric flux changes in a stratified reservoir. Science of the Total Environment, 2021, 776, 145940.	8.0	1
281	Long-Term Evolution of Greenhouse Gas Emissions From Global Reservoirs. Frontiers in Environmental Science, 2021, 9, .	3.3	12
282	Health assessment of small-to-medium sized rivers: Comparison between comprehensive indicator method and biological monitoring method. Ecological Indicators, 2021, 126, 107686.	6.3	21
283	Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 2021, 63, 41-50.	4.5	7
284	Hydrodynamics and mixing mechanisms in a subtropical reservoir. Inland Waters, 2021, 11, 286-301.	2.2	11
285	Green Energy—Green for Whom? A Case Study of the Kabinakagami River Waterpower Project in Northern Canada. Sustainability, 2021, 13, 9445.	3.2	3
286	Long-term trajectories of the C footprint of N fertilization in Mediterranean agriculture (Spain,) Tj ETQq0 0 0 rgB1	- /Overlock	2 10 Tf 50 34
287	Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006305.	3.0	23
288	Linking reservoir ecosystems research to the sustainable development goals. Science of the Total Environment, 2021, 781, 146769.	8.0	31
289	Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses. Biogeosciences, 2021, 18, 5085-5096.	3.3	9
290	A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool. Environmental Modelling and Software, 2021, 143, 105117.	4.5	24
291	Predicting the Likely Thermal Impact of Current and Future Dams Around the World. Earth's Future, 2021, 9, e2020EF001916.	6.3	11
292	A framework to assess the benefits and challenges of ecosystem services of a reservoir-based wetland in the Himalayan foothills. Environmental Development, 2021, 40, 100669.	4.1	7
293	Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst. Biogeosciences, 2021, 18, 5291-5311.	3.3	14

#	Article	IF	CITATIONS
294	Water Security and Climate Change: Hydropower Reservoir Greenhouse Gas Emissions. Water Resources Development and Management, 2022, , 69-94.	0.4	3
295	Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. Science of the Total Environment, 2021, 786, 147515.	8.0	7
296	Nitrous oxide (N2O) emissions from the high dam reservoir in longitudinal range-gorge regions on the Lancang-Mekong River, southwest China. Journal of Environmental Management, 2021, 295, 113027.	7.8	11
297	Bioturbation frequency alters methane emissions from reservoir sediments. Science of the Total Environment, 2021, 789, 148033.	8.0	10
298	Coastal reservoirs as a source of nitrous oxide: Spatio-temporal patterns and assessment strategy. Science of the Total Environment, 2021, 790, 147878.	8.0	9
299	Estimation of total flux of polycyclic aromatic hydrocarbons facilitated by methane ebullition into water column from global lake sediments. Water Research, 2021, 204, 117611.	11.3	4
300	A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs. Journal of Cleaner Production, 2021, 320, 128806.	9.3	47
301	Spatial variations in CO2 fluxes in a subtropical coastal reservoir of Southeast China were related to urbanization and land-use types. Journal of Environmental Sciences, 2021, 109, 206-218.	6.1	12
302	Annual CO2 and CH4 fluxes in coastal earthen ponds with Litopenaeus vannamei in southeastern China. Aquaculture, 2021, 545, 737229.	3.5	21
303	The enhancement of valley water retentiveness in climate change conditions. Science of the Total Environment, 2021, 799, 149427.	8.0	9
304	Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renewable and Sustainable Energy Reviews, 2021, 152, 111639.	16.4	24
305	Increase of methane emission linked to net cage fish farms in a tropical reservoir. Environmental Challenges, 2021, 5, 100287.	4.2	0
306	Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter. Science of the Total Environment, 2021, 799, 149219.	8.0	8
307	Differences in ebullitive methane release from small, shallow ponds present challenges for scaling. Science of the Total Environment, 2022, 802, 149685.	8.0	9
308	Pakistan's Transboundary Water Challenge. World Water Resources, 2021, , 37-55.	0.4	0
309	Metagenomics for Improving Soil Fertility. Soil Biology, 2021, , 267-282.	0.8	2
310	Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO 2. Geophysical Research Letters, 2021, 48, .	4.0	11
311	Nutrient retention behind a tropical mega-dam: a case study of the Sardar Sarovar Dam, India. SN Applied Sciences, 2021, 3, 1.	2.9	6

#	Article	IF	CITATIONS
312	Dissolved methane concentration distribution of reservoir in winter based on the underway high-resolution monitoring: A case study of the Xibeikou Reservoir in Hubei Province [*] . Hupo Kexue/Journal of Lake Sciences, 2021, 33, 1564-1573.	0.8	1
313	Environments. , 2017, , 21-51.		2
314	Methane production in harmful algal blooms collapsed water: The contribution of non-toxic Microcystis aeruginosa outweighs that of the toxic variety. Journal of Cleaner Production, 2020, 276, 124280.	9.3	11
315	Methane and nitrous oxide measured throughout Lake Erie over all seasons indicate highest emissions from the eutrophic Western Basin. Journal of Great Lakes Research, 2020, 46, 1604-1614.	1.9	14
316	The impact decades-long dependence on hydropower in El Niño impact-prone Zambia is having on carbon emissions through backup diesel generation. Environmental Research Letters, 2020, 15, 124031.	5.2	10
317	Title is missing!. Ingenieria Y Competitividad, 2019, 21, .	0.1	3
318	A Model to Forecast Methane Emissions from Topical and Subtropical Reservoirs on the Basis of Artificial Neural Networks. Water (Switzerland), 2020, 12, 145.	2.7	17
319	RESOLVING SPATIAL HETEROGENEITIES OF METHANE EBULLITION FLUX FROM A BRAZILIAN RESERVOIR BY COMBINING HYDRO-ACOUSTIC MEASUREMENTS WITH METHANE PRODUCTION POTENTIAL. , 2019, , .		3
320	Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake. Biogeosciences, 2020, 17, 3135-3147.	3.3	8
321	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
322	Evaluation of CH4MOD _{wetland} and Terrestrial Ecosystem Model (TEM) used to estimate global CH ₄ emissions from natural wetlands. Geoscientific Model Development, 2020, 13, 3769-3788.	3.6	9
324	Spatial and temporal variability of dissolved methane concentrations and diffusive emissions in the Three Gorges Reservoir. Water Research, 2021, 207, 117788.	11.3	18
325	Spatiotemporal Variability of the Nitrous Oxide Concentrations and Fluxes From a Cascaded Dammed River. Frontiers in Environmental Science, 2021, 9, .	3.3	4
326	Quantifying available energy and anthropogenic energy use in the Mississippi River Basin. Infrastructure Asset Management, 2021, 8, 280-303.	1.6	0
327	Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review. Sustainability, 2021, 13, 11621.	3.2	9
329	Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. , 2019, , 401-430.		3
332	Total Organic Carbon in the Water of Polish Dam Reservoirs. Handbook of Environmental Chemistry, 2020, , 189-207.	0.4	1
333	Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake. , 2020, 17, 3135-3147.		4

#	Article	IF	CITATIONS
334	Linking flow alteration with fish assemblage structure in a river regulated by a small hydropower project in the Western Ghats of Karnataka, India. River Research and Applications, 0, , .	1.7	0
335	Community Solar: Strategies and Implementation for Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-18.	0.1	1
336	Methane fluxes in an artificial valley reservoir according to field observations and mathematical modeling. IOP Conference Series: Earth and Environmental Science, 2020, 611, 012029.	0.3	2
337	Review: Gravitational Vortex Turbines as a Renewable Energy. International Journal of Fluid Machinery and Systems, 2020, 13, 704-717.	0.2	5
338	The Influence of Pollution Sources on CH4 and CO2 Emissions in Urbanized Wetland Areas of a Tropical Reservoir, Southeast, Brazil. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	2
339	A Multi-attribute Assessment of Electricity Supply Options in Lebanon. , 2020, , 1-27.		2
340	NUMERICAL SIMULATION OF METHANE EMISSION FROM AN ARTIFICIAL RESERVOIR. Fundamental and Applied Climatology, 2020, 2, 76-99.	0.4	2
343	The potential impact of measures taken by water authorities on greenhouse gas emissions. Proceedings of the International Association of Hydrological Sciences, 0, 382, 635-642.	1.0	3
344	Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments. Hydrology and Earth System Sciences, 2020, 24, 3417-3430.	4.9	11
345	Calibration of a management-oriented greenhouse gas emission model for lakes and reservoirs under different distribution of environmental data. Science of the Total Environment, 2020, 734, 138791.	8.0	0
346	Soil CO2 and CH4 emissions and their carbon isotopic signatures linked to saturated and drained states of the Three Gorges Reservoir of China. Environmental Pollution, 2022, 293, 118599.	7.5	10
347	Characteristics and Applications of Superconducting Magnetic Energy Storage. Journal of Physics: Conference Series, 2021, 2108, 012038.	0.4	6
348	Net CO2 and CH4 emissions from restored mangrove wetland: New insights based on a case study in estuary of the Pearl River, China. Science of the Total Environment, 2022, 811, 151619.	8.0	5
349	Iterative Forecasting Improves Near-Term Predictions of Methane Ebullition Rates. Frontiers in Environmental Science, 2021, 9, .	3.3	3
350	Exploring Spatially Explicit Changes in Carbon Budgets of Global River Basins during the 20th Century. Environmental Science & Technology, 2021, 55, 16757-16769.	10.0	21
351	Impacts of summer rainfall events on the dynamics of greenhouse gas fluxes revealed by high-frequency observation from Guanzhuang Reservoir, Hubei Province. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 1857-1870.	0.8	1
352	Governing Ecological Connectivity in Cross-Scale Dependent Systems. BioScience, 2022, 72, 372-386.	4.9	13
353	Dynamics of Land Use in the Basin of Ancient Lagoons (Toho, Todougba, Ahouangan, Dati, Djonou) in South Benin from 1990 to 2020 and Their Current Vulnerability to Pollution. Journal of Geoscience and Environment Protection, 2021, 09, 28-45	0.5	Ο

#	Article	IF	CITATIONS
354	Oxic urban rivers as a potential source of atmospheric methane. Environmental Pollution, 2022, 297, 118769.	7.5	4
355	Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Science of the Total Environment, 2022, 815, 152459.	8.0	4
356	Small-Scale Horizontal Axis Hydrokinetic Turbine as Alternative for Remote Community Electrification in Sarawak. , 2020, , .		1
357	Exploring the role of soil microbiome in global climatic changes. , 2022, , 353-370.		0
358	The anaerobic oxidation of methane driven by multiple electron acceptors suppresses the release of methane from the sediments of a reservoir. Journal of Soils and Sediments, 2022, 22, 682-691.	3.0	5
359	Methane. , 2022, , 136-154.		2
360	Three Gorges Dam: friend or foe of riverine greenhouse gases?. National Science Review, 2022, 9, .	9.5	27
362	Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters, 2022, 12, 187-204.	2.2	41
363	Patterns and drivers of CH4 concentration and diffusive flux from a temperate river–reservoir system in North China. Journal of Environmental Sciences, 2022, 116, 184-197.	6.1	4
364	Reservoirs change pCO2 and water quality of downstream rivers: Evidence from three reservoirs in the Seine Basin. Water Research, 2022, 213, 118158.	11.3	4
365	An Earth system law perspective on governing social-hydrological systems in the Anthropocene. Earth System Governance, 2021, 10, 100120.	3.4	11
366	Greenhouse Gas Emission from Inland Open Water Bodies and Their Estimation Process—An Emerging Issue in the Era of Climate Change. Agricultural Sciences, 2022, 13, 290-306.	0.3	2
367	Accounting for Methane Dynamics in the Upper Yangtze River Valley Dammed Reservoir in China: A Hierarchical Bayesian Modeling Approach. SSRN Electronic Journal, 0, , .	0.4	0
368	Propagation of inflowing urban stormwater pulses through reservoir embayments. Urban Ecosystems, 2022, 25, 1043-1055.	2.4	0
370	Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.	12.6	60
371	Sediment Disturbance Negatively Impacts Methanogen Abundance but Has Variable Effects on Total Methane Emissions. Frontiers in Microbiology, 2022, 13, 796018.	3.5	1
372	Lake Sediment Methane Responses to Organic Matter are Related to Microbial Community Composition in Experimental Microcosms. Frontiers in Environmental Science, 2022, 10, .	3.3	0
373	Integrating Aquatic and Terrestrial Carbon Fluxes to Assess the Net Landscape Carbon Balance of a Highly Erodible Semiarid Catchment. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	8

#	Article	IF	CITATIONS
374	Greenhouse gas emissions from Mexican inland waters: first estimation and uncertainty using an upscaling approach. Inland Waters, 2022, 12, 294-310.	2.2	4
375	Spatial Mapping of Dissolved Gases in the Danube Delta Reveals Intense Plant-Mediated Gas Transfer. Frontiers in Environmental Science, 2022, 10, .	3.3	1
376	Measuring CH4 Fluxes From Lake and Reservoir Sediments: Methodologies and Needs. Frontiers in Environmental Science, 2022, 10, .	3.3	4
377	Seasonal variations in dissolved CH4 and its controlling factors in two subtropical eutrophic reservoirs in China. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	0
378	Canada's Impact Assessment Act, 2019: Indigenous Peoples, Cultural Sustainability, and Environmental Justice. Sustainability, 2022, 14, 3501.	3.2	4
379	Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir. Journal of Hydrology, 2022, 608, 127652.	5.4	6
380	Investigating Factors Influencing Community Acceptance of Established Hydroelectric Dams in Northern Sweden. Human Ecology Review, 2021, 27, 101-124.	0.8	1
381	Methane emissions from lake Onego sediments. IOP Conference Series: Earth and Environmental Science, 2021, 937, 032021.	0.3	0
382	Acoustic Mapping of Gas Stored in Sediments of Shallow Aquatic Systems Linked to Methane Production and Ebullition Patterns. Frontiers in Environmental Science, 2022, 10, .	3.3	7
383	Carbon intensity of global existing and future hydropower reservoirs. Renewable and Sustainable Energy Reviews, 2022, 162, 112433.	16.4	9
384	Getting lost tracking the carbon footprint of hydropower. Renewable and Sustainable Energy Reviews, 2022, 162, 112408.	16.4	7
388	Post-depositional alteration of stable isotope signals by preferential degradation of algae-derived organic matter in reservoir sediments. Biogeochemistry, 2022, 159, 315-336.	3.5	5
389	Small Run-of-River Dams Affect Taxonomic and Functional β-Diversity, Community Assembly Process of Benthic Diatoms. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	0
390	Satellite Analyses Unravel the Multi-Decadal Impact of Dam Management on Tropical Floodplain Vegetation. Frontiers in Environmental Science, 2022, 10, .	3.3	3
391	Extreme Hydrological Events and Reservoir Methane Emissions. Frontiers in Environmental Science, 2022, 10, .	3.3	0
392	Terrigenous organic carbon drives methane dynamics in cascade reservoirs in the upper Yangtze China. Water Research, 2022, 219, 118546.	11.3	10
393	Impact of plant species and intense nutrient loading on CH4 and N2O fluxes from small inland waters: An experimental approach. Aquatic Botany, 2022, 180, 103527.	1.6	8
394	Insights into the farming-season carbon budget of coastal earthen aquaculture ponds in southeastern China. Agriculture, Ecosystems and Environment, 2022, 335, 107995.	5.3	12

#	Article	IF	CITATIONS
395	Global methane and nitrous oxide emissions from inland waters and estuaries. Global Change Biology, 2022, 28, 4713-4725.	9.5	39
396	Study on carbon dioxide emission from reservoirs with different regulation types and its empirical prediction model. Environmental Science and Pollution Research, 2022, 29, 69705-69716.	5.3	2
397	Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 2022, 10, .	3.3	4
398	The role of background diffusivity and mean subsidence in the temperature stratification in the Mozhaysk reservoir according to the LAKE 2.3 model. IOP Conference Series: Earth and Environmental Science, 2022, 1023, 012013.	0.3	0
399	Drivers of Anaerobic Methanogenesis in Sub-Tropical Reservoir Sediments. Frontiers in Environmental Science, 2022, 10, .	3.3	1
400	The characteristics and influencing factors of dissolved methane concentrations in Chongqing's central urban area in the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2022, 29, 72045-72057.	5.3	4
401	Systems Accounting for Carbon Emissions by Hydropower Plant. Sustainability, 2022, 14, 6939.	3.2	5
402	Greenhouse gas emissions and their relationship with hydropower generation in a tropical reservoir in Colombia. Water Policy, 0, , .	1.5	0
403	A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy. Renewable and Sustainable Energy Reviews, 2022, 167, 112684.	16.4	29
404	Impacts of Water Resources Development on Hydrology. , 2022, , 389-437.		2
405	Anthropogenic perturbations to the fate of terrestrial organic matter in a river-dominated marginal sea. Geochimica Et Cosmochimica Acta, 2022, 333, 242-262.	3.9	9
406	Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nature Climate Change, 2022, 12, 719-727.	18.8	11
407	The drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions from a temperate reservoir. Inland Waters, 2022, 12, 451-462.	2.2	3
408	Sedimentation supports life-cycle CH4 production and accumulation in a river valley reservoir: A hierarchical Bayesian modeling approach. Water Research, 2022, 222, 118861.	11.3	3
410	Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?. Global Change Biology, 2022, 28, 5601-5629.	9.5	24
411	Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agriculture, Ecosystems and Environment, 2022, 338, 108110.	5.3	17
412	Prospect of Cow Dung as a Source of Renewable Energy in Tripura, India. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 158-170.	0.4	0
413	Macroinvertebrates as engineers for bioturbation in freshwater ecosystem. Environmental Science and Pollution Research, 2022, 29, 64447-64468.	5.3	10

#	Article	IF	CITATIONS
414	The challenges of dam-induced displacement: Reducing risks and rethinking hydropower. One Earth, 2022, 5, 849-852.	6.8	5
415	Conflicting outcomes of alternative energies: agricultural methane emissions and hydroelectricity, 1975-2015. , 0, , .		0
416	In situ flux estimates reveal large variations in methane flux across the bottom boundary layer of a eutrophic lake. Limnology and Oceanography, 2022, 67, 2119-2139.	3.1	1
417	Spatial dynamics of dissolved organic matter among different segments of a large-scale reservoir in the water-level declining period. Frontiers in Environmental Science, 0, 10, .	3.3	0
418	Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	6
419	Dynamic simulation of CO2 flux in a hydropower reservoir in Southwest China. Journal of Hydrology, 2022, 613, 128354.	5.4	2
420	Unravelling nutrient fate and CO2 concentrations in the reservoirs of the Seine Basin using a modelling approach. Water Research, 2022, 225, 119135.	11.3	2
421	Dynamics and controls of inland water CH4 emissions across the Conterminous United States: 1860-2019. Water Research, 2022, 224, 119043.	11.3	5
422	CO2 dynamics in a small and old subtropical reservoir in East Asia: Environmental controls driving seasonal and spatial variability. Science of the Total Environment, 2023, 856, 159047.	8.0	1
423	Reservoir CO2 and CH4 emissions and their climate impact over the period 1900–2060. Nature Geoscience, 2022, 15, 700-705.	12.9	24
425	Critical method needs in measuring greenhouse gas fluxes. Environmental Research Letters, 2022, 17, 104009.	5.2	7
426	India's Contribution to Greenhouse Gas Emission from Freshwater Ecosystems: A Comprehensive Review. Water (Switzerland), 2022, 14, 2965.	2.7	4
427	Long-term effect of reservoir emissions on the climate is increasingly dominated by methane. Nature Geoscience, 2022, 15, 694-695.	12.9	0
428	Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology, 2023, 16, .	2.4	26
430	A comprehensive geospatial database of nearly 100 000 reservoirs in China. Earth System Science Data, 2022, 14, 4017-4034.	9.9	33
431	Hydropower in the News: how Journalists do (not) Cover the Environmental and Socioeconomic Costs of Dams in Brazil. Environmental Communication, 2022, 16, 822-835.	2.5	2
432	Seasonal variability of CO2, CH4, and N2O content and fluxes in small agricultural reservoirs of the northern Great Plains. Frontiers in Environmental Science, 0, 10, .	3.3	5
434	Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential. Energies, 2022, 15, 7427.	3.1	21

#	Article	IF	CITATIONS
435	Isotopic Evidence for Anaerobic Oxidation of Methane in the Freshwater Sediments of Reservoirs: The Impact of Selected Environmental Factors. Water (Switzerland), 2022, 14, 3375.	2.7	1
436	Carbon dioxide (CO2) partial pressure and emission from the river-reservoir system in the upper Yellow River, northwest China. Environmental Science and Pollution Research, 0, , .	5.3	0
437	Deciphering human influence on annual maximum flood extent at the global level. Communications Earth & Environment, 2022, 3, .	6.8	6
438	Spatiotemporal variability and diffusive emissions of greenhouse gas in a shallow eutrophic lake in Inner Mongolia, China. Ecological Indicators, 2022, 145, 109578.	6.3	5
439	Implications of large hydro dams for decarbonising Ghana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446.	4.5	2
440	Assessment of algae and greenhouse gases in different reservoirs worldwide by reactor model. Journal of Cleaner Production, 2023, 384, 135464.	9.3	0
441	Contrasting effects of aeration on methane (CH4) and nitrous oxide (N2O) emissions from subtropical aquaculture ponds and implications for global warming mitigation. Journal of Hydrology, 2023, 617, 128876.	5.4	12
442	CH4 and CO2 emissions in water networks of rice cultivation regions. Environmental Research, 2023, 218, 115041.	7.5	2
443	Dams Pose a Critical Threat to Rivers in Brazil's Cerrado Hotspot. Water (Switzerland), 2022, 14, 3762.	2.7	2
444	Effect of river damming on nutrient transport and transformation and its countermeasures. Frontiers in Marine Science, 0, 9, .	2.5	2
445	Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. Environmental Research, 2023, 219, 115174.	7.5	4
447	Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.	2.3	1
448	High-resolution circa-2020 map of urban lakes in China. Scientific Data, 2022, 9, .	5.3	3
451	Carbon Dioxide Concentration and Emissions along a Trophic Gradient in Tropical Karst Lakes. Water (Switzerland), 2023, 15, 13.	2.7	2
452	Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Frontiers in Environmental Science, 0, 10, .	3.3	18
453	Basinâ€5cale CO ₂ Emissions From the East River in South China: Importance of Small Rivers, Human Impacts and Monsoons. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	1
454	<scp>LAGOSâ€US RESERVOIR</scp> : A database classifying conterminous U.S. lakes 4Âha and larger as natural lakes or reservoir lakes. Limnology and Oceanography Letters, 0, , .	3.9	0
455	Model Estimates for Contribution of Natural and Anthropogenic CO2Âand CH4ÂEmissions into the Atmosphere from the Territory of Russia, China, Canada, and the USA to Global Climate Change in the 21st Century. Russian Meteorology and Hydrology, 2022, 47, 735-747.	1.3	4

#	Article	IF	CITATIONS
456	Knowledge domain of greenhouse gas emissions from hydropower reservoirs: Hotspots, frontiers and future perspectives. Frontiers in Environmental Science, 0, 10, .	3.3	0
457	Numerical Simulation of Methane Emission from an Artificial Reservoir. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 649-659.	0.9	0
458	Effects of Hypoxia on Coupled Carbon and Iron Cycling Differ Between Weekly and Multiannual Timescales in Two Freshwater Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	2
460	River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613, 449-459.	27.8	82
461	Prediction of CO ₂ , CH ₄ diffusion fluxes at the water-air interface and analysis on its influencing factors using machine learning algorithms in the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 449-459.	0.8	1
462	Jezera in reke: kako jim Åįkodujemo in kako jim lahko pomagamo. Alternator, 0, , .	0.0	0
463	Ecosystem Metabolism Is the Dominant Source of Carbon Dioxide in Three Young Boreal Cascadeâ€Reservoirs (La Romaine Complex, Québec). Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
464	Social movements and a policy shift towards a diversified electricity matrix. The Extractive Industries and Society, 2023, 14, 101249.	1.2	1
465	Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity, 2023, 15, 154.	1.7	1
466	The impact of multipurpose dams on the values of nature's contributions to people under a water-energy-food nexus framing. Ecological Economics, 2023, 206, 107758.	5.7	1
467	Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs. Environmental Research Letters, 2023, 18, 034046.	5.2	6
468	Methane Emissions from Municipal Wastewater Collection and Treatment Systems. Environmental Science & Composition Science & Composit	10.0	12
469	Renewable Energy Transition Facilitated by Bitcoin. ACS Sustainable Chemistry and Engineering, 2023, 11, 3160-3169.	6.7	9
470	Shifts in composition and function of bacterial communities reveal the effect of small barriers on nitrous oxide and methane accumulation in fragmented rivers. Frontiers in Microbiology, 0, 14, .	3.5	0
471	Comprehensive study on cascade hydropower stations in the lower reaches of Yalong river for power generation and ecology. Energy for Sustainable Development, 2023, 73, 236-246.	4.5	3
472	Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs. Journal of Hydrology, 2023, 619, 129343.	5.4	1
473	Eddy Covariance Data Reveal That a Small Freshwater Reservoir Emits a Substantial Amount of Carbon Dioxide and Methane. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
474	Monitoring and analysis of CO ₂ and CH ₄ fluxes in the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 423-434.	0.8	1

#	Article	IF	CITATIONS
475	Current and Future Global Lake Methane Emissions: A Processâ€Based Modeling Analysis. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	5
476	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2019. Earth System Science Data, 2023, 15, 1197-1268.	9.9	6
477	Community structure and network interaction of aerobic methane-oxidizing bacteria in Chongqing's central urban area in the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2023, 30, 56368-56381.	5.3	1
478	Greenhouse gas emissions from hydroelectric reservoirs: mechanistic understanding of influencing factors and future prospect. Environmental Science and Pollution Research, 0, , .	5.3	1
479	Sediment and Nutrient Trapping by River Dams: A Critical Review Based on 15-Year Big Data. Current Pollution Reports, 2023, 9, 165-173.	6.6	5
480	An Introduction to Reservoir Ecotoxicology. , 2023, , 3-11.		Ο
481	Basin-specific pollution and impoundment effects on greenhouse gas distributions in three rivers and estuaries. Water Research, 2023, 236, 119982.	11.3	2
482	Differential Controls of Greenhouse Gas (CO ₂ , CH ₄ , and N ₂ O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	5
483	Inland Water Greenhouse Gas Budgets for RECCAP2: 1. Stateâ€Ofâ€Theâ€Art of Global Scale Assessments. Global Biogeochemical Cycles, 2023, 37, .	4.9	11
484	Inland Water Greenhouse Gas Budgets for RECCAP2: 2. Regionalization and Homogenization of Estimates. Global Biogeochemical Cycles, 2023, 37, .	4.9	9
485	Spatial variations of dissolved greenhouse gases and emission fluxes in a large reservoir during the stratification and mixing periods. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 1082-1096.	0.8	1
487	Key challenges of sustainable hydropower in the context of energy transition. , 2023, , 315-349.		0
488	A review on hydro energy. , 2023, , 471-497.		0
489	Modeling and simulation of hydro energy systems. , 2023, , 519-535.		0
490	Development of subsurface chlorophyll maximum layer and its contribution to the primary productivity of water column in a large subtropical reservoir. Environmental Research, 2023, 231, 116118.	7.5	3
491	Understanding the fluxes of greenhouse gases in reservoirs under the inspiration of Margalef. , 2023, 42, 1.		0
492	Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat. Nature Communications, 2023, 14, .	12.8	2
493	Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty. Sustainability, 2023, 15, 9197.	3.2	1

#	Article	IF	CITATIONS
494	Diversity in reservoir surface morphology and climate limits ability to compare and upscale estimates of greenhouse gas emissions. Science of the Total Environment, 2023, 893, 164851.	8.0	0
495	The Role of State in Managing the Wind Energy Projects: Risk Assessment and Justification of the Economic Efficiency. Energies, 2023, 16, 4807.	3.1	0
496	Integrated assessment of the net carbon footprint of small hydropower plants. Environmental Research Letters, 0, , .	5.2	1
497	Variations in CO2 and CH4 Exchange in Response to Multiple Biophysical Factors from a Mangrove Wetland Park in Southeastern China. Atmosphere, 2023, 14, 805.	2.3	1
498	Evaluation of global biogeochemical cycle in lotic and lentic waters by developing an advanced ecoâ€hydrologic and biogeochemical coupling model. Ecohydrology, 0, , .	2.4	0
499	Spatial and temporal variability of greenhouse gas ebullition from temperate freshwater fish ponds. Aquaculture, 2023, 574, 739656.	3.5	4
500	A synthesis of hydroclimatic, ecological, and socioeconomic data for transdisciplinary research in the Mekong. Scientific Data, 2023, 10, .	5.3	9
501	Changing temporal and spatial patterns of methane emission from rivers by reservoir dams: a review. Environmental Science and Pollution Research, 2023, 30, 74485-74499.	5.3	1
502	Metabolism and carbonate buffering drive seasonal dynamics of CO2 emissions from two German reservoirs. Water Research, 2023, 242, 120302.	11.3	0
503	Carbon dioxide partial pressure and its diffusion flux in karst surface aquatic ecosystems: a review. Acta Geochimica, 2023, 42, 943-960.	1.7	1
504	CO2 and CH4 fluxes from inundated floodplain ponds: role of diel variability and duration of inundation. Frontiers in Environmental Science, 0, 11, .	3.3	0
505	Impacts of riverine pollution on greenhouse gas emissions: A comprehensive review. Ecological Indicators, 2023, 154, 110649.	6.3	6
506	Carbon footprint of reservoirs in Bucharest. E3S Web of Conferences, 2023, 404, 02001.	0.5	0
507	Spatiotemporal Patterns of Methane and Nitrous Oxide Emissions in China's Inland Waters Identified by Machine Learning Technique. ACS ES&T Water, 2024, 4, 936-947.	4.6	1
508	Numerical Simulation of Temporal Variability of Methane Emissions from Mozhaysk Reservoir. Fundamentalnaya I Prikladnaya Gidrofizika, 2023, 15, 82-100.	0.4	0
509	Applicability of Semiconductor Methane Sensors for Measuring Methane Emission from the Surface of a Water Body. Atmospheric and Oceanic Optics, 2023, 36, 400-414.	1.3	0
510	Spatial variability in dissolved organic matter quantity and composition in Midwest reservoirs, USA. Aquatic Sciences, 2023, 85, .	1.5	0
511	Water depth and productivity regulate methane (CH4) emissions from temperate cascade reservoirs in northern China. Journal of Hydrology, 2023, 626, 130170.	5.4	0

CITATION REPORT ARTICLE IF CITATIONS Organic Carbon Cycling and Ecosystem Metabolism., 2024, , 939-997. 0 A method for continuous monitoring of the ebullition process and application to methane flux variations in Xiangxi Bay, Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 0.8 1659-1669. Greenhouse gas dynamics in river networks fragmented by drying and damming. Freshwater Biology, 2.4 0 2023, 68, 2027-2041. CH<sub>4</sub> production and oxidation of sediments in the typical tributary of Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 1670-1681. Exploring a Novel Reservoir Impoundment Operation Framework for Facilitating Hydropower 3.2 1 Sustainability. Sustainability, 2023, 15, 13400. Widespread dominance of methane ebullition over diffusion in freshwater aquaculture ponds. 2.3 Frontiers in Water, 0, 5, . Anthropogenic activities mediate stratification and stability of microbial communities in freshwater 11.1 2 sediments. Microbiome, 2023, 11, . Controlling processes and key factors of nitrogen efflux at the sediment–water interface in a mesotrophic artificial reservoir. Journal of Soils and Sediments, 2023, 23, 3527-3538. Earth beyond six of nine planetary boundaries. Science Advances, 2023, 9, . 10.3 164 The Political Economy of Water. Global Issues in Water Policy, 2023, , 33-67. 0.1 Linking Sediment Gas Storage to the Methane Dynamics in a Shallow Freshwater Reservoir. Journal of 3.00 Geophysical Research G: Biogeosciences, 2023, 128, . Significant methane ebullition from large shallow eutrophic lakes of the semi-arid region of northern China. Journal of Environmental Management, 2023, 347, 119093. Increased Terrestrial Carbon Export and CO₂ Evasion From Global Inland Waters Since 4.9 3 the Preindustrial Era. Global Biogeochemical Cycles, 2023, 37, . Impounding Reservoirs, Benefits and Risks: A Review of Environmental and Technical Aspects of 3.2 Construction and Operation. Sustainability, 2023, 15, 16020. Inland water metabolic carbon processes and associated biological mechanisms that drive carbon 0 source-sink instability., 2023, 1, 100035.

528	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	1.5	2
529	Significant inter-annual fluctuation in CO2 and CH4 diffusive fluxes from subtropical aquaculture ponds: Implications for climate change and carbon emission evaluations. Water Research, 2024, 249, 120943.	11.3	1

Understanding How Reservoir Operations Influence Methane Emissions: A Conceptual Model. Water

(Switzerland), 2023, 15, 4112.

#

512

513

514

516

518

519

520

522

524

#	Article	IF	CITATIONS
530	Impact of Reservoir Operation Policies on Spatiotemporal Dynamics of Sediment Methane Production and Release in a Large Reservoir. Water Resources Research, 2023, 59, .	4.2	0
531	A simple and lowâ€cost open dynamic chamber for the versatile determination of methane emissions from aquatic surfaces. Limnology and Oceanography: Methods, 2023, 21, 828-836.	2.0	0
532	Sediment respiration dynamics and its contribution to carbon emissions in stratified reservoirs. Journal of Environmental Management, 2024, 349, 119472.	7.8	0
533	Multi-Objective Optimization and Coordination of Power Generation, Ecological Needs, and Carbon Emissions in Reservoir Operation. Water Resources Management, 0, , .	3.9	0
534	Re-estimating China's lake CO2 flux considering spatiotemporal variability. Environmental Science and Ecotechnology, 2024, 19, 100337.	13.5	10
535	Unraveling the factors influencing CO2 emissions from hydroelectric reservoirs in karst and non-karst regions: A comparative analysis. Water Research, 2024, 248, 120893.	11.3	5
538	Development of a two-dimensional model to assess carbon dynamics and anthropogenic effects on CO2 emissions in the Tan river, southern China. Journal of Environmental Management, 2024, 349, 119490.	7.8	0
539	Combining Satellite Imagery and a Deep Learning Algorithm to Retrieve the Water Levels of Small Reservoirs. Remote Sensing, 2023, 15, 5740.	4.0	0
540	Methane flux at the water-gas interface is influenced by complex interactions among phytoplankton, phosphorus inputs and methane-functional bacteria: A microcosm systems study. Science of the Total Environment, 2024, 912, 169373.	8.0	0
541	Review of methods of sediment detection in reservoirs. International Journal of Sediment Research, 2023, , .	3.5	0
542	Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir. Water (Switzerland), 2024, 16, 76.	2.7	0
543	Droughts and controlled rivers: how Belo Monte Dam has affected the food security of Amazonian riverine communities. Environmental Conservation, 2024, 51, 27-35.	1.3	0
544	Sustainable pathways towards universal renewable electricity access in Africa. Nature Reviews Earth & Environment, 2024, 5, 137-151.	29.7	1
546	Influence of hydrological features on CO2 and CH4 concentrations in the surface water of lakes, Southwest China: A seasonal and mixing regime analysis. Water Research, 2024, 251, 121131.	11.3	0
547	Research progress on methane emissions from tributaries of the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2024, 36, 17-33.	0.8	0
548	Increased methane emission associated with anthropogenic activities in a highly urbanized tropical reservoir. International Journal of Environmental Science and Technology, 2024, 21, 6733-6744.	3.5	0
549	Predicting Methane Formation Rates of Freshwater Sediments in Different Biogeographic Regions. Journal of Geophysical Research G: Biogeosciences, 2024, 129, .	3.0	0
550	Salinity causes widespread restriction of methane emissions from small inland waters. Nature Communications, 2024, 15, .	12.8	1

#	Article	IF	CITATIONS
551	Impact of dam decommissioning on greenhouse gas emissions from a reservoir: An example from the Inner Mongolia grassland region, China. Journal of Hydrology, 2024, 631, 130750.	5.4	0
552	Bubbles dominated the significant spatiotemporal variability and accumulation of methane concentrations in an ice-covered reservoir. Science of the Total Environment, 2024, 918, 170362.	8.0	0
553	Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era. Nature Communications, 2024, 15, .	12.8	0
554	Crucial Role of Tributary Bays in the Carbon Burial of Three Gorges Reservoir. ACS ES&T Water, 2024, 4, 1315-1324.	4.6	0
555	Carbon Emissions From Chinese Inland Waters: Current Progress and Future Challenges. Journal of Geophysical Research G: Biogeosciences, 2024, 129, .	3.0	0
556	High-frequency dynamics of CO2 emission flux and its influencing factors in a subtropical karst groundwater-fed reservoir, south China. Environmental Research, 2024, 251, 118552.	7.5	0
557	Elevated hydrostatic pressure enhances the potential for microbially mediated carbon sequestration at the sediment–water interface in a deep-water reservoir by modulating functional genes and metabolic pathways. , 2024, 3, .		0
558	Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change. , 2024, 2, 262-273.		0
559	Elucidation of the dominant factors influencing N2O emission in water-level fluctuation zones in a karst canyon reservoir, southwest China. Science of the Total Environment, 2024, 923, 171417.	8.0	0
560	Hourly methane and carbon dioxide fluxes from temperate ponds. Biogeochemistry, 2024, 167, 177-195.	3.5	0
561	Carbon Footprint Drivers in China's Municipal Wastewater Treatment Plants and Mitigation Opportunities through Electricity and Chemical Efficiency. Engineering, 2024, , .	6.7	0
562	Greenhouse gas emissions (CO ₂ –CH ₄ –N ₂ O) along a large reservoirâ€downstream river continuum: The role of seasonal hypoxia. Limnology and Oceanography, 0,	3.1	0
563	Particulate organic carbon sedimentation triggers lagged methane emissions in a eutrophic reservoir. Limnology and Oceanography Letters, 0, , .	3.9	0
564	CO2 and CH4 dynamics in a eutrophic tropical Andean reservoir. PLoS ONE, 2024, 19, e0298169.	2.5	Ο