Targeted detection of genetic alterations reveal the prog MAPK pathway aberrations in paediatric thalamic glion

Acta Neuropathologica Communications

4, 93

DOI: 10.1186/s40478-016-0353-0

Citation Report

#	Article	IF	CITATIONS
1	Molecular Neuropathology and the Ontogeny of Malignant Gliomas. , 2017, , 15-29.		0
2	Targeting Epigenetic Pathways in the Treatment of Pediatric Diffuse (High Grade) Gliomas. Neurotherapeutics, 2017, 14, 274-283.	2.1	21
3	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	0.6	46
4	Diffuse intrinsic pontine gliomas—current management and new biologic insights. Is there a glimmer of hope?. Neuro-Oncology, 2017, 19, 1025-1034.	0.6	91
5	A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathology, 2017, 34, 51-61.	1.1	46
6	Pediatric Thalamic Gliomas: An Updated Review. Archives of Pathology and Laboratory Medicine, 2017, 141, 1316-1323.	1.2	22
7	Genetic and Cellular Complexity of Brain Tumors. , 2017, , 627-665.		2
8	Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist, 2017, 22, 1478-1490.	1.9	176
9	Identification and targeting of an FGFR fusion in a pediatric thalamic "central oligodendroglioma― Npj Precision Oncology, 2017, 1, 29.	2.3	9
10	Molecular Basis of Pediatric Brain Tumors. NeuroMolecular Medicine, 2017, 19, 256-270.	1.8	13
11	Identification of Significant Pathways Induced by PAX5 Haploinsufficiency Based on Protein-Protein Interaction Networks and Cluster Analysis in Raji Cell Line. BioMed Research International, 2017, 2017, 1-9.	0.9	5
12	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	0.8	232
13	Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). International Journal of Oncology, 2018, 52, 1041-1056.	1.4	4
14	H3 K27M–mutant diffuse midline gliomas in different anatomical locations. Human Pathology, 2018, 78, 89-96.	1.1	98
15	Coâ€occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathology, 2018, 28, 103-111.	2.1	80
16	Bithalamic gliomas may be molecularly distinct from their unilateral highâ€grade counterparts. Brain Pathology, 2018, 28, 112-120.	2.1	26
17	Mortality in children with lowâ€grade glioma or glioneuronal tumors: A singleâ€institution study. Pediatric Blood and Cancer, 2018, 65, e26717.	0.8	13
18	Adolescents and young adults with brain tumors in the context of molecular advances in neuroâ€oncology. Pediatric Blood and Cancer, 2018, 65, e26861.	0.8	29

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
19	Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors. Child's Nervous System, 2018, 34, 107-116.	0.6	14
20	Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. , 2018, 182, 70-79.		25
21	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	0.6	184
22	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	0.6	116
23	Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone, 2018, 109, 91-100.	1.4	25
24	Updates in prognostic markers for gliomas. Neuro-Oncology, 2018, 20, vii17-vii26.	0.6	78
25	Oligodendrogliomas in pediatric and teenage patients only rarely exhibit molecular markers and patients have excellent survivals. Journal of Neuro-Oncology, 2018, 139, 307-322.	1.4	2
26	Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics. Archives of Pathology and Laboratory Medicine, 2018, 142, 804-814.	1.2	22
27	A suggestion to introduce the diagnosis of "diffuse midline glioma of the pons, H3 K27 wildtype (WHO) Tj ET	Qq0,0 0 rį	gBT_/Overlock
28	Precision Neuro-oncology: the Role of Genomic Testing in the Management of Adult and Pediatric Gliomas. Current Treatment Options in Oncology, 2018, 19, 41.	1.3	8
29	<i>FGFR1</i> actionable mutations, molecular specificities, and outcome of adult midline gliomas. Neurology, 2018, 90, e2086-e2094.	1.5	47
30	Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathologica, 2018, 136, 641-655.	3.9	36
31	A long-term survivor of pediatric midline glioma with H3F3A K27M and BRAF V600E double mutations. Brain Tumor Pathology, 2019, 36, 162-168.	1.1	10
32	Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro-Oncology, 2019, 22, 393-401.	0.6	48
33	Identification of a Specific Gene Module for Predicting Prognosis in Glioblastoma Patients. Frontiers in Oncology, 2019, 9, 812.	1.3	18
34	Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. Journal of Neurosurgery: Pediatrics, 2019, 23, 308-316.	0.8	71
35	Preclinical therapeutic targets in diffuse midline glioma. Drug Resistance Updates, 2019, 44, 15-25.	6.5	19
36	High frequency of H3K27M immunopositivity in adult thalamic glioblastoma. Neuropathology, 2019, 39, 78-84.	0.7	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Pediatric Brainstem Gliomas: A Retrospective Study of 180 Patients from the SEER Database. Pediatric Neurosurgery, 2019, 54, 151-164.	0.4	8
38	The Power of Human Cancer Genetics as Revealed by Low-Grade Gliomas. Annual Review of Genetics, 2019, 53, 483-503.	3.2	22
39	High frequency of H3 K27M mutations in adult midline gliomas. Journal of Cancer Research and Clinical Oncology, 2019, 145, 839-850.	1.2	50
40	Favorable prognosis in pediatric brainstem lowâ€grade glioma: Report from the German SIOP‣GG 2004 cohort. International Journal of Cancer, 2020, 146, 3385-3396.	2.3	9
41	BRAF V600E mutant oligodendrogliomaâ€like tumors with chromosomal instability in adolescents and young adults. Brain Pathology, 2020, 30, 515-523.	2.1	8
42	Identification of prognostic markers in diffuse midline gliomas H3K27Mâ€mutant. Brain Pathology, 2020, 30, 179-190.	2.1	22
43	Pulvinar Locus is Highly Relevant to Patients' Outcomes in Surgically Resected Thalamic Gliomas in Children. World Neurosurgery, 2020, 134, e530-e539.	0.7	8
44	Lateral or Medial Surgical Approaches for Thalamic Gliomas Resection?. World Neurosurgery, 2020, 136, e90-e107.	0.7	4
45	Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children. European Journal of Cancer, 2020, 139, 135-148.	1.3	20
46	Super Elongation Complex as a Targetable Dependency in Diffuse Midline Glioma. Cell Reports, 2020, 31, 107485.	2.9	27
47	Molecular markers and targeted therapy in pediatric low-grade glioma. Journal of Neuro-Oncology, 2020, 150, 5-15.	1.4	23
48	Histone H3K27M Mutation Overrides Histological Grading in Pediatric Gliomas. Scientific Reports, 2020, 10, 8368.	1.6	48
49	Radiation for pediatric low-grade gliomas: who will benefit and how late is soon enough?. Neuro-Oncology, 2020, 22, 1068-1069.	0.6	4
50	Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathologica Communications, 2020, 8, 30.	2.4	172
51	Personalized Treatment of H3K27M-Mutant Pediatric Diffuse Gliomas Provides Improved Therapeutic Opportunities. Frontiers in Oncology, 2019, 9, 1436.	1.3	50
52	Prognostic impact of distinct genetic entities in pediatric diffuse glioma <scp>WHO</scp> â€grade <scp>II</scp> —Report from the German/Swiss <scp>SIOP‣GG</scp> 2004 cohort. International Journal of Cancer, 2020, 147, 2159-2175.	2.3	8
53	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Cliomas. Cancer Cell, 2020, 37, 569-583.e5.	7.7	244
54	Clinico-pathological and molecular characterization of diffuse midline gliomas: is there a prognostic significance?. Neurological Sciences, 2021, 42, 925-934.	0.9	10

#	Article	IF	CITATIONS
55	Infiltrative gliomas of the thalamus in children: the role of surgery in the era of H3 K27M mutant midline gliomas. Acta Neurochirurgica, 2021, 163, 2025-2035.	0.9	13
56	Mutations within FGFR1 are associated with superior outcome in a series of 83 diffuse midline gliomas with H3F3A K27M mutations. Acta Neuropathologica, 2021, 141, 323-325.	3.9	20
58	Genomic Profiling Identified Novel Prognostic Biomarkers in Chinese Midline Glioma Patients. Frontiers in Oncology, 2020, 10, 607429.	1.3	11
59	Pediatric Glial Tumors. Pediatric and Developmental Pathology, 2021, , 109352662110091.	0.5	3
60	Exploring MRI Characteristics of Brain Diffuse Midline Gliomas With the H3 K27M Mutation Using Radiomics. Frontiers in Oncology, 2021, 11, 646267.	1.3	13
61	A novel, germline, deactivating CBL variant p.L493F alters domain orientation and is associated with multiple childhood cancers. Cancer Genetics, 2021, 254-255, 18-24.	0.2	2
62	Potential new targets and drugs related to histone modifications in glioma treatment. Bioorganic Chemistry, 2021, 112, 104942.	2.0	3
63	The benefit of early surgery on overall survival in incidental low-grade glioma patients: A multicenter study. Neuro-Oncology, 2022, 24, 624-638.	0.6	21
64	Prognostic and Predictive Biomarkers in Gliomas. International Journal of Molecular Sciences, 2021, 22, 10373.	1.8	110
65	CNS Tumors in Adolescents and Young Adults: The Need for a Holistic Specialized Approach. JCO Oncology Practice, 2020, 16, 155-162.	1.4	16
66	Current Advances and Challenges in Radiomics of Brain Tumors. Frontiers in Oncology, 2021, 11, 732196.	1.3	21
67	MRI-based radiomics signature and clinical factor for predicting H3K27M mutation in pediatric high-grade gliomas located in the midline of the brain. European Radiology, 2022, 32, 1813-1822.	2.3	16
68	Thalamic Gliomas. , 2018, , 1-17.		0
69	Challenges in the management of intraventricular tumors in the current era. Cancer Research Statistics and Treatment, 2019, 2, 72.	0.1	4
70	Thalamic Gliomas. , 2020, , 1877-1890.		0
72	H3K27M-mutant diffuse midline gliomas should be further molecularly stratified: an integrated analysis of 669 patients. Journal of Neuro-Oncology, 2021, 155, 225-234.	1.4	20
73	Childhood brainstem gliomas: A non-aggressive management. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2022, 28, 101488.	0.2	0
74	Multiple Faces of the Glioblastoma Microenvironment. International Journal of Molecular Sciences, 2022, 23, 595.	1.8	6

CITATION REPORT

#	Article	IF	CITATIONS
75	A case of ganglioglioma grade 3 with <scp>H3 K27M</scp> mutation arising in the medial temporal lobe in an elderly patient. Neuropathology, 2022, , .	0.7	4
76	Prognostic Implication of Patient Age in H3K27M-Mutant Midline Gliomas. Frontiers in Oncology, 2022, 12, 858148.	1.3	9
77	Magnetic Resonance Imaging Characteristics of Molecular Subgroups in Pediatric H3ÂK27M Mutant Diffuse Midline Glioma. Clinical Neuroradiology, 2022, 32, 249-258.	1.0	8
84	Thoracic low grade glial neoplasm with concurrent H3 K27M and PTPN11 mutations. Acta Neuropathologica Communications, 2022, 10, 64.	2.4	1
85	Risk stratification of H3 K27M–mutant diffuse midline gliomas based on anatomical locations: an integrated systematic review of individual participant data. Journal of Neurosurgery: Pediatrics, 2022, 30, 99-106.	0.8	5
87	Basic premises: searching for new targets and strategies in diffuse gliomas. Clinical and Translational Imaging, 0, , .	1.1	2
88	Extent of Tumor Resection and Survival in Pediatric Patients With High-Grade Gliomas. JAMA Network Open, 2022, 5, e2226551.	2.8	8
89	Pediatric Brain Tumors in the Molecular Era: Updates for the Radiologist. Seminars in Roentgenology, 2023, 58, 47-66.	0.2	3
90	NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. Journal of the National Comprehensive Cancer Network: JNCCN, 2023, 21, 12-20.	2.3	44
91	Are Thalamic Intrinsic Lesions Operable? No-Man's Land Revisited by the Analysis of a Large Retrospective, Mono-Institutional, Cohort. Cancers, 2023, 15, 361.	1.7	0
92	Adult-type and Pediatric-type Diffuse Gliomas. Clinical Neuroradiology, 2023, 33, 611-624.	1.0	5
93	Pediatric Diffuse Midline Glioma: Understanding The Mechanisms And Assessing The Next Generation of Personalized Therapeutics. Neuro-Oncology Advances, 0, , .	0.4	1