Reactive oxygen species generating systems meeting ch therapy

Chemical Society Reviews 45, 6597-6626 DOI: 10.1039/c6cs00271d

Citation Report

#	Article	IF	CITATIONS
1	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
2	CSH-triggered size increase of porphyrin-containing nanosystems for enhanced retention and photodynamic activity. Journal of Materials Chemistry B, 2017, 5, 4470-4477.	2.9	18
3	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20
4	Recent advances in biomedical applications of fluorescent gold nanoclusters. Advances in Colloid and Interface Science, 2017, 242, 1-16.	7.0	180
5	A core–shell metal–organic-framework (MOF)-based smart nanocomposite for efficient NIR/H ₂ O ₂ -responsive photodynamic therapy against hypoxic tumor cells. Journal of Materials Chemistry B, 2017, 5, 2390-2394.	2.9	83
6	Highly photocytotoxic silicon(IV) phthalocyanines axially modified with l-tyrosine derivatives: Effects of mode of axial substituent connection and of formulation on photodynamic activity. Dyes and Pigments, 2017, 141, 521-529.	2.0	19
7	Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chemistry of Materials, 2017, 29, 2374-2381.	3.2	204
8	Near infrared BODIPY-Platinum conjugates for imaging, photodynamic therapy and chemotherapy. Dyes and Pigments, 2017, 141, 5-12.	2.0	40
9	Synthesis of 2-morpholinetetraphenylporphyrins and their photodynamic activities. Bioorganic Chemistry, 2017, 71, 299-304.	2.0	6
10	Layered double hydroxide bio-composites toward excellent systematic anticancer therapy. Journal of Materials Chemistry B, 2017, 5, 3212-3216.	2.9	20
11	Direct aqueous synthesis of quantum dots for high-performance AgInSe 2 quantum-dot-sensitized solar cell. Journal of Power Sources, 2017, 354, 100-107.	4.0	42
12	Photocatalytic Activity of the Molecular Complexes of <i>meso</i> â€Tetraarylporphyrins with Lewis Acids for the Oxidation of Olefins: Significant Effects of Lewis Acids and <i>meso</i> Substituents. European Journal of Inorganic Chemistry, 2017, 2017, 2854-2862.	1.0	14
13	Taurine-modified Ru(<scp>ii</scp>)-complex targets cancerous brain cells for photodynamic therapy. Chemical Communications, 2017, 53, 6033-6036.	2.2	33
14	A glutathione-activatable photodynamic and fluorescent imaging monochromatic photosensitizer. Journal of Materials Chemistry B, 2017, 5, 4239-4245.	2.9	30
15	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	1.3	20
16	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	1.6	63
17	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	7.2	328
18	Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chemical Society Reviews, 2017, 46, 3830-3852.	18.7	719

ARTICLE IF CITATIONS # Platinated porphyrin as a new organelle and nucleus dual-targeted photosensitizer for photodynamic 19 1.5 46 therapy. Organic and Biomolecular Chemistry, 2017, 15, 5764-5771. Conjugated polymer nanomaterials for theranostics. Acta Pharmacologica Sinica, 2017, 38, 764-781. 2.8 Selfâ€Assembled Carbon Dot Nanosphere: A Robust, Nearâ€Infrared Lightâ€Responsive, and Vein Injectable 21 3.9 41 Photosensitizer. Advanced Healthcare Materials, 2017, 6, 1601419. Eradication of <i>Plasmodium falciparum</i> from Erythrocytes by Controlled Reactive Oxygen Species via Photodynamic Inactivation Coupled with Photofunctional Nanoparticles. ACS Applied Materials & amp; Interfaces, 2017, 9, 12975-12981. 4.0 Targeted Chemo-Photodynamic Combination Platform Based on the DOX Prodrug Nanoparticles for 23 4.0 123 Enhanced Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 13016-13028. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano, 2017, 11, 7.3 4463-4474. Ethylene glycol-mediated synthetic route for production of luminescent silicon nanorod as 25 3.5 10 photodynamic therapy agent. Science China Materials, 2017, 60, 881-891. Molecular photosensitisers for two-photon photodynamic therapy. Chemical Communications, 2017, 26 198 53, 12857-12877. Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. Materials Horizons, 2017, 4, 1185-1189. 27 50 6.4 Divide-to-Conquer: A Kinetic Model for Singlet Oxygen Photosensitization. Journal of Chemical 2.3 Theory and Computation, 2017, 13, 5528-5538. Polysaccharides-Based Microcapsules., 2017, , 63-84. 29 2 High performance photosensitizers with aggregation-induced emission for image-guided 6.4 photodynamic anticancer therapy. Materials Horizons, 2017, 4, 1110-1114. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic $\mathbf{31}$ 4.1 37 cancer therapy and magnetic resonance imaging. Acta Biomaterialia, 2017, 62, 293-305. A water-soluble phosphorescent conjugated polymer brush for tumor-targeted photodynamic therapy. Polymer Chemistry, 2017, 8, 5836-5844. Synergistic antiproliferative effect of chemo-phototherapy: Synthesis and photodynamic activity 33 evaluation of novel Chlorin e6-artesunate conjugates as antiproliferative agents. Bioorganic and 1.0 8 Medicinal Chemistry Letters, 2017, 27, 4548-4551. Effect of visible light on biological objects: Physiological and pathophysiological aspects. Physics of Wave Phenomena, 2017, 25, 207-213. pH-sensitive metal-phenolic network capsules for targeted photodynamic therapy against cancer cells. 35 1.9 10 Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-10. Rapid, sensitive, and in-solution screening of peptide probes for targeted imaging of live cancer cells 2.2 based on peptide recognition-induced emission. Chemical Communications, 2017, 53, 11091-11094.

#	Article	IF	CITATIONS
37	Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy. Biomaterials, 2017, 148, 31-40.	5.7	62
38	Myoglobin and Polydopamineâ€Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Small, 2017, 13, 1701584.	5.2	44
39	An O ₂ Selfâ€Supplementing and Reactiveâ€Oxygenâ€Speciesâ€Circulating Amplified Nanoplatform via H ₂ O/H ₂ O ₂ Splitting for Tumor Imaging and Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1700626.	7.8	171
40	Pompon-like RuNPs-Based Theranostic Nanocarrier System with Stable Photoacoustic Imaging Characteristic for Accurate Tumor Detection and Efficient Phototherapy Guidance. ACS Applied Materials & Interfaces, 2017, 9, 33645-33659.	4.0	37
41	Lightâ€Triggered Clustered Vesicles with Selfâ€Supplied Oxygen and Tissue Penetrability for Photodynamic Therapy against Hypoxic Tumor. Advanced Functional Materials, 2017, 27, 1702108.	7.8	108
42	Photosensitizer localization in amphiphilic block copolymers controls photodynamic therapy efficacy. Nanoscale, 2017, 9, 11180-11186.	2.8	30
43	ROSâ€Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Advanced Materials, 2017, 29, 1700141.	11.1	370
44	A Highly Efficient and Photostable Photosensitizer with Nearâ€Infrared Aggregationâ€Induced Emission for Imageâ€Guided Photodynamic Anticancer Therapy. Advanced Materials, 2017, 29, 1700548.	11.1	373
45	Targeted Delivery of a Mannoseâ€Conjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy. Chemistry - A European Journal, 2017, 23, 14307-14315.	1.7	67
46	Cyclometalated Iridium(III)-Complex-Based Micelles for Glutathione-Responsive Targeted Chemotherapy and Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 27553-27562.	4.0	93
47	Photodynamic Therapy of Human Hepatoma Using Semiconductor Quantum Dots as Sole Photosensitizer. Particle and Particle Systems Characterization, 2017, 34, 1600413.	1.2	12
48	A cancer cell specific targeting nanocomplex for combination of mRNA-responsive photodynamic and chemo-therapy. Chemical Communications, 2017, 53, 9979-9982.	2.2	15
49	A new pyrene-based fluorescent probe with large Stokes shift for detecting hydrogen peroxide in aqueous solution and living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 1-7.	2.0	21
50	Bcl-2 inhibitor uploaded upconversion nanophotosensitizers to overcome the photodynamic therapy resistance of cancer through adjuvant intervention strategy. Biomaterials, 2017, 144, 73-83.	5.7	38
51	808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Materials Science and Engineering C, 2017, 81, 252-260.	3.8	46
52	Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7, 37887-37897.	1.7	47
53	Mesoporous black N-TiO2â^'x hollow spheres as efficient visible-light-driven photocatalysts. Journal of Catalysis, 2017, 356, 246-254.	3.1	58
54	Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. Advances in Inorganic Chemistry, 2017, 70, 343-394.	0.4	105

#	Article	IF	CITATIONS
55	Low-power white light triggered AIE polymer nanoparticles with high ROS quantum yield for mitochondria-targeted and image-guided photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6277-6281.	2.9	66
56	No UV Irradiation Needed! Chemiexcited AIE Dots for Cancer Theranostics. CheM, 2017, 3, 922-924.	5.8	14
57	White light-induced cell apoptosis by a conjugated polyelectrolyte through singlet oxygen generation. RSC Advances, 2018, 8, 9218-9222.	1.7	6
58	Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials, 2018, 165, 1-13.	5.7	173
59	Mitochondria-localizing BODIPY–copper(<scp>ii</scp>) conjugates for cellular imaging and photo-activated cytotoxicity forming singlet oxygen. Dalton Transactions, 2018, 47, 5019-5030.	1.6	28
60	An intelligent dual stimuli-responsive photosensitizer delivery system with O2-supplying for efficient photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2018, 167, 299-309.	2.5	19
61	Nanopurpurin-based photodynamic therapy destructs extracellular matrix against intractable tumor metastasis. Biomaterials, 2018, 173, 22-33.	5.7	29
62	Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. Journal of Materials Chemistry B, 2018, 6, 3865-3875.	2.9	13
63	Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochemical and Photobiological Sciences, 2018, 17, 638-651.	1.6	34
64	ROS-Responsive Chalcogen-Containing Polycarbonates for Photodynamic Therapy. Biomacromolecules, 2018, 19, 2182-2193.	2.6	46
65	Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. Polymer Chemistry, 2018, 9, 2124-2133.	1.9	38
66	Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles. Advanced Materials, 2018, 30, e1704290.	11.1	97
67	Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small, 2018, 14, e1704247.	5.2	226
68	A pH-responsive organic photosensitizer specifically activated by cancer lysosomes. Dyes and Pigments, 2018, 156, 285-290.	2.0	34
70	Multifunctional Theranostic Nanoplatform Based on Fe-mTa ₂ O ₅ @CuS-ZnPc/PCM for Bimodal Imaging and Synergistically Enhanced Phototherapy. Inorganic Chemistry, 2018, 57, 4864-4876.	1.9	27
71	Photo-induced anticancer activity and singlet oxygen production of prodigiosenes. Photochemical and Photobiological Sciences, 2018, 17, 599-606.	1.6	4
72	Near-infrared light triggered photothermal therapy and enhanced photodynamic therapy with a tumor-targeting hydrogen peroxide shuttle. Journal of Materials Chemistry B, 2018, 6, 3145-3155.	2.9	26
73	Self-assembled organic nanorods for dual chemo-photodynamic therapies. RSC Advances, 2018, 8, 5493-5499.	1.7	6

#	Article	IF	CITATIONS
74	Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO ₂ @Cu ₂ O/Perfluorohexane Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6991-7002.	4.0	74
75	A photosensitizer loaded hemoglobin–polymer conjugate as a nanocarrier for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 1825-1833.	2.9	23
76	Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. European Journal of Pharmaceutical Sciences, 2018, 115, 144-157.	1.9	23
77	A Revisit to the Orthogonal Bodipy Dimers: Experimental Evidence for the Symmetry Breaking Charge Transfer-Induced Intersystem Crossing. Journal of Physical Chemistry C, 2018, 122, 2502-2511.	1.5	79
78	Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress. ACS Applied Materials & amp; Interfaces, 2018, 10, 4569-4581.	4.0	29
79	Tumor Catalytic–Photothermal Therapy with Yolk–Shell Gold@Carbon Nanozymes. ACS Applied Materials & Interfaces, 2018, 10, 4502-4511.	4.0	130
80	Nanoparticles based on glycyrrhetinic acid modified porphyrin for photodynamic therapy of cancer. Organic and Biomolecular Chemistry, 2018, 16, 1591-1597.	1.5	14
81	A Magnetofluorescent Carbon Dot Assembly as an Acidic H ₂ O ₂ â€Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2018, 30, e1706090.	11.1	385
82	Nitrogen and Fluorine Codoped, Colloidal TiO ₂ Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. ACS Applied Materials & Interfaces, 2018, 10, 1976-1986.	4.0	42
83	Therapeutic Considerations and Conjugated Polymerâ€Based Photosensitizers for Photodynamic Therapy. Macromolecular Rapid Communications, 2018, 39, 1700614.	2.0	67
84	ROS-Sensitive Polymeric Nanocarriers with Red Light-Activated Size Shrinkage for Remotely Controlled Drug Release. Chemistry of Materials, 2018, 30, 517-525.	3.2	100
85	Supramolecular photosensitizers rejuvenate photodynamic therapy. Chemical Society Reviews, 2018, 47, 1174-1188.	18.7	818
86	Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Selfâ€Assembled Metalâ€Phenolic Network Nanoparticles. Advanced Materials, 2018, 30, 1704877.	11.1	311
87	New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chemical Science, 2018, 9, 2098-2104.	3.7	164
88	Tumor-specific disintegratable nanohybrids containing ultrasmall inorganic nanoparticles: from design and improved properties to cancer applications. Materials Horizons, 2018, 5, 184-205.	6.4	65
89	A multi-functional fluorescent probe with aggregation-induced emission characteristics: Mitochondrial imaging, photodynamic therapy and visualizing therapeutic process in zebrafish model. Dyes and Pigments, 2018, 151, 45-53.	2.0	24
90	Hypochlorous Acid Promoted Platinum Drug Chemotherapy by Myeloperoxidase-Encapsulated Therapeutic Metal Phenolic Nanoparticles. ACS Nano, 2018, 12, 455-463.	7.3	134
91	PEG conjugated BODIPY-Br ₂ as macro-photosensitizer for efficient imaging-guided photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 753-762.	2.9	40

ARTICLE IF CITATIONS Neutrophilâ€Based Drug Delivery Systems. Advanced Materials, 2018, 30, e1706245. 92 11.1 236 Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials, 2018, 172, 83-91 Tumor-Activated Water-Soluble Photosensitizers for Near-Infrared Photodynamic Cancer Therapy. ACS 94 4.0 85 Applied Materials & amp; Interfaces, 2018, 10, 16335-16343. A visible-near-infrared fluorescent probe for peroxynitrite with large pseudo-Stokes and emission shift <i>via</i> through-bond energy and charge transfers controlled by energy matching. Journal of Materials Chemistry B, 2018, 6, 2489-2496. 95 One-step assembly of CuMo₂3</sub> nanocrystals for the synergistic effect of 96 1.6 15 photothermal therapy and photodynamic therapy. Dalton Transactions, 2018, 47, 5622-5629. Design of drug delivery systems for physical energy-induced chemical surgery. Biomaterials, 2018, 178, 583-596. 5.7 Synthesis, Theory and In Vitro Photodynamic Activities of New Copper(II)â€Histidinito Complexes. 98 0.7 13 ChemistrySelect, 2018, 3, 2767-2775. Black Phosphorus Quantum Dots with Renal Clearance Property for Efficient Photodynamic Therapy. 90 5.2 168 Small, 2018, 14, 1702815. Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome 100 7.3 149 Drawbacks of Photodynamic Therapy. ACS Nano, 2018, 12, 681-688. Nanoscale Organic–Inorganic Hybrid Photosensitizers for Highly Effective Photodynamic Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2018, 10, 248-255. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron 102 2.6 40 within Cancer Cells. Biomacromolecules, 2018, 19, 178-187. Functional peptide-based nanoparticles for photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 25-3<mark>8</mark>. Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and <i>T</i> 104 2.9 70 dual mode MRI guided photodynamic/photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 265-276 SnWO4-based nanohybrids with full energy transfer for largely enhanced photodynamic therapy and radiotherapy. Biomaterials, 2018, 155, 135-144. 5.7 Integrating <i>in situ</i> formation of nanozymes with three-dimensional dendritic mesoporous silica 106 2.8 51 nanospheres for hypoxia-overcoming photodynamic therapy. Nanoscale, 2018, 10, 22937-22945. Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. 53 Biomaterials Science, 2018, 6, 3096-3107. Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for 108 1.6 56 photothermal/photodynamic therapy. Dalton Transactions, 2018, 47, 16329-16336. Combination-Responsive MoO_{3â€"<i>x</i>}-Hybridized Hyaluronic Acid Hollow Nanospheres 109 for Cancer Phototheranostics. ACS Applied Materials & amp; Interfaces, 2018, 10, 42088-42101.

#	Article	IF	CITATIONS
110	Aggregation-Induced Emission (AIE) Polymeric Micelles for Imaging-Guided Photodynamic Cancer Therapy. Nanomaterials, 2018, 8, 921.	1.9	15
111	Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small, 2018, 14, e1803325.	5.2	31
112	A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 2018, 9, 5044.	5.8	380
113	5-Aminolevulinic Acid-Based Photodynamic Therapy Pretreatment Mitigates Ultraviolet A-Induced Oxidative Photodamage. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	7
114	Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. ACS Applied Materials & Interfaces, 2018, 10, 44324-44335.	4.0	68
115	Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals, 2018, 11, 133.	1.7	34
116	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
117	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	1.6	35
118	Mesenchymal stem cell-driven activatable photosensitizers for precision photodynamic oncotherapy. Biomaterials, 2018, 187, 18-26.	5.7	29
119	Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials, 2018, 187, 55-65.	5.7	191
120	A highly efficient bactericidal surface based on the co-capture function and photodynamic sterilization. Journal of Materials Chemistry B, 2018, 6, 6831-6841.	2.9	11
121	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	7.2	198
122	Tumorâ€pHâ€Responsive Dissociable Albumin–Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. Small, 2018, 14, e1803262.	5.2	99
123	Highly Specific and Sensitive Radioiodinated Agent for In Vivo Imaging of Superoxide through Superoxide-Initiated Retention. Analytical Chemistry, 2018, 90, 12971-12978.	3.2	8
124	Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. Journal of the American Chemical Society, 2018, 140, 14851-14859.	6.6	442
125	Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nature Communications, 2018, 9, 4321.	5.8	243
126	Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics, 2018, 8, 5059-5071.	4.6	68
127	De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. Journal of the American Chemical Society, 2018, 140, 15820-15826.	6.6	167

#	Article	IF	CITATIONS
128	Graphene-based materials: The missing piece in nanomedicine?. Biochemical and Biophysical Research Communications, 2018, 504, 686-689.	1.0	30
129	Combined photothermal and antibiotic therapy for bacterial infection via acidity-sensitive nanocarriers with enhanced antimicrobial performance. Applied Materials Today, 2018, 12, 415-429.	2.3	68
130	Photosensitizer and Autophagy Promoter Coloaded ROSâ€Responsive Dendrimerâ€Assembled Carrier for Synergistic Enhancement of Tumor Growth Suppression. Small, 2018, 14, e1802337.	5.2	44
131	Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2018, 30, 6867-6876.	3.2	122
132	Synergistic combination of PEGylated selenium nanoparticles and X-ray-induced radiotherapy for enhanced anticancer effect in human lung carcinoma. Biomedicine and Pharmacotherapy, 2018, 107, 1135-1141.	2.5	20
133	PDTâ€Driven Highly Efficient Intracellular Delivery and Controlled Release of CO in Combination with Sufficient Singlet Oxygen Production for Synergistic Anticancer Therapy. Advanced Functional Materials, 2018, 28, 1804324.	7.8	108
134	Two-Photon Excited FRET Dyads for Lysosome-Targeted Imaging and Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 11537-11542.	1.9	42
135	Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced <i>in vitro</i> photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2018, 22, 807-813.	0.4	5
136	Innovative Strategien für die photodynamische Therapie hypoxischer Tumore. Angewandte Chemie, 2018, 130, 11694-11704.	1.6	90
137	Innovative Strategies for Hypoxicâ€īumor Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11522-11531.	7.2	849
138	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie, 2018, 130, 8599-8603.	1.6	4
139	One-Pot Synthesis of Four Chlorin Derivatives by a Divergent Ylide. Journal of Organic Chemistry, 2018, 83, 6307-6314.	1.7	9
140	Aggregation/Self-Assembly-Induced Approach for Efficient AuAg Bimetallic Nanocluster-Based Photosensitizers. Journal of Physical Chemistry C, 2018, 122, 12494-12501.	1.5	41
141	Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species In Vivo. Advanced Materials, 2018, 30, e1707509.	11.1	165
142	Highly efficient organic photosensitizer with aggregation-induced emission for imaging-guided photodynamic ablation of cancer cells. Tetrahedron Letters, 2018, 59, 2704-2707.	0.7	12
143	Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease. Angewandte Chemie - International Edition, 2018, 57, 9408-9412.	7.2	204
144	Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. , 2018, , 227-295.		19
145	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	5.8	227

#	Article	IF	CITATIONS
146	Hypoxia-Triggered Nanoscale Metal–Organic Frameworks for Enhanced Anticancer Activity. ACS Applied Materials & Interfaces, 2018, 10, 24638-24647.	4.0	91
147	Gd ₄ ³⁺ [AlPCS ₄] ₃ ^{4â^'} Nanoagent Generating ¹ O ₂ for Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1801074.	7.8	25
148	Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods, 2018, 2, 1700370.	4.6	45
149	Three-in-One Self-Assembled Nanocarrier for Dual-Drug Delivery, Two-Photon Imaging, and Chemo-Photodynamic Synergistic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 28301-28313.	4.0	27
150	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	11.1	611
151	Personalized Cancer Immunotherapy via Transporting Endogenous Tumor Antigens to Lymph Nodes Mediated by Nano Fe ₃ O ₄ . Small, 2018, 14, e1801372.	5.2	30
152	Self-Assembly of Monomeric Hydrophobic Photosensitizers with Short Peptides Forming Photodynamic Nanoparticles with Real-Time Tracking Property and without the Need of Release in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 28420-28427.	4.0	51
153	Emerging technologies for optical spectral detection of reactive oxygen species. Analytical and Bioanalytical Chemistry, 2018, 410, 6079-6095.	1.9	24
154	Highâ€Security Nanocluster for Switching Photodynamic Combining Photothermal and Acidâ€Induced Drug Compliance Therapy Guided by Multimodal Activeâ€Targeting Imaging. Advanced Functional Materials, 2018, 28, 1803118.	7.8	48
155	A near-infrared heptamethine aminocyanine dye with a long-lived excited triplet state for photodynamic therapy. Chemical Communications, 2018, 54, 9198-9201.	2.2	94
156	Halogenated Azaâ€BODIPY for Imagingâ€Guided Synergistic Photodynamic and Photothermal Tumor Therapy. Advanced Healthcare Materials, 2018, 7, e1800606.	3.9	67
157	Facile fabrication of positively-charged helical poly(phenyl isocyanide) modified multi-stimuli-responsive nanoassembly capable of high efficiency cell-penetrating, ratiometric fluorescence imaging, and rapid intracellular drug release. Polymer Chemistry, 2018, 9, 4233-4242.	1.9	17
158	Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules, 2018, 23, 1936.	1.7	42
159	A Versatile Ptâ€Based Core–Shell Nanoplatform as a Nanofactory for Enhanced Tumor Therapy. Advanced Functional Materials, 2018, 28, 1801783.	7.8	106
160	Self-Assembled Micellar Nanosensor toward pH with high photo-stability and its application in living cells. Sensors and Actuators B: Chemical, 2018, 273, 927-934.	4.0	10
161	Carbazole–triazine based donor–acceptor porous organic frameworks for efficient visible-light photocatalytic aerobic oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 15154-15161.	5.2	59
162	Responsive Assembly of Upconversion Nanoparticles for pHâ€Activated and Nearâ€Infraredâ€Triggered Photodynamic Therapy of Deep Tumors. Advanced Materials, 2018, 30, e1802808.	11.1	191
163	Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS Nano, 2018, 12, 8633-8645.	7.3	301

#	Article	IF	CITATIONS
164	Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules, 2018, 23, 1704.	1.7	81
165	Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Frontiers in Chemistry, 2018, 6, 127.	1.8	25
166	Intelligent MnO ₂ /Cu _{2–<i>x</i>} S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 17732-17741.	4.0	90
167	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie - International Edition, 2018, 57, 8463-8467.	7.2	59
168	Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. Nano Convergence, 2018, 5, 8.	6.3	9
169	Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. Journal of Colloid and Interface Science, 2018, 526, 302-311.	5.0	105
170	Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nature Communications, 2018, 9, 3334.	5.8	464
171	Dyeâ€Anchored MnO Nanoparticles Targeting Tumor and Inducing Enhanced Phototherapy Effect via Mitochondriaâ€Mediated Pathway. Small, 2018, 14, e1801008.	5.2	58
172	Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12061-12069.	3.2	29
173	Bimetallic Oxide MnMoO _X Nanorods for in Vivo Photoacoustic Imaging of GSH and Tumor-Specific Photothermal Therapy. Nano Letters, 2018, 18, 6037-6044.	4.5	146
174	Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma. Journal of Materials Chemistry B, 2018, 6, 5823-5834.	2.9	19
175	Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technology in Cancer Research and Treatment, 2018, 17, 153303381879179.	0.8	96
176	A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale, 2018, 10, 17283-17292.	2.8	52
177	Heteroatom-Containing Organic Molecule for Two-Photon Fluorescence Lifetime Imaging and Photodynamic Therapy. Journal of Physical Chemistry C, 2018, 122, 20945-20951.	1.5	13
178	Enhanced highly toxic reactive oxygen species levels from iron oxide core–shell mesoporous silica nanocarrier-mediated Fenton reactions for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 5876-5887.	2.9	59
179	Quantum Dot–Dye Conjugates for Biosensing, Imaging, and Therapy. Advanced Healthcare Materials, 2018, 7, e1800252.	3.9	51
180	Rational Design of Conjugated Photosensitizers with Controllable Photoconversion for Dually Cooperative Phototherapy. Advanced Materials, 2018, 30, e1801216.	11.1	159
181	Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease. Angewandte Chemie, 2018, 130, 9552-9556.	1.6	11

#	Article	IF	CITATIONS
182	Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS Nano, 2018, 12, 7312-7326.	7.3	115
183	Polymer Dots as Effective Phototheranostic Agents. Photochemistry and Photobiology, 2018, 94, 916-934.	1.3	40
184	Singlet Oxygen Photosensitizing Materials for Pointâ€ofâ€Use Water Disinfection with Solar Reactors. ChemPhotoChem, 2018, 2, 512-534.	1.5	60
185	Enhancing the efficacy of photodynamic therapy (PDT) <i>via</i> water-soluble pillar[5]arene-based supramolecular complexes. Chemical Communications, 2018, 54, 7629-7632.	2.2	40
186	Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. Journal of Controlled Release, 2018, 284, 15-25.	4.8	61
187	Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chemical Science, 2018, 9, 5816-5821.	3.7	49
188	Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 4301-4307.	2.9	51
189	Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 21198-21205.	4.0	37
190	Application of metal oxide-based photocatalysis. , 2018, , 211-340.		13
191	Combined Photodynamic and Photothermal Therapy Using Cross-Linked Polyphosphazene Nanospheres Decorated with Gold Nanoparticles. ACS Applied Nano Materials, 2018, 1, 3663-3672.	2.4	50
192	Synthesis of Filmâ€Forming Photoactive Latex Particles by Emulsion Polymerization–Induced Selfâ€Assembly to Produce Singlet Oxygen. Macromolecular Rapid Communications, 2019, 40, e1800329.	2.0	15
193	ROS-Responsive Polymeric Nanocarriers with Photoinduced Exposure of Cell-Penetrating Moieties for Specific Intracellular Drug Delivery. ACS Applied Materials & amp; Interfaces, 2019, 11, 31681-31692.	4.0	32
194	Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 31735-31742.	4.0	109
195	Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chemical Science, 2019, 10, 9091-9098.	3.7	81
196	O ₂ -Cu/ZIF-8@Ce6/ZIF-8@F127 Composite as a Tumor Microenvironment-Responsive Nanoplatform with Enhanced Photo-/Chemodynamic Antitumor Efficacy. ACS Applied Materials & Interfaces, 2019, 11, 31671-31680.	4.0	131
197	Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews, 2019, 398, 113012.	9.5	23
198	A heavy atom-free copolymer for light triggered photodynamic and photothermal therapy of human prostate cancer cells. New Journal of Chemistry, 2019, 43, 13670-13674.	1.4	3
199	Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy. Advanced Science, 2019, 6, 1901211.	5.6	130

ARTICLE IF CITATIONS Enhancement of cisplatin efficacy by lipidâ€"CaO₂ nanocarrier-mediated comprehensive 200 2.6 48 modulation of the tumor microenvironment. Biomaterials Science, 2019, 7, 4260-4272. Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen Species Generation and Drug Release. Angewandte Chemie - International Edition, 2019, 58, 14758-14763. 7.2 A novel BODIPY-based photosensitizer with pH-active singlet oxygen generation for photodynamic 202 1.5 38 therapy in lysosomes. Organic and Biomolecular Chemistry, 2019, 17, 8001-8007. 5-aminolaevulinic acid-based photodynamic therapy inhibits ultraviolet B-induced skin photodamage. International Journal of Biological Sciences, 2019, 15, 2100-2109. Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided 204 Cancer Therapy Based on pH-Sensitive Fe₅C₂@Fe₃O₄ 7.3 138 Nanoparticles. ACS Nano, 2019, 13, 10002-10014. Highly Effective and Noninvasive Nearâ€Infrared Eradication of a <i>Staphylococcus aureus</i> Biofilm on Implants by a Photoresponsive Coating within 20 Min. Advanced Science, 2019, 6, 1900599. 5.6 Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced 206 4.6 54 Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics, 2019, 9, 5315-5331. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. 1.6 70 Scientific Reports, 2019, 9, 9679. Mesoporous semiconductors combined with up-conversion nanoparticles for enhanced 208 1.7 9 photodynamic therapy under near infrared light. RSC Advances, 2019, 9, 17273-17280. 209 Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778. 11.1 Dual-Functional Supernanoparticles with Microwave Dynamic Therapy and Microwave Thermal 210 107 4.5Therapy. Nano Letters, 2019, 19, 5277-5286. Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angewandte 180 Chemie - International Edition, 2019, 58, 14213-14218. A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. 212 1.3 2 Frontiers in Oncology, 2019, 9, 595. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers, 2019, 11, 1030. 1.7 Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angewandte 214 37 1.6 Chemie, 2019, 131, 14351-14356. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules, 2019, 20, 3435-3444. Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chemical Science, 2019, 10, 216 3.7 55 8455-8460. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chemical Science, 2019, 10, 8618-8633.

#	Article	IF	CITATIONS
218	Three-in-One Functional Silica Nanocarrier with Singlet Oxygen Generation, Storage/Release, and Self-Monitoring for Enhanced Fractional Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 25750-25757.	4.0	24
219	Augment of Oxidative Damage with Enhanced Photodynamic Process and MTH1 Inhibition for Tumor Therapy. Nano Letters, 2019, 19, 5568-5576.	4.5	53
220	Engineering of a universal polymeric nanoparticle platform to optimize the PEG density for photodynamic therapy. Science China Chemistry, 2019, 62, 1379-1386.	4.2	11
221	N-Methylpyridylporphyrin tailed with folate conjugate as a potential lysosomal-targeted photosensitizer: Synthesis, DNA interaction, singlet oxygen and subcellular localization. Journal of Porphyrins and Phthalocyanines, 2019, 23, 679-684.	0.4	3
222	Evaluation of photodynamic therapy and nuclear imaging potential of subphthalocyanine integrated TiO2 nanoparticles in mammary and cervical tumor cells. Journal of Porphyrins and Phthalocyanines, 2019, 23, 908-915.	0.4	9
223	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	2.6	21
224	TiO ₂ Nanosheets with the Au Nanocrystal-Decorated Edge for Mitochondria-Targeting Enhanced Sonodynamic Therapy. Chemistry of Materials, 2019, 31, 9105-9114.	3.2	129
225	H ₂ O ₂ ‣ensitive Upconversion Nanocluster Bomb for Triâ€Mode Imagingâ€Guided Photodynamic Therapy in Deep Tumor Tissue. Advanced Healthcare Materials, 2019, 8, e1900972.	3.9	38
226	Nonâ€Fentonâ€Type Hydroxyl Radical Generation and Photothermal Effect by Mitochondriaâ€Targeted WSSe/MnO ₂ Nanocomposite Loaded with Isoniazid for Synergistic Anticancer Treatment. Advanced Functional Materials, 2019, 29, 1903850.	7.8	59
227	Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials, 2019, 224, 119500.	5.7	51
228	Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation. ACS Nano, 2019, 13, 13144-13160.	7.3	109
229	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42917-42931.	4.0	74
230	Smart H ₂ Sâ€Triggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science, 2019, 6, 1901724.	5.6	55
231	Mitochondriaâ€Targeting Selenopheneâ€Modified BODIPYâ€Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem, 2019, 14, 1879-1886.	1.6	35
232	Photodynamic therapy combined with antifungal drugs against chromoblastomycosis and the effect of ALA-PDT on Fonsecaea in vitro. PLoS Neglected Tropical Diseases, 2019, 13, e0007849.	1.3	21
233	Fighting Hypoxia to Improve PDT. Pharmaceuticals, 2019, 12, 163.	1.7	113
234	Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 44007-44017.	4.0	20
235	Platelet-Mimicking Biotaxis Targeting Vasculature-Disrupted Tumors for Cascade Amplification of Hypoxia-Sensitive Therapy. ACS Nano, 2019, 13, 14230-14240.	7.3	60

#	Article	IF	CITATIONS
236	Synergetic Photocatalytic Pure Water Splitting and Self-Supplied Oxygen Activation by 2-D WO ₃ /TiO ₂ Heterostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19902-19909.	3.2	18
237	Synergistic Chemical and Photodynamic Antimicrobial Therapy for Enhanced Wound Healing Mediated by Multifunctional Light-Responsive Nanoparticles. Biomacromolecules, 2019, 20, 4581-4592.	2.6	104
238	Stereotactic Photodynamic Therapy Using a Twoâ€Photon AIE Photosensitizer. Small, 2019, 15, e1905080.	5.2	35
239	Indocyanine green loaded APTMS coated SPIONs for dual phototherapy of cancer. Journal of Photochemistry and Photobiology B: Biology, 2019, 201, 111648.	1.7	20
240	Prosocial Behaviour in Interethnic Encounters: Evidence from a Field Experiment with High- and Low-Status Immigrants. European Sociological Review, 2019, 35, 582-597.	1.3	13
241	Cucurbit[7]uril-Anchored Porphyrin-Based Multifunctional Molecular Platform for Photodynamic Antimicrobial and Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4693-4697.	2.3	24
242	Advanced Nanotechnology Leading the Way to Multimodal Imagingâ€Guided Precision Surgical Therapy. Advanced Materials, 2019, 31, e1904329.	11.1	135
243	Photosensitizer Tailored Surface Functionalized Carbon Dots for Visible Light Induced Targeted Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4953-4965.	2.3	7
244	Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer Treatment. Biomolecules, 2019, 9, 384.	1.8	29
245	Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen Species Generation and Drug Release. Angewandte Chemie, 2019, 131, 14900-14905.	1.6	46
246	Dual Fenton Catalytic Nanoreactor for Integrative Type-I and Type-II Photodynamic Therapy Against Hypoxic Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3854-3860.	2.3	38
247	Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules, 2019, 24, 3153.	1.7	35
248	Nucleus-localized platinum(<scp>ii</scp>)–triphenylamine complexes as potent photodynamic anticancer agents. Inorganic Chemistry Frontiers, 2019, 6, 2817-2823.	3.0	13
249	Highly selective microglial uptake of ceria–zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale, 2019, 11, 19437-19447.	2.8	29
250	Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer. European Journal of Medicinal Chemistry, 2019, 183, 111683.	2.6	27
251	O ₂ -Generating Metal–Organic Framework-Based Hydrophobic Photosensitizer Delivery System for Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36347-36358.	4.0	90
252	Size-Tunable Targeting-Triggered Nanophotosensitizers Based on Self-Assembly of a Phthalocyanine–Biotin Conjugate for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36435-36443.	4.0	40
253	Mitochondria-Targeting Thermosensitive Initiator with Enhanced Anticancer Efficiency. ACS Applied Bio Materials, 2019, 2, 4656-4666.	2.3	8

#	Article	IF	CITATIONS
254	NIR-Triggered "OFF/ON―Photodynamic Therapy through a Upper Critical Solution Temperature Block Copolymer. ACS Applied Materials & Interfaces, 2019, 11, 37121-37129.	4.0	19
255	Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chemistry, 2019, 21, 6073-6081.	4.6	41
256	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	7.3	199
257	Copper-Doped Carbon Dots for Optical Bioimaging and Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 13394-13402.	1.9	87
258	Epigenetics-inspired photosensitizer modification for plasma membrane-targeted photodynamic tumor therapy. Biomaterials, 2019, 224, 119497.	5.7	24
259	Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110536.	2.5	23
260	Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano, 2019, 13, 11249-11262.	7.3	112
261	An Emerging Molecular Design Approach to Heavy-Atom-Free Photosensitizers for Enhanced Photodynamic Therapy under Hypoxia. Journal of the American Chemical Society, 2019, 141, 16243-16248.	6.6	267
262	Role of Cholesterol Conjugation in the Antibacterial Photodynamic Therapy of Branched Polyethylenimine-Containing Nanoagents. Langmuir, 2019, 35, 14324-14331.	1.6	35
263	Dual-emitting nanocomposites for oxygen-carrying capacity analysis and boosted singlet oxygen generation in stored red blood cells. Dyes and Pigments, 2019, 171, 107751.	2.0	5
264	A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20296-20302.	3.3	113
265	Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. Journal of Microencapsulation, 2019, 36, 728-737.	1.2	16
266	Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nanoâ€Red Blood Cells. Advanced Science, 2019, 6, 1801678.	5.6	34
267	Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. Nanoscale Horizons, 2019, 4, 415-425.	4.1	57
268	Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. Chemical Science, 2019, 10, 3096-3102.	3.7	113
269	Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. Journal of Inorganic Biochemistry, 2019, 193, 124-129.	1.5	24
270	Modulation of Intracellular Oxygen Pressure by Dualâ€Drug Nanoparticles to Enhance Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1806708.	7.8	98
271	One-step co-assembly method to fabricate photosensitive peptide nanoparticles for two-photon photodynamic therapy. Chemical Communications, 2019, 55, 3191-3194.	2.2	28

#	Article	IF	CITATIONS
272	Photothermal-Controlled Generation of Alkyl Radical from Organic Nanoparticles for Tumor Treatment. ACS Applied Materials & Interfaces, 2019, 11, 5782-5790.	4.0	37
273	Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO ₃ heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horizons, 2019, 4, 720-726.	4.1	58
274	Methylene Blue Loaded Cu–Tryptone Complex Nanoparticles: A New Glutathione-Reduced Enhanced Photodynamic Therapy Nanoplatform. ACS Biomaterials Science and Engineering, 2019, 5, 1016-1022.	2.6	17
275	Ferrous-cysteine–phosphotungstate nanoagent with neutral pH fenton reaction activity for enhanced cancer chemodynamic therapy. Materials Horizons, 2019, 6, 369-374.	6.4	150
276	Microgel Bioreactors for Cancer Cell Targeting by pH-Dependent Generation of Radicals. Molecular Pharmaceutics, 2019, 16, 3275-3283.	2.3	1
277	Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coordination Chemistry Reviews, 2019, 395, 46-62.	9.5	187
278	A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy. RSC Advances, 2019, 9, 18815-18822.	1.7	41
279	Porphyrinâ€Based Porous Organic Frameworks as Oxygen Reservoirs to Overcome Tumor Hypoxia for Enhanced Photodynamic Therapy. Advanced Therapeutics, 2019, 2, 1900059.	1.6	16
280	Reactive oxygen species-responsive theranostic nanoparticles for enhanced hypoxic tumor photodynamic therapy <i>via</i> synchronous HIF-1α inhibition and ATP depletion. Materials Chemistry Frontiers, 2019, 3, 1793-1799.	3.2	14
281	Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy. Molecular Pharmaceutics, 2019, 16, 3703-3710.	2.3	14
282	Tumor Homing Reactive Oxygen Species Nanoparticle for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 23909-23918.	4.0	27
283	Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Accounts of Chemical Research, 2019, 52, 1771-1782.	7.6	248
284	Selective Hypochlorous Acid Detection by Electronic Tuning of Platinum–4,5-bis(diphenylphosphino)acridine–Thiolate Complexes. Inorganic Chemistry, 2019, 58, 9290-9302.	1.9	4
285	Reasonably retard O2 consumption through a photoactivity conversion nanocomposite for oxygenated photodynamic therapy. Biomaterials, 2019, 218, 119312.	5.7	24
286	Platinated porphyrin tailed with folic acid conjugate for cell-targeted photodynamic activity. Journal of Luminescence, 2019, 214, 116552.	1.5	14
287	Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27, 146-177.	6.2	116
288	Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 23392-23400.	4.0	126
289	Mitochondriaâ€Targeted Polydopamine Nanocomposite with AIE Photosensitizer for Imageâ€Guided Photodynamic and Photothermal Tumor Ablation. Small, 2019, 15, e1902352.	5.2	97

#	Article	IF	CITATIONS
290	Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Applied Materials & Interfaces, 2019, 11, 26529-26558.	4.0	159
291	X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews, 2019, 48, 3073-3101.	18.7	231
292	Photodynamic therapy for solid tumors: A review of the literature. Photodermatology Photoimmunology and Photomedicine, 2019, 35, 295-303.	0.7	139
293	A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials, 2019, 216, 119254.	5.7	95
294	Facile Phototherapeutic Nanoplatform by Integrating a Multifunctional Polymer and MnO ₂ for Enhancing Tumor Synergistic Therapy. Advanced Healthcare Materials, 2019, 8, e1900414.	3.9	34
295	Monodispersed Copper(I)â€Based Nano Metal–Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Advanced Science, 2019, 6, 1900848.	5.6	147
296	Light-Induced Reactive-Oxygen-Species- (ROS-) Mediated Activation of Self-Assembled Nanoplatforms for On-Demand Drug Delivery. ACS Symposium Series, 2019, , 253-285.	0.5	1
297	Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 21822-21829.	4.0	77
298	Photosensitizers for Photodynamic Therapy. Advanced Healthcare Materials, 2019, 8, e1900132.	3.9	637
299	The photodynamic activities of dimethyl 131-[2-(guanidinyl)ethylamino] chlorin e6 photosensitizers in A549 tumor. European Journal of Medicinal Chemistry, 2019, 177, 144-152.	2.6	14
300	Highly Charged Ruthenium(II) Polypyridyl Complexes as Effective Photosensitizer in Photodynamic Therapy. Chemistry - A European Journal, 2019, 25, 10606-10615.	1.7	39
301	Monitorable Mitochondria-Targeting DNAtrain for Image-Guided Synergistic Cancer Therapy. Analytical Chemistry, 2019, 91, 6996-7000.	3.2	21
302	BODIPY derivatives as light-induced free radical generators for hypoxic cancer treatment. Journal of Materials Chemistry B, 2019, 7, 3976-3981.	2.9	19
303	Heavy atom free 1,1,4,4-tetraphenylbuta-1,3-diene with aggregation induced emission for photodynamic cancer therapy. New Journal of Chemistry, 2019, 43, 9183-9187.	1.4	8
304	Carbon-Doped TiO2 Activated by X-Ray Irradiation for the Generation of Reactive Oxygen Species to Enhance Photodynamic Therapy in Tumor Treatment. International Journal of Molecular Sciences, 2019, 20, 2072.	1.8	16
305	Hydrothermal derived protoporphyrin IX nanoparticles for inactivation and imaging of bacteria strains. Journal of Colloid and Interface Science, 2019, 549, 72-79.	5.0	23
306	Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Nanotheranostics, 2019, 3, 156-165.	2.7	16
307	Cascadeâ€amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1555.	3.3	4

#	Article	IF	CITATIONS
308	Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 2019, 26, 16-56.	6.2	113
309	Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorganic and Medicinal Chemistry, 2019, 27, 2201-2208.	1.4	12
310	Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1560.	3.3	113
311	Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18133-18144.	4.0	120
312	N-Arylated bisferrocene pyrazole for the dual-mode detection of hydrogen peroxide: an AIE-active fluorescent "turn ON/OFF―and electrochemical non-enzymatic sensor. New Journal of Chemistry, 2019, 43, 8539-8550.	1.4	16
313	Listeria innocua Dps as a nanoplatform for bioluminescence based photodynamic therapy utilizing Gaussia princeps luciferase and zinc protoporphyrin IX. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102005.	1.7	13
314	Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjugate Chemistry, 2019, 30, 1297-1303.	1.8	26
315	Light-Enhanced O ₂ -Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS Applied Materials & Interfaces, 2019, 11, 16367-16379.	4.0	90
316	Tuning photosensitized singlet oxygen production from microgels synthesized by polymerization in aqueous dispersed media. Polymer Chemistry, 2019, 10, 3170-3179.	1.9	12
317	Dual-action platinum(II) Schiff base complexes: Photocytotoxicity and cellular imaging. Polyhedron, 2019, 172, 157-166.	1.0	13
318	Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS Nano, 2019, 13, 4267-4277.	7.3	513
319	Glucose Oxidaseâ€Instructed Multimodal Synergistic Cancer Therapy. Advanced Materials, 2019, 31, e1808325.	11.1	409
320	Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials, 2019, 206, 101-114.	5.7	223
321	Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion. European Journal of Medicinal Chemistry, 2019, 169, 53-64.	2.6	23
322	Chlorophyllin�e6â€ʿmediated photodynamic therapy inhibits proliferation and induces apoptosis in human bladder cancer cells. Oncology Reports, 2019, 41, 2181-2193.	1.2	16
323	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	4.6	21
324	In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. Journal of the American Chemical Society, 2019, 141, 5612-5616.	6.6	196
325	A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochemical and Photobiological Sciences, 2019, 18, 1235-1241.	1.6	27

#	Article	IF	CITATIONS
326	Rare-Earth-Doped Calcium Carbonate Exposed to X-ray Irradiation to Induce Reactive Oxygen Species for Tumor Treatment. International Journal of Molecular Sciences, 2019, 20, 1148.	1.8	9
327	NIRâ€Triggered Phototherapy and Immunotherapy via an Antigenâ€Capturing Nanoplatform for Metastatic Cancer Treatment. Advanced Science, 2019, 6, 1802157.	5.6	221
328	"Vigna radiata―based green C-dots: Photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (III) and multicolor live cell imaging probe. Sensors and Actuators B: Chemical, 2019, 291, 275-286.	4.0	45
329	Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Accounts of Chemical Research, 2019, 52, 1245-1254.	7.6	138
330	An anthracene functionalized BODIPY derivative with singlet oxygen storage ability for photothermal and continuous photodynamic synergistic therapy. Journal of Materials Chemistry B, 2019, 7, 3303-3309.	2.9	41
331	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
332	Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chemical Science, 2019, 10, 5085-5094.	3.7	66
333	Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chemical Engineering Journal, 2019, 370, 1188-1199.	6.6	100
334	Deformation of amphibolites from the Paleoproterozoic Liaohe Group, Liaodong Peninsula, China: Implications to the crustal structure of the Jiaoâ€Liaoâ€Ji mobile belt in the eastern block, North China Craton. Geological Journal, 2019, 54, 791-803.	0.6	3
335	Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Materials Chemistry Frontiers, 2019, 3, 1123-1127.	3.2	37
336	Nitroreductase-Activatable Theranostic Molecules with High PDT Efficiency under Mild Hypoxia Based on a TADF Fluorescein Derivative. ACS Applied Materials & Interfaces, 2019, 11, 15426-15435.	4.0	118
337	Nanoscaled porphyrinic metal–organic framework for photodynamic/photothermal therapy of tumor. Electrophoresis, 2019, 40, 2204-2210.	1.3	22
338	Sequential catalytic nanomedicine augments synergistic chemodrug and chemodynamic cancer therapy. Nanoscale Horizons, 2019, 4, 890-901.	4.1	42
339	Iron-Chelated Polydopamine Decorated Doxorubicin-Loaded Nanodevices for Reactive Oxygen Species Enhanced Cancer Combination Therapy. Frontiers in Pharmacology, 2019, 10, 75.	1.6	12
340	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339.	5.2	82
341	Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. Advanced Materials, 2019, 31, e1806803.	11.1	130
342	Upconverting Carbon Nanodots from Ethylenediaminetetraacetic Acid (EDTA) as Nearâ€Infrared Activated Phototheranostic Agents. Chemistry - A European Journal, 2019, 25, 5539-5546.	1.7	15
343	Mitochondria targeted and NADH triggered photodynamic activity of chloromethyl modified Ru(<scp>ii</scp>) complexes under hypoxic conditions. Chemical Communications, 2019, 55, 2676-2679.	2.2	43

#	Article	IF	CITATIONS
344	Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules, 2019, 24, 520.	1.7	72
345	Thieno[3,2- <i>b</i>]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. Journal of Materials Chemistry B, 2019, 7, 2454-2462.	2.9	23
346	Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2190-2200.	2.9	36
347	Synergistic cytotoxicity of homoharringtonine and etoposide in acute myeloid leukemia cells involves disrupted antioxidant defense. Cancer Management and Research, 2019, Volume 11, 1023-1032.	0.9	8
348	Scope of antimicrobial photodynamic therapy in Orthodontics and related research: A review. Photodiagnosis and Photodynamic Therapy, 2019, 25, 456-459.	1.3	21
349	Glycosylated porphyrin-cucurbituril conjugate for photodynamic inactivation of bacteria and doxorubicin carriage for anticancer drug delivery. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1406-1413.	0.4	13
350	Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo. Russian Chemical Bulletin, 2019, 68, 2216-2224.	0.4	5
351	Light-Induced Therapies for Prostate Cancer Treatment. Frontiers in Chemistry, 2019, 7, 719.	1.8	26
352	H ₂ O ₂ -activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomaterials Science, 2019, 7, 5359-5368.	2.6	33
353	Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale, 2019, 11, 22182-22195.	2.8	59
354	Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale, 2019, 11, 19658-19683.	2.8	90
355	The controllable growth of ultrathin MnO ₂ on polydopamine nanospheres as a single nanoplatform for the MRI-guided synergistic therapy of tumors. Journal of Materials Chemistry B, 2019, 7, 7152-7161.	2.9	34
356	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	2.0	44
357	Silver sulfide nanoparticles for photodynamic therapy of human lymphoma cells <i>via</i> disruption of energy metabolism. RSC Advances, 2019, 9, 29936-29941.	1.7	11
358	<p>808 nm Near-Infrared Light-Excited UCNPs@mSiO₂-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 10009-10021.	3.3	21
359	Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2019, 160, 683-691.	2.0	15
360	Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. Advanced Materials, 2019, 31, e1802725.	11.1	230
361	The effect of low- and high-penetration light on localized cancer therapy. Advanced Drug Delivery Reviews, 2019, 138, 105-116.	6.6	44

#	Article	IF	CITATIONS
362	Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics, 2019, 9, 246-264.	4.6	85
363	Microwave-Assisted Synthesis of Black Titanium Monoxide for Synergistic Tumor Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 3323-3333.	4.0	21
364	Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications, 2019, 10, 41.	5.8	168
365	Nearâ€Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angewandte Chemie - International Edition, 2019, 58, 1052-1056.	7.2	116
366	Selfâ€Assembled Metalâ€Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. Advanced Biology, 2019, 3, e1800241.	3.0	30
367	Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. European Polymer Journal, 2019, 110, 344-354.	2.6	16
368	Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nature Communications, 2019, 10, 240.	5.8	143
369	Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors. Biomaterials, 2019, 197, 129-145.	5.7	43
370	Tumor‧pecific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Advanced Science, 2019, 6, 1801986.	5.6	221
371	Decreased phototoxicity of photodynamic therapy by Cx32/Cx26 omposed GJIC: A "Good Samaritan― effect. Lasers in Surgery and Medicine, 2019, 51, 301-308.	1.1	4
372	Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation. ACS Applied Bio Materials, 2019, 2, 747-756.	2.3	68
373	Rational design of BODIPY organic nanoparticles for enhanced photodynamic/photothermal therapy. Dyes and Pigments, 2019, 162, 295-302.	2.0	28
374	A NIR fluorescent sensor with large Stokes shift for the real-time visualization of endogenous hydrogen peroxide in living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 12-17.	2.0	15
375	Nanomedicine and macroscale materials in immuno-oncology. Chemical Society Reviews, 2019, 48, 351-381.	18.7	118
376	Self-Assembled Copper–Amino Acid Nanoparticles for in Situ Glutathione "AND― H ₂ O ₂ Sequentially Triggered Chemodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 849-857.	6.6	850
377	Nearâ€Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angewandte Chemie, 2019, 131, 1064-1068.	1.6	39
378	Design of Cerenkov Radiation–Assisted Photoactivation of TiO ₂ Nanoparticles and Reactive Oxygen Species Generation for Cancer Treatment. Journal of Nuclear Medicine, 2019, 60, 702-709.	2.8	17
379	Rational Design of Phosphorescent Iridium(III) Complexes for Selective Glutathione Sensing and Amplified Photodynamic Therapy. ChemBioChem, 2019, 20, 576-586.	1.3	21

#	Article	IF	CITATIONS
380	Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy. Antioxidants and Redox Signaling, 2019, 30, 747-761.	2.5	30
381	A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters, 2020, 31, 189-192.	4.8	42
382	Zâ€Scheme Heterojunction Functionalized Pyrite Nanosheets for Modulating Tumor Microenvironment and Strengthening Photo/Chemodynamic Therapeutic Effects. Advanced Functional Materials, 2020, 30, 1906466.	7.8	89
383	Precise Molecular Design for Highâ€Performance Luminogens with Aggregationâ€Induced Emission. Advanced Materials, 2020, 32, e1903530.	11.1	296
384	Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Materials Science and Engineering C, 2020, 107, 110303.	3.8	47
385	Relationship between heart rate variability and aggressive behavior among patients with schizophrenia hospitalized in acute wards. Perspectives in Psychiatric Care, 2020, 56, 321-329.	0.9	7
386	Layer structured LDH_ZnPcG4-FA nanoplatform for targeted and imaging guided chemo-photodynamic therapy mediated by 650†nm light. Chemical Engineering Journal, 2020, 382, 122847.	6.6	12
387	Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Science China Materials, 2020, 63, 136-146.	3.5	25
389	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2020, 59, 632-636.	7.2	154
390	Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials, 2020, 228, 119578.	5.7	157
391	Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coordination Chemistry Reviews, 2020, 403, 213092.	9.5	110
392	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie, 2020, 132, 642-646.	1.6	19
393	Tuning the SOCT-ISC of bodipy based photosentizers by introducing different electron donating groups and its application in triplet-triplet-annihilation upconversion. Dyes and Pigments, 2020, 173, 108003.	2.0	19
394	In Situ Polymerized Hollow Mesoporous Organosilica Biocatalysis Nanoreactor for Enhancing ROSâ€Mediated Anticancer Therapy. Advanced Functional Materials, 2020, 30, 1907716.	7.8	136
395	A triazoleâ€based fluorescence probe for detecting Hg 2+ ions and its biological application. Luminescence, 2020, 35, 129-137.	1.5	6
396	Synergistic anticancer activity by co-delivered nanosized dual therapeutic agents and siRNA in colon cancer. Journal of Drug Delivery Science and Technology, 2020, 55, 101351.	1.4	8
397	A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chinese Chemical Letters, 2020, 31, 275-280.	4.8	26
398	3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Analytical Chemistry, 2020, 92, 2566-2572.	3.2	27

#	Article	IF	CITATIONS
399	<i>In vivo</i> therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chemical Science, 2020, 11, 1299-1306.	3.7	83
400	pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chemical Communications, 2020, 56, 1956-1959.	2.2	42
401	Fluorescent glycoconjugates and their applications. Chemical Society Reviews, 2020, 49, 593-641.	18.7	49
402	A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomaterials Science, 2020, 8, 858-870.	2.6	27
403	Microenvironment-activated nanoparticles for oxygen self-supplemented photodynamic cancer therapy. Biomaterials Science, 2020, 8, 370-378.	2.6	17
404	Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chemical Communications, 2020, 56, 1389-1392.	2.2	76
405	BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chemical Communications, 2020, 56, 940-943.	2.2	38
406	Phenazine-based photosensitizers for singlet oxygen generation. Materials Chemistry Frontiers, 2020, 4, 589-596.	3.2	27
407	Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomedicine and Pharmacotherapy, 2020, 123, 109794.	2.5	64
408	Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110753.	2.5	19
409	Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio, 2020, 5, 100035.	2.6	167
410	Soybean glycinin caused NADPH-oxidase-regulated ROS overproduction and decreased ROS elimination capacity in the mid and distal intestine of juvenile grass carp (Ctenopharyngodon idella). Aquaculture, 2020, 516, 734651.	1.7	14
411	Design of smart chemical â€~tongue' sensor arrays for pattern-recognition-based biochemical sensing applications. TrAC - Trends in Analytical Chemistry, 2020, 124, 115794.	5.8	39
412	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	1.3	55
413	Multi-path tumor inhibition via the interactive effects between tumor microenvironment and an oxygen self-supplying delivery system for a photosensitizer. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101642.	1.3	12
414	Dual-Functional NIR AlEgens for High-Fidelity Imaging of Lysosomes in Cells and Photodynamic Therapy. ACS Sensors, 2020, 5, 225-233.	4.0	49
415	Precise photodynamic therapy: Penetrating the nuclear envelope with photosensitive carbon dots. Carbon, 2020, 159, 74-82.	5.4	57
416	Biomineralized Bimetallic Oxide Nanotheranostics for Multimodal Imaging-Guided Combination Therapy. Theranostics, 2020, 10, 841-855.	4.6	50

#	Article	IF	CITATIONS
417	A pH/Ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials, 2020, 230, 119636.	5.7	164
418	Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS Applied Bio Materials, 2020, 3, 86-106.	2.3	52
419	Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI—guided photodynamic/photothermal combined treatment. Nanotechnology, 2020, 31, 135101.	1.3	18
420	Near Infrared-Activated Dye-Linked ZnO Nanoparticles Release Reactive Oxygen Species for Potential Use in Photodynamic Therapy. Materials, 2020, 13, 17.	1.3	8
421	Biomedical Application of Reactive Oxygen Species–Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Frontiers in Chemistry, 2020, 8, 838.	1.8	34
422	Study of the controversial resveratrol that interact with the endogenous glutathione thiyl radical in cancer cells. Free Radical Research, 2020, 54, 687-693.	1.5	1
423	Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines, 2020, 11, 866.	1.4	52
424	9-phenyl acridine photosensitizes A375 cells to UVA radiation. Heliyon, 2020, 6, e04733.	1.4	9
425	Hemoglobin-mediated biomimetic synthesis of paramagnetic O ₂ -evolving theranostic nanoprobes for MR imaging-guided enhanced photodynamic therapy of tumor. Theranostics, 2020, 10, 11607-11621.	4.6	37
426	Tumor targeted self-synergistic nanoplatforms for arsenic-sensitized photodynamic therapy. Acta Biomaterialia, 2020, 117, 349-360.	4.1	17
427	Alleviating tumor hypoxia with perfluorocarbon-based oxygen carriers. Current Opinion in Pharmacology, 2020, 53, 117-125.	1.7	43
428	Hypoxia-activated ROS burst liposomes boosted by local mild hyperthermia for photo/chemodynamic therapy. Journal of Controlled Release, 2020, 328, 100-111.	4.8	37
429	Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today, 2020, 35, 100960.	6.2	111
430	A two-photon fluorescence self-reporting black phosphorus nanoprobe for the <i>in situ</i> monitoring of therapy response. Chemical Communications, 2020, 56, 14007-14010.	2.2	10
431	Aggregationâ€induced Emission Based Fluorogens for Mitochondriaâ€ŧargeted Tumor Imaging and Theranostics. Chemistry - an Asian Journal, 2020, 15, 3942-3960.	1.7	26
432	Biodegradable hollow mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and mild photo-therapeutic-induced mitochondrial damage on gastric cancer. Journal of Nanobiotechnology, 2020, 18, 99.	4.2	46
433	Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications. , 2020, 2, 1074-1092.		89
434	PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Scientific Reports, 2020, 10, 10435.	1.6	32

#	Article	IF	CITATIONS
435	Singlet Oxygen Generation in Ferriporphyrin-Polymer Dots Catalyzed Chemiluminescence System for Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 5020-5029.	2.3	13
436	Rational design of type I photosensitizers based on Ru(<scp>ii</scp>) complexes for effective photodynamic therapy under hypoxia. Dalton Transactions, 2020, 49, 11192-11200.	1.6	23
437	Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Letters, 2020, 492, 116-135.	3.2	67
438	Impact of Incoherent Coupling within Localized Surface Plasmon Resonance on Singlet Oxygen Production in Rose Bengal-Modified Silica-Coated Silver Nanoshells (SiO ₂ @Ag@SiO ₂ -RB). ACS Applied Nano Materials, 2020, 3, 8126-8137.	2.4	8
439	Photosensitizers Based on G-Quadruplex Ligand for Cancer Photodynamic Therapy. Genes, 2020, 11, 1340.	1.0	25
440	Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS Nano, 2020, 14, 16875-16886.	7.3	45
441	Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. Journal of Nanotheranostics, 2020, 1, 58-77.	1.7	28
442	Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell International, 2020, 20, 570.	1.8	19
443	NIR Photoregulated Theranostic System Based on Hexagonal-Phase Upconverting Nanoparticles for Tumor-Targeted Photodynamic Therapy and Fluorescence Imaging. Nanomaterials, 2020, 10, 2332.	1.9	13
444	Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Scientific Reports, 2020, 10, 21077.	1.6	13
445	Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants, 2020, 9, 1188.	2.2	36
446	Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Frontiers in Chemistry, 2020, 8, 596658.	1.8	11
447	Restricted suitability of BODIPY for caging in biological applications based on singlet oxygen generation. Photochemical and Photobiological Sciences, 2020, 19, 1319-1325.	1.6	7
448	Highly dispersed nano-enzyme triggered intracellular catalytic reaction toward cancer specific therapy. Biomaterials, 2020, 258, 120257.	5.7	63
449	Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Materials Chemistry Frontiers, 2020, 4, 3074-3085.	3.2	55
450	Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer. Chemical Communications, 2020, 56, 11134-11137.	2.2	17
451	Porous Lanthanumâ€Doped Manganese Oxide Nanoparticles for Enhanced Sonodynamic Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000143.	1.2	13
452	ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-30.	1.9	43

#	ARTICLE	IF	Citations
453	Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials, 2020, 257, 120279.	5.7	99
454	Tumor Microenvironment-Regulated and Reported Nanoparticles for Overcoming the Self-Confinement of Multiple Photodynamic Therapy. Nano Letters, 2020, 20, 6526-6534.	4.5	46
455	Protein nanoparticles containing Cu(II) and DOX for efficient chemodynamic therapy via self-generation of H2O2. Chinese Chemical Letters, 2020, 31, 3127-3130.	4.8	49
456	3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS Nano, 2020, 14, 9711-9727.	7.3	105
457	Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging. Journal of Physical Chemistry C, 2020, 124, 19743-19752.	1.5	4
458	Tumor-Targeted Cascade Nanoreactor Based on Metal–Organic Frameworks for Synergistic Ferroptosis–Starvation Anticancer Therapy. ACS Nano, 2020, 14, 11017-11028.	7.3	203
459	A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angewandte Chemie - International Edition, 2020, 59, 21986-21990.	7.2	2
460	NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials, 2020, 259, 120315.	5.7	103
461	Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomaterials Science and Engineering, 2020, 6, 4799-4815.	2.6	42
462	Self-Delivery Photodynamic Nanoinhibitors for Tumor Targeted Therapy and Metastasis Inhibition. ACS Applied Bio Materials, 2020, 3, 6124-6130.	2.3	10
463	Immobilized dyes within anionic indium coordination polymer for photocatalytic 1O2 generation. Microporous and Mesoporous Materials, 2020, 308, 110568.	2.2	6
464	Intelligent Fe–Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygenâ€Elevated Synergetic Therapy and Bioimaging. Small, 2020, 16, e2001343.	5.2	85
465	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	18.7	109
466	Recent Advances in Self-Exciting Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594491.	2.0	36
467	Hydrogen Sulfide Attenuates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Inhibiting Apoptosis and Promoting Autophagy via Reactive Oxygen Species/Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Signaling Pathway. Frontiers in Pharmacology, 2020, 11, 585860	1.6	26
468	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	18.7	397
469	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	4.6	23
470	Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 9933-9942.	2.9	22

#	Article	IF	Citations
471	Tumor microenvironment responsive hollow mesoporous Co9S8@MnO2-ICG/DOX intelligent nanoplatform for synergistically enhanced tumor multimodal therapy. Biomaterials, 2020, 262, 120346.	5.7	80
472	Photothermal Therapy Combined with Light-Induced Generation of Alkyl Radicals for Enhanced Efficacy of Tumor Treatment. ACS Applied Polymer Materials, 2020, 2, 4188-4194.	2.0	9
473	Ultrastable Nearâ€Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Advanced Healthcare Materials, 2020, 9, e2001042.	3.9	12
474	Nanoparticle facilitated delivery of peroxides for effective cancer treatments. Biomaterials Science, 2020, 8, 5574-5582.	2.6	20
475	Amplification of oxidative stress <i>via</i> intracellular ROS production and antioxidant consumption by two natural drug-encapsulated nanoagents for efficient anticancer therapy. Nanoscale Advances, 2020, 2, 3872-3881.	2.2	13
476	Europium-Diethylenetriaminepentaacetic Acid Loaded Radioluminescence Liposome Nanoplatform for Effective Radioisotope-Mediated Photodynamic Therapy. ACS Nano, 2020, 14, 13004-13015.	7.3	41
477	Rational design of a "dual lock-and-key―supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chemical Science, 2020, 11, 9703-9711.	3.7	74
478	Activated Type I and Type II Process for Two-Photon Promoted ROS Generation: The Coordinated Zn Matters. Inorganic Chemistry, 2020, 59, 13671-13678.	1.9	22
479	Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules, 2020, 25, 4102.	1.7	43
480	Silver-decorated, light-activatable polymeric antimicrobials for combined chemo-photodynamic therapy of drug-resistant bacterial infection. Biomaterials Science, 2020, 8, 6350-6361.	2.6	20
481	Tumor pH-triggered "charge conversion―nanocarriers with on-demand drug release for precise cancer therapy. Journal of Materials Chemistry B, 2020, 8, 9351-9361.	2.9	9
482	Cavitationâ€Inducible Mesoporous Silica–Titania Nanoparticles for Cancer Sonotheranostics. Advanced Healthcare Materials, 2020, 9, e2000877.	3.9	27
483	Bimetallic Oxide FeWO <i>_X</i> Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironmentâ€Modulation and Enhanced Multimodal Cancer Therapy. Advanced Functional Materials, 2020, 30, 2002753.	7.8	80
484	Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS Applied Materials & Interfaces, 2020, 12, 44523-44533.	4.0	15
485	Self-luminescent photodynamic therapy using breast cancer targeted proteins. Science Advances, 2020, 6, .	4.7	34
486	Functional Nanohybrids Based on Dyes and Upconversion Nanoparticles. Structure and Bonding, 2020, , 371-396.	1.0	1
487	A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angewandte Chemie, 2020, 132, 22170-22174.	1.6	0
488	Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AlEgen and	6.6	102

		CITATION REPORT		
#	Article		IF	CITATIONS
489	The Coppery Age: Copper (Cu)â€involved Nanotheranostics. Advanced Science, 2020, 7	7, 2001549.	5.6	126
490	Cellâ€Membrane Staining Properties and Photocytotoxicity of a Ruthenium(II) Photose Journal of Inorganic Chemistry, 2020, 2020, 3996-4001.	nsitizer. European	1.0	4
491	Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-rad hybrid plasmonic-fluorescent assemblies. Nano Research, 2020, 13, 3268-3277.	iotherapy using	5.8	39
492	Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhancec Photodynamic Cancer Therapy. , 2020, 2, 1268-1286.			40
493	Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced therapy against lung cancer. Journal of Inorganic Biochemistry, 2020, 212, 111236.	photodynamic	1.5	10
494	In Vivo Bioimaging and Photodynamic Therapy Based on Two-Photon Fluorescent Conju Containing Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide Derivatives. ACS Applied Mater Interfaces, 2020, 12, 57281-57289.	ıgated Polymers ials &	4.0	23
495	Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy. ACS Applied Materi Interfaces, 2020, 12, 57768-57781.	als &	4.0	47
496	Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 2020, 63, 15655-15667.	T-Cell Acute	2.9	15
497	Highly Penetrable and On-Demand Oxygen Release with Tumor Activity Composite Nan Photothermal/Photodynamic Synergetic Therapy. ACS Nano, 2020, 14, 17046-17062.	osystem for	7.3	116
498	Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. Materials, 202	0, 13, 4946.	1.3	33
499	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Materials Today, 2020, 21, 100864.	Applied	2.3	71
500	Mineralized manganese dioxide channel as the stent coating for in situ precise tumor n Nano Research, 2021, 14, 2145.	avigation.	5.8	2
501	CSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Ph under Normoxia and Hypoxia. Angewandte Chemie, 2020, 132, 12220-12226.	otodynamic Therapy	1.6	99
502	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activ Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 14014-1	vatable and Deep 4018.	7.2	89
503	Research progress in endogenous H ₂ Sâ€activatable nanoplatforms for car View, 2020, 1, e15.	ncer theranostics.	2.7	13
504	Host–guest interaction based supramolecular photodynamic therapy systems: a pror the battle against cancer. Chemical Communications, 2020, 56, 5865-5876.	nising candidate in	2.2	36
505	A nitroreductase and glutathione responsive nanoplatform for integration of gene deliv near-infrared fluorescence imaging. Chemical Communications, 2020, 56, 6949-6952.	ery and	2.2	20
506	A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-tar photodynamic therapy. New Journal of Chemistry, 2020, 44, 9355-9364.	geted	1.4	16

#	Article	IF	CITATIONS
507	Programmable ROSâ€Mediated Cancer Therapy via Magnetoâ€Inductions. Advanced Science, 2020, 7, 1902933.	5.6	43
508	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	1.7	33
509	Dualâ€Functionalized Crescent Microgels for Selectively Capturing and Killing Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 14076-14080.	7.2	21
510	The classification and application of cyclodextrin polymers: a review. New Journal of Chemistry, 2020, 44, 9137-9148.	1.4	36
511	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie, 2020, 132, 14118-14122.	1.6	24
512	Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coordination Chemistry Reviews, 2020, 416, 213340.	9.5	74
513	Persistent Luminescence Nanoplatform with Fenton-like Catalytic Activity for Tumor Multimodal Imaging and Photoenhanced Combination Therapy. ACS Applied Materials & Interfaces, 2020, 12, 25572-25580.	4.0	44
514	Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. Polymer Chemistry, 2020, 11, 3913-3921.	1.9	3
515	Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Progress in Materials Science, 2020, 114, 100685.	16.0	128
516	Organic/inorganic nanocomposites for cancer immunotherapy. Materials Chemistry Frontiers, 2020, 4, 2571-2609.	3.2	38
517	Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics, 2020, 10, 6278-6309.	4.6	213
518	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	4.6	58
519	Singlet relaxation dynamics and long triplet lifetimes of thiophene-coupled perylene diimides dyads: New insights for high efficiency organic solar cells. Chinese Chemical Letters, 2020, 31, 2965-2969.	4.8	12
520	Tuning the hydrophobicity of pyridinium-based probes to realize the mitochondria-targeted photodynamic therapy and mitophagy tracking. Sensors and Actuators B: Chemical, 2020, 321, 128460.	4.0	27
521	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie, 2020, 132, 17066-17073.	1.6	14
522	pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5645-5654.	2.9	16
523	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	9.5	191
524	Molecular engineering of anti-PD-L1 peptide and photosensitizer for immune checkpoint blockade photodynamic-immunotherapy. Chemical Engineering Journal, 2020, 400, 125995.	6.6	36

#	Article	IF	CITATIONS
525	Rational Construction of a Mitochondrial Targeting, Fluorescent Self-Reporting Drug-Delivery Platform for Combined Enhancement of Endogenous ROS Responsiveness. ACS Applied Materials & Interfaces, 2020, 12, 32432-32445.	4.0	15
526	Rod-like BODIPY nanomaterials with enhanced photodynamic activity. New Journal of Chemistry, 2020, 44, 11324-11329.	1.4	9
527	The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Materials Chemistry Frontiers, 2020, 4, 2223-2234.	3.2	32
529	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	4.1	36
530	Tumor Microenvironment Targeting Nano–Bio Emulsion for Synergistic Combinational Xâ€Ray PDT with Oncolytic Bacteria Therapy. Advanced Healthcare Materials, 2020, 9, e1901812.	3.9	29
531	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 16918-16925.	7.2	74
532	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	6.6	83
533	Hollow ferric-tannic acid nanocapsules with sustained O ₂ and ROS induction for synergistic tumor therapy. Biomaterials Science, 2020, 8, 3844-3855.	2.6	26
534	Light-triggered dual-modality drug release of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated therapy. Nanoscale Horizons, 2020, 5, 886-894.	4.1	49
535	Feâ€Doped Polyoxometalate as Acidâ€Aggregated Nanoplatform for NIRâ€II Photothermalâ€Enhanced Chemodynamic Therapy. Advanced Healthcare Materials, 2020, 9, e2000005.	3.9	101
536	Enhanced Efficacy of Gefitinib in Drug‣ensitive and Drugâ€Resistant Cancer Cell Lines after Arming with a Singlet Oxygen Releasing Moiety. ChemMedChem, 2020, 15, 794-798.	1.6	1
537	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie - International Edition, 2020, 59, 10431-10435.	7.2	25
538	Heavy atom substituted near-infrared BODIPY nanoparticles for photodynamic therapy. Dyes and Pigments, 2020, 178, 108348.	2.0	21
539	A nanosystem loaded with perfluorohexane and rose bengal coupled upconversion nanoparticles for multimodal imaging and synergetic chemo-photodynamic therapy of cancer. Biomaterials Science, 2020, 8, 2488-2506.	2.6	19
540	Ursodeoxycholyl lysophosphatidylethanolamide protects against hepatic ischemia/reperfusion injury via phospholipid metabolismâ€mediated mitochondrial quality control. FASEB Journal, 2020, 34, 6198-6214.	0.2	6
541	Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science, 2020, 112, 100666.	16.0	197
542	Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and <i>In Situ</i> Triggerable Photodynamic Therapy of Cancer. ACS Applied Materials & Interfaces, 2020, 12, 17230-17243.	4.0	53
543	Imaging and therapy with upconversion nanoparticles. , 2020, , 177-204.		1

#	Article	IF	CITATIONS
544	Selective Entropy Gain-Driven Adsorption of Nanospheres onto Spherical Bacteria Endows Photodynamic Treatment with Narrow-Spectrum Activity. Journal of Physical Chemistry Letters, 2020, 11, 2788-2796.	2.1	11
545	Nonrecurring Circuit Nanozymatic Enhancement of Hypoxic Pancreatic Cancer Phototherapy Using Speckled Ru–Te Hollow Nanorods. ACS Nano, 2020, 14, 4383-4394.	7.3	48
546	Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomaterialia, 2020, 108, 273-284.	4.1	45
547	Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10, 4557-4588.	4.6	334
548	Nanoscale Metal–Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 7334-7339.	6.6	128
549	Two-dimensional highly oxidized ilmenite nanosheets equipped with Z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation. Chemical Engineering Journal, 2020, 390, 124524.	6.6	32
550	MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Science Advances, 2020, 6, eaaz0575.	4.7	59
551	Aggregationâ€Induced Emission: Recent Advances in Materials and Biomedical Applications. Angewandte Chemie, 2020, 132, 9952-9970.	1.6	96
552	Aggregationâ€Induced Emission: Recent Advances in Materials and Biomedical Applications. Angewandte Chemie - International Edition, 2020, 59, 9868-9886.	7.2	483
553	Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydrate Polymers, 2020, 237, 116119.	5.1	47
554	A Graphdiyne Oxideâ€Based Iron Sponge with Photothermally Enhanced Tumor‧pecific Fenton Chemistry. Advanced Materials, 2020, 32, e2000038.	11.1	96
555	Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Applied Polymer Materials, 2020, 2, 3840-3849.	2.0	9
556	Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale, 2020, 12, 15663-15669.	2.8	36
557	ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 32289-32300.	4.0	49
558	Dual pH/ROSâ€Responsive Nanoplatform with Deep Tumor Penetration and Selfâ€Amplified Drug Release for Enhancing Tumor Chemotherapeutic Efficacy. Small, 2020, 16, e2002188.	5.2	45
559	Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horizons, 2020, 5, 857-868.	4.1	33
560	Recent progress in tumor photodynamic immunotherapy. Chinese Chemical Letters, 2020, 31, 1709-1716.	4.8	76
561	Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles. Cancer Letters, 2020, 475, 92-98.	3.2	37

#	Article	IF	CITATIONS
562	Specific "Unlocking―of a Nanozymeâ€Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. Angewandte Chemie - International Edition, 2020, 59, 9491-9497.	7.2	119
563	Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chemical Science, 2020, 11, 3405-3417.	3.7	182
564	Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. Journal of Materials Chemistry B, 2020, 8, 4748-4763.	2.9	39
565	Multifunctional nano-photosensitizer: A carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility. Chemical Engineering Journal, 2020, 390, 124447.	6.6	27
566	A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. Journal of the American Chemical Society, 2020, 142, 4639-4647.	6.6	84
567	Virus-Like Fe ₃ O ₄ @Bi ₂ S ₃ Nanozymes with Resistance-Free Apoptotic Hyperthermia-Augmented Nanozymitic Activity for Enhanced Synergetic Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 11320-11328.	4.0	59
568	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	1.3	92
569	Evaluation of antimicrobial activity of ZnO based nanocomposites for the coating of non-critical equipment in medical-care facilities. Applied Surface Science, 2020, 513, 145818.	3.1	31
570	Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today, 2020, 32, 100851.	6.2	249
571	The role of reactive oxygen species in tumor treatment. RSC Advances, 2020, 10, 7740-7750.	1.7	59
572	Nanomaterials for the regulation of the tumor microenvironment and theranostics. Nanoscale Advances, 2020, 2, 1395-1409.	2.2	11
573	Specific "Unlocking―of a Nanozymeâ€Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. Angewandte Chemie, 2020, 132, 9578-9584.	1.6	27
574	A hybrid silicotungstate based on tri-coordination copper complex and Keggin type cluster with reactive oxygen species catalytic ability. Journal of Molecular Structure, 2020, 1206, 127714.	1.8	13
575	Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 2598-2606.	2.9	68
576	Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. Journal of Medicinal Chemistry, 2020, 63, 1996-2012.	2.9	165
577	Rational design of semiconducting polymer brushes as cancer theranostics. Materials Horizons, 2020, 7, 1474-1494.	6.4	40
578	Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials, 2020, 235, 119792.	5.7	78
579	Recent Advances in Fluorescent Probes for Detection of HOCl and HNO. ACS Omega, 2020, 5, 1730-1742.	1.6	61

#	Article	IF	Citations
580	iASPP-Mediated ROS Inhibition Drives 5-Fu Resistance Dependent on Nrf2 Antioxidative Signaling Pathway in Gastric Adenocarcinoma. Digestive Diseases and Sciences, 2020, 65, 2873-2883.	1.1	5
581	Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 2020, 237, 119827.	5.7	484
582	Detection and Monitoring of Osteoporosis in a Rat Model by Thermoacoustic Tomography. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 234-239.	2.3	11
583	Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. Journal of Physical Chemistry Letters, 2020, 11, 1228-1238.	2.1	105
584	Size-Switchable Nanoparticles with Self-Destructive and Tumor Penetration Characteristics for Site-Specific Phototherapy of Cancer. ACS Applied Materials & amp; Interfaces, 2020, 12, 6933-6943.	4.0	42
585	Dual-Targeted Phototherapeutic Agents as Magic Bullets for Cancer. Bioconjugate Chemistry, 2020, 31, 474-482.	1.8	33
586	Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochemistry and Photobiology, 2020, 96, 280-294.	1.3	213
587	Spatiotemporally Synchronous Oxygen Self‣upply and Reactive Oxygen Species Production on Zâ€Scheme Heterostructures for Hypoxic Tumor Therapy. Advanced Materials, 2020, 32, e1908109.	11.1	124
588	Aggregation-induced Emission-active Fluorescent Nanodot as a Potential Photosensitizer for Photodynamic Anticancer Therapy. Current Nanoscience, 2020, 16, 112-120.	0.7	4
589	Exo/endogenous dual-augmented chemodynamic therapy based on bio-reducible and bio-breakable copper (â;)-based truncated octahedron. Chemical Engineering Journal, 2020, 396, 125280.	6.6	38
590	Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5267-5279.	2.9	35
591	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie, 2020, 132, 10517-10521.	1.6	3
592	H ₂ O ₂ â€Responsive Nanogel for Enhancing Chemodynamic Therapy. ChemNanoMat, 2020, 6, 1054-1058.	1.5	14
593	Killing C(+) or C(â^') Bacteria? The Important Role of Molecular Charge in AlEâ€Active Photosensitizers. Small Methods, 2020, 4, 2000046.	4.6	114
594	Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. Journal of Materials Chemistry B, 2020, 8, 6886-6897.	2.9	24
595	GSH-triggered release of sulfur dioxide gas to regulate redox balance for enhanced photodynamic therapy. Chemical Communications, 2020, 56, 5645-5648.	2.2	34
596	Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomaterials Science, 2020, 8, 2756-2770.	2.6	57
597	Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer. ACS Central Science, 2020, 6, 715-726.	5.3	60

#	Article	IF	Citations
598	Enhanced Upconversion Luminescence-Guided Synergistic Antitumor Therapy Based on Photodynamic Therapy and Immune Checkpoint Blockade. Chemistry of Materials, 2020, 32, 4627-4640.	3.2	50
599	Revealing the Photodynamic Stress <i>In Situ</i> with a Dual-Mode Two-Photon ¹ O ₂ Fluorescent Probe. ACS Sensors, 2020, 5, 1411-1418.	4.0	9
600	Cytochrome P450 enzyme-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between clopidogrel and photosensitizer. Theranostics, 2020, 10, 5550-5564.	4.6	26
601	GSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angewandte Chemie - International Edition, 2020, 59, 12122-12128.	7.2	143
602	A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127164.	1.0	16
603	Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry, 2020, 59, 1618-1629.	1.2	2
604	Polydopamine Coated PB-MnO ₂ Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjugate Chemistry, 2020, 31, 1474-1485.	1.8	27
605	Silicon Tetrapyrazinoporphyrazine Derivatives-Incorporated Carbohydrate-Based Block Copolymer Micelles for Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 1988-2000.	2.3	2
606	Synthesis, Characterization, and Catalytic Property of a Hybrid Nanoscale Polyoxoniobate. Journal of Cluster Science, 2021, 32, 613-620.	1.7	10
607	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	4.6	31
608	An azo dye for photodynamic therapy that is activated selectively by two-photon excitation. Chemical Science, 2021, 12, 427-434.	3.7	33
609	Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Medicine, 2021, 10, 257-268.	1.3	70
610	Highly Phototoxic Transplatinâ€Modified Distyrylâ€BODIPY Photosensitizers for Photodynamic Therapy. ChemMedChem, 2021, 16, 694-701.	1.6	17
611	An organic–inorganic hybrid nanoscale phosphotungstate with reactive oxygen species catalytic ability. Inorganic and Nano-Metal Chemistry, 2021, 51, 332-339.	0.9	5
612	Radioiodinated Persistent Luminescence Nanoplatform for Radiationâ€Induced Photodynamic Therapy and Radiotherapy. Advanced Healthcare Materials, 2021, 10, e2000802.	3.9	33
613	In Vivo-assembled phthalocyanine/albumin supramolecular complexes combined with a hypoxia-activated prodrug for enhanced photodynamic immunotherapy of cancer. Biomaterials, 2021, 266, 120430.	5.7	75
614	A red-light-activated sulfonamide porphycene for highly efficient photodynamic therapy against hypoxic tumor. European Journal of Medicinal Chemistry, 2021, 209, 112867.	2.6	10
615	A multifunctional nano system based on DNA and CeO2 for intracellular imaging of miRNA and enhancing photodynamic therapy. Talanta, 2021, 221, 121554.	2.9	7

#	Article	IF	CITATIONS
616	Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy. Journal of Colloid and Interface Science, 2021, 583, 166-177.	5.0	23
617	Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coordination Chemistry Reviews, 2021, 427, 213575.	9.5	36
618	Free radicals for cancer theranostics. Biomaterials, 2021, 266, 120474.	5.7	95
619	Iron-crosslinked Rososome with robust stability and high drug loading for synergistic cancer therapy. Journal of Controlled Release, 2021, 329, 794-804.	4.8	10
620	Second near-infrared photothermal materials for combinational nanotheranostics. Chemical Society Reviews, 2021, 50, 1111-1137.	18.7	508
621	Activatable supramolecular photosensitizers: advanced design strategies. Materials Chemistry Frontiers, 2021, 5, 1683-1693.	3.2	40
622	Oxygen self-sufficient photodynamic therapy. Coordination Chemistry Reviews, 2021, 432, 213714.	9.5	66
623	Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for safe and potent cancer chemo-photodynamic therapy. Nano Today, 2021, 36, 101030.	6.2	52
624	Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Materials Horizons, 2021, 8, 571-576.	6.4	48
625	Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. Journal of Materials Science and Technology, 2021, 78, 30-37.	5.6	43
626	Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials, 2021, 269, 120532.	5.7	50
627	Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis. Chemical Science, 2021, 12, 148-157.	3.7	46
628	AlEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.	5.7	86
629	BODIPY-linked cis-dichlorido zinc(ii) conjugates: the strategic design of organelle-specific next-generation theranostic photosensitizers. Dalton Transactions, 2021, 50, 103-115.	1.6	9
630	Nanodiamond-based photosensitizer: Enhancing photodynamic therapy and inhibiting tumor metastasis. Carbon, 2021, 174, 90-97.	5.4	8
631	Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. Journal of Controlled Release, 2021, 330, 257-283.	4.8	45
632	A versatile strategy for improving phototherapeutic efficacy on deep-sited tumor by tissue optical clearing technique. Nano Today, 2021, 36, 101058.	6.2	20
633	<i>In situ</i> oxygenating and 808 nm light-sensitized nanocomposite for multimodal imaging and mitochondria-assisted cancer therapy, Journal of Materials Chemistry B, 2021, 9, 131-146	2.9	14
# 634	ARTICLE Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydrate Polymers, 2021, 254, 117459.	IF 5.1	Citations 51
----------	---	-----------	-----------------
635	An Alternating Irradiation Strategyâ€Ðriven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis. Advanced Healthcare Materials, 2021, 10, e2001850.	3.9	16
636	Photogenerated Holes Mediated Nitric Oxide Production for Hypoxic Tumor Treatment. Angewandte Chemie - International Edition, 2021, 60, 7046-7050.	7.2	61
637	Tumor Microenvironment Responsive Biodegradable Feâ€Doped MoO <i>_x</i> Nanowires for Magnetic Resonance Imaging Guided Photothermalâ€Enhanced Chemodynamic Synergistic Antitumor Therapy. Advanced Healthcare Materials, 2021, 10, e2001665.	3.9	33
638	Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021, 405, 126730.	6.6	104
639	Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Letters, 2021, 497, 229-242.	3.2	98
640	Photoactive rose bengal-based latex <i>via</i> RAFT emulsion polymerization-induced self-assembly. Polymer Chemistry, 2021, 12, 134-147.	1.9	9
641	A heavy atom free semiconducting polymer with high singlet oxygen quantum yield for photodynamic and photothermal synergistic therapy. Materials and Design, 2021, 197, 109263.	3.3	10
642	Energyâ€converting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1663.	3.3	11
643	Sodium 3-mercaptopropanesulphonate substituted phthalocyanine: Synthesis, photophysical properties, <i>in vitro</i> and <i>in vivo</i> PDT efficacy. Journal of Porphyrins and Phthalocyanines, 2021, 25, 168-172.	0.4	0
644	Nanoprobes with aggregation-induced emission for theranostics. Materials Chemistry Frontiers, 2021, 5, 603-626.	3.2	53
645	Self-delivery nanomedicine for chemotherapy sensitized photodynamic therapy. Chemical Communications, 2021, 57, 7296-7299.	2.2	7
646	Application of photodynamic therapy in cancer: challenges and advancements. Biocell, 2021, 45, 489-500.	0.4	18
647	Hyaluronic acid modified covalent organic polymers for efficient targeted and oxygen-evolved phototherapy. Journal of Nanobiotechnology, 2021, 19, 4.	4.2	13
648	Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules, 2021, 26, 268.	1.7	47
649	Synergistic non-bonding interactions based on diketopyrrolo-pyrrole for elevated photoacoustic imaging-guided photothermal therapy. Biomaterials Science, 2021, 9, 908-916.	2.6	10
650	A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. Journal of Materials Chemistry B, 2021, 9, 1846-1857.	2.9	40
651	Mitochondria targeted composite enzyme nanogels for synergistic starvation and photodynamic therapy. Nanoscale, 2021, 13, 17737-17745.	2.8	19

#	Article	IF	CITATIONS
652	UCPs/Zn ₂ GeO ₄ :Mn ²⁺ /g-C ₃ N ₄ heterojunction engineered injectable thermosensitive hydrogel for oxygen independent breast cancer neoadjuvant photodynamic therapy. Biomaterials Science, 2021, 9, 2124-2136.	2.6	9
653	Linear and high-molecular-weight poly-porphyrins for efficient photodynamic therapy. Biomaterials Science, 2021, 9, 4630-4638.	2.6	13
654	Engineered Fe ₃ O ₄ -based nanomaterials for diagnosis and therapy of cancer. New Journal of Chemistry, 2021, 45, 7918-7941.	1.4	13
655	Biodegradable Calcium Phosphate Nanotheranostics with Tumorâ€5pecific Activatable Cascade Catalytic Reactionsâ€Augmented Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2009848.	7.8	120
656	A 2-pyridone modified zinc phthalocyanine with three-in-one multiple functions for photodynamic therapy. Chemical Communications, 2021, 57, 3127-3130.	2.2	12
657	IR780-based nanomaterials for cancer imaging and therapy. Journal of Materials Chemistry B, 2021, 9, 4079-4097.	2.9	32
658	A photo and tumor microenvironment activated nano-enzyme with enhanced ROS generation and hypoxia relief for efficient cancer therapy. Journal of Materials Chemistry B, 2021, 9, 8253-8262.	2.9	14
659	Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics. Materials Chemistry Frontiers, 2021, 5, 2694-2701.	3.2	9
660	Nano-assembly of ruthenium(<scp>ii</scp>) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13, 7590-7599.	2.8	16
661	Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chemical Communications, 2021, 57, 7625-7628.	2.2	23
662	Biodegradable copper–metformin nanoscale coordination polymers for enhanced chemo/chemodynamic synergistic therapy by reducing oxygen consumption to promote H ₂ O ₂ accumulation. Journal of Materials Chemistry B, 2021, 9, 1988-2000.	2.9	19
663	Innovative strategies for enhanced tumor photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 7347-7370.	2.9	27
664	Design of novel photosensitizers and controlled singlet oxygen generation for photodynamic therapy. New Journal of Chemistry, 2021, 45, 16298-16305.	1.4	6
665	Recent advances in nanomaterial-based augmented sonodynamic therapy of cancer. Chemical Communications, 2021, 57, 2854-2866.	2.2	62
666	Thermally activated delayed fluorescence materials as organic photosensitizers. Chemical Communications, 2021, 57, 10675-10688.	2.2	21
667	Fe ₃ O ₄ –Au–polydopamine hybrid microcapsules with photothermal–photodynamic synergistic anti-bacterial performance. CrystEngComm, 2021, 23, 6610-6619.	1.3	10
668	Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. Journal of Materials Chemistry B, 2021, 9, 3450-3483.	2.9	36
669	Single molecular nanomedicine with NIR light-initiated superoxide radical, singlet oxygen and thermal generation for hypoxia-overcoming cancer therapy. Nanoscale, 2021, 13, 8012-8016.	2.8	7

#	Article	IF	CITATIONS
671	Difunctionalized pillar[5]arene-based polymer nanosheets for photodynamic therapy of <i>Staphylococcus aureus</i> infection. Journal of Materials Chemistry B, 2021, 9, 2066-2072.	2.9	4
672	Development of "Smart―Photodynamic Theranostics Agents. , 2021, , 771-786.		0
673	A near-infrared light-excitable immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomaterials Science, 2021, 9, 4191-4198.	2.6	8
674	Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomaterials Science, 2021, 9, 2384-2412.	2.6	20
675	Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. Journal of Materials Chemistry B, 2021, 9, 2001-2009.	2.9	6
676	Highly efficient visible-light photocatalytic ethane oxidation into ethyl hydroperoxide as a radical reservoir. Chemical Science, 2021, 12, 5825-5833.	3.7	12
677	Graphene encapsuled Ru nanocrystal with highly-efficient peroxidase-like activity for glutathione detection at near-physiological pH. Chemical Communications, 2021, 57, 7669-7672.	2.2	22
678	Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. Matter, 2021, 4, 26-53.	5.0	38
679	A sequentially activated bioluminescent probe for observation of cellular H ₂ O ₂ production induced by cysteine. Chemical Communications, 2021, 57, 10015-10018.	2.2	14
680	Detection of Intracellular Reactive Oxidative Species Using the Fluorescent Probe Hydroxyphenyl Fluorescein. Methods in Molecular Biology, 2021, 2274, 207-215.	0.4	2
681	Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 7987-7996.	4.0	30
682	Photogenerated Holes Mediated Nitric Oxide Production for Hypoxic Tumor Treatment. Angewandte Chemie, 2021, 133, 7122-7126.	1.6	3
683	Chlorin e6-1,3-diphenylisobenzofuran polymer hybrid nanoparticles for singlet oxygen-detection photodynamic abaltion. Methods and Applications in Fluorescence, 2021, 9, 025003.	1.1	10
684	NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Frontiers in Chemistry, 2021, 9, 629062.	1.8	9
685	Photoacoustic molecular imaging-escorted adipose photodynamic–browning synergy for fighting obesity with virus-like complexes. Nature Nanotechnology, 2021, 16, 455-465.	15.6	92
686	Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS Applied Materials & Interfaces, 2021, 13, 7567-7579.	4.0	15
687	Tumorâ€Activated Photosensitization and Size Transformation of Nanodrugs. Advanced Functional Materials, 2021, 31, 2010241.	7.8	44
688	Metformin Liposome-Mediated PD-L1 Downregulation for Amplifying the Photodynamic Immunotherapy Efficacy. ACS Applied Materials & Interfaces, 2021, 13, 8026-8041.	4.0	87

	Сіта	tion Report	
#	Article	IF	CITATIONS
689	Photodynamic/ photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for potent tumor immunotherapy: More than one plus one?. Biomaterials, 2021, 269, 120652.	5.7	27
690	Optimized Combination of Photodynamic Therapy and Chemotherapy Using Gelatin Nanoparticles Containing Tirapazamine and Pheophorbide a. ACS Applied Materials & Interfaces, 2021, 13, 10812-10821.	4.0	32
691	Biology-Oriented Design Strategies of AIE Theranostic Probes. Matter, 2021, 4, 350-376.	5.0	40
692	Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals, 2021, 14, 133.	1.7	33
693	Grade-targeted nanoparticles for improved hypoxic tumor microenvironment and enhanced photodynamic cancer therapy. Nanomedicine, 2021, 16, 221-235.	1.7	6
694	Dendronâ€Functionalized Polyglutamateâ€Pyropheophorbideâ€a Conjugates as Nanomedicines for Brea Cancer Photodynamic Therapy. Macromolecular Rapid Communications, 2021, 42, e2100013.	ast 2.0	6
695	Tumor-selective new piperazine-fragmented silicon phthalocyanines initiate cell death in breast cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 2021, 216, 112143.	1.7	11
696	Dual-Sensitive PEG-Sheddable Nanodrug Hierarchically Incorporating PD-L1 Antibody and Zinc Phthalocyanine for Improved Immuno-Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 12845-12856.	4.0	35
697	Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. International Journal of Biological Macromolecules, 2021, 172, 231-240.	3.6	57
698	A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta Biomaterialia, 2021, 122, 354-364.	4.1	49
699	Polymer-Drug Conjugates as Nanotheranostic Agents. Journal of Nanotheranostics, 2021, 2, 63-81.	1.7	20
700	Molecular Design toward Heavy-Atom-free Photosensitizers Based on the Câ•S Bond and their Dual Functions in Hypoxia Photodynamic Cancer Therapy and ClO [–] Detection. ACS Applied Materials & Interfaces, 2021, 13, 13949-13957.	4.0	39
701	Recent Progress of Alkyl Radicals Generationâ€Based Agents for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100055.	3.9	21
702	Porphyrin-based supramolecular assemblies and their applications in NLO and PDT. Journal of Porphyrins and Phthalocyanines, 2021, 25, 382-395.	0.4	18
703	Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angewandte Chemie, 2021, 133, 8255-8262.	1.6	28
704	Nanomaterials for Tumor Hypoxia Relief to Improve the Efficacy of ROS-Generated Cancer Therapy. Frontiers in Chemistry, 2021, 9, 649158.	1.8	23
705	Bioorthogonal Pretargeting Strategy for Anchoring Activatable Photosensitizers on Plasma Membranes for Effective Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 14004-14014.	4.0	16
706	Nanozymes for regulation of reactive oxygen species and disease therapy. Chinese Chemical Letters, 2021, 32, 2715-2728.	4.8	70

#	Article	IF	CITATIONS
707	Camouflaged Gold Nanodendrites Enable Synergistic Photodynamic Therapy and NIR Biowindow II Photothermal Therapy and Multimodal Imaging. ACS Applied Materials & Interfaces, 2021, 13, 10778-10795.	4.0	31
708	Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angewandte Chemie - International Edition, 2021, 60, 8174-8181.	7.2	154
709	Cold Nanoparticles in Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647905.	2.0	63
710	Transitional Metalâ€Based Noncatalytic Medicine for Tumor Therapy. Advanced Healthcare Materials, 2021, 10, e2001819.	3.9	28
711	Multifunctional aggregation-induced emission nanoparticle for high-fidelity imaging of lipid droplets in living cells and its application in photodynamic therapy. Chemical Engineering Journal, 2021, 410, 128186.	6.6	22
712	2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12, 2203.	5.8	222
713	Molecular Recognition of G-quadruplex DNA by Pheophorbide <i>a</i> . Chemistry Letters, 2021, 50, 1278-1281.	0.7	3
714	The ability of 2,5-disubstituted oxazole dyes derivatives to generate two-photon upconversion photoluminescence and its brightness evaluation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113214.	2.0	3
715	Ultrasoundâ€Enhanced Selfâ€Exciting Photodynamic Therapy Based on Hypocrellin B. Chemistry - an Asian Journal, 2021, 16, 1221-1224.	1.7	3
716	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	7.8	36
717	Photodynamicâ€Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Advanced Science, 2021, 8, 2002927.	5.6	57
718	Engineering 2D Arsenicâ€Phosphorus Theranostic Nanosheets. Advanced Functional Materials, 2021, 31, 2101660.	7.8	11
719	Red light triggered photodynamic-chemo combination therapy using a prodrug caged by photosensitizer. European Journal of Medicinal Chemistry, 2021, 215, 113251.	2.6	5
720	Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102368.	1.7	24
721	Zeolitic Imidazolate Framework Platform for Combinational Starvation Therapy and Oxygen Self-Sufficient Photodynamic Therapy against a Hypoxia Tumor. ACS Applied Bio Materials, 2021, 4, 4413-4421.	2.3	17
722	Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of <i>o</i> -Phenylenediamine. ACS Applied Materials & Interfaces, 2021, 13, 51855-51866.	4.0	12
723	One-for-All Phototheranostic Agent Based on Aggregation-Induced Emission Characteristics for Multimodal Imaging-Guided Synergistic Photodynamic/Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 19668-19678.	4.0	37
724	Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors. ACS Applied Materials & Interfaces, 2021, 13, 18533-18544.	4.0	20

#	Article	IF	CITATIONS
725	A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS Nano, 2021, 15, 7735-7743.	7.3	95
726	Photodynamic inheritance from methylene blue to carbon dots against reduction, aggregation, and DNA interference. Science China Materials, 2021, 64, 2325-2336.	3.5	12
727	Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today, 2021, 37, 101104.	6.2	164
728	A Tumor Microenvironment Responsive Nanotheranostics Agent for Magnetic Resonance Imaging and Synergistic Photodynamic Therapy/Photothermal Therapy of Liver Cancer. Frontiers in Chemistry, 2021, 9, 650899.	1.8	6
729	Nanomaterials for cascade promoted catalytic cancer therapy. View, 2021, 2, 20200133.	2.7	42
730	Platinum-based photosensitizer with near-infrared aggregation-induced emission for synergistic photodynamic-chemo theranostics. Organic Electronics, 2021, 92, 106105.	1.4	6
731	Engineering Structural Metal–Organic Framework for Hypoxia-Tolerant Type I Photodynamic Therapy against Hypoxic Cancer. , 2021, 3, 781-789.		21
732	Optimizing Comprehensive Performance of Aggregationâ€Induced Emission Nanoparticles through Molecular Packing Modulation for Multimodal Imageâ€Guided Synergistic Phototherapy. Advanced Healthcare Materials, 2021, 10, e2100360.	3.9	8
733	Good Steel Used in the Blade: Wellâ€Tailored Typeâ€l Photosensitizers with Aggregationâ€Induced Emission Characteristics for Precise Nuclear Targeting Photodynamic Therapy. Advanced Science, 2021, 8, e2100524.	5.6	94
734	Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosensors and Bioelectronics, 2021, 179, 113052.	5.3	55
735	Platinum(II) Metallatriangle: Construction, Coassembly with Polypeptide, and Application in Combined Cancer Photodynamic and Chemotherapy. Inorganic Chemistry, 2021, 60, 7627-7631.	1.9	23
736	Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromolecular Bioscience, 2021, 21, e2100092.	2.1	14
737	Beyond Photo: Xdynamic Therapies in Fighting Cancer. Advanced Materials, 2021, 33, e2007488.	11.1	58
738	BODIPY-based monofunctional Pt (II) complexes for specific photocytotoxicity against cancer cells. Journal of Inorganic Biochemistry, 2021, 218, 111394.	1.5	18
739	Nanophotosensitizers for cancer therapy: a promising technology?. JPhys Materials, 2021, 4, 032006.	1.8	8
740	Plasmonic gold nanoagents for cancer imaging and therapy. View, 2021, 2, 20200149.	2.7	24
741	Singlet Oxygen Generation from a Water-Soluble Hypervalent Iodine(V) Reagent AIBX and H2O2: An Access to Artemisinin. Journal of Organic Chemistry, 2021, , .	1.7	8
742	Antibacterial Activity of Porous Gold Nanocomposites via NIR Light-Triggered Photothermal and Photodynamic Effects. ACS Applied Bio Materials, 2021, 4, 5071-5079.	2.3	20

#	Article	IF	CITATIONS
743	Hybrid nanomaterials-based biomedical phototheranostic platforms. Progress in Biomedical Engineering, 2021, 3, 032001.	2.8	0
744	An AlEgen-based photosensitizer for lysosome imaging and photodynamic therapy in tumor. Sensors and Actuators B: Chemical, 2021, 335, 129698.	4.0	16
745	Conjugated Polymers with Aggregationâ€induced Emission Characteristics for Fluorescence Imaging and Photodynamic Therapy. ChemMedChem, 2021, 16, 2330-2338.	1.6	20
746	Luminescent AIE Dots for Anticancer Photodynamic Therapy. Frontiers in Chemistry, 2021, 9, 672917.	1.8	19
747	Black Phosphorus in Biological Applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research, 2021, 2, 489-500.	5.9	57
748	Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomaterialia, 2021, 126, 445-462.	4.1	51
749	Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy. Chemical Engineering Journal, 2021, 411, 128561.	6.6	29
750	Delivery of siHlFâ€1α to Reconstruct Tumor Normoxic Microenvironment for Effective Chemotherapeutic and Photodynamic Anticancer Treatments. Small, 2021, 17, e2100609.	5.2	13
751	Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Materials Today Bio, 2021, 11, 100124.	2.6	52
752	Biofilm‣ensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Advanced Functional Materials, 2021, 31, 2103591.	7.8	128
753	Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. ChemBioChem, 2021, 22, 2546-2552.	1.3	4
754	Stimuli-responsive size-changeable strategy for cancer theranostics. Nano Today, 2021, 38, 101208.	6.2	27
755	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Ðynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 17629-17637.	7.2	34
756	Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy. Nanotechnology, 2021, 32, 365102.	1.3	7
758	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Ðynamic Therapy. Angewandte Chemie, 2021, 133, 17770-17778.	1.6	4
759	Persistent Luminescence Immune Hydrogel for Photodynamicâ€Immunotherapy of Tumors In Vivo. Advanced Functional Materials, 2021, 31, 2104472.	7.8	38
760	Chemodynamic nanomaterials for cancer theranostics. Journal of Nanobiotechnology, 2021, 19, 192.	4.2	51
761	Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. , 2021, 222, 107795.		32

#	Article	IF	CITATIONS
762	Photoacoustic Forceâ€Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. Advanced Science, 2021, 8, 2100228.	5.6	6
763	A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy. Small, 2021, 17, e2101180.	5.2	21
764	NIRâ€II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Advanced Functional Materials, 2021, 31, 2101625.	7.8	126
765	Ultrasmall Barium Titanate Nanoparticles for Highly Efficient Hypoxic Tumor Therapy via Ultrasound Triggered Piezocatalysis and Water Splitting. ACS Nano, 2021, 15, 11326-11340.	7.3	90
766	Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Twoâ€Pronged Manner for Enhanced Photodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2100770.	3.9	22
767	Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chemical Reviews, 2021, 121, 13797-13868.	23.0	84
768	Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2028-2045.	1.9	15
769	Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors. Current Drug Targets, 2021, 22, 1090-1107.	1.0	3
770	Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. International Journal of Nanomedicine, 2021, Volume 16, 4559-4577.	3.3	18
771	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
772	Type I AIE photosensitizers: Mechanism and application. View, 2022, 3, 20200121.	2.7	72
773	Estimation of Singlet Oxygen Quantum Yield Using Novel Greenâ€Absorbing Bairdâ€ŧype Aromatic Photosensitizers ^{â€} . Photochemistry and Photobiology, 2022, 98, 57-61.	1.3	8
774	Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. Journal of Nanobiotechnology, 2021, 19, 206.	4.2	38
775	Oxygenâ€Independent Photocleavage of Radical Nanogenerator for Nearâ€IRâ€Gated and H ₂ Oâ€Mediated Freeâ€Radical Nanotherapy. Advanced Materials, 2021, 33, e2100129.	11.1	27
776	Hypoxia-Overcoming Breast-Conserving Treatment by Magnetothermodynamic Implant for a Localized Free-Radical Burst Combined with Hyperthermia. ACS Applied Materials & Interfaces, 2021, 13, 35484-35493.	4.0	7
777	Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences (Switzerland), 2021, 11, 7073.	1.3	17
778	Nanohybrids of Magnetically Intercalated Optical Metamaterials for Magnetic Resonance/Raman Imaging and <i>In Situ</i> Chemodynamic/Photothermal Therapy. ACS Applied Bio Materials, 2021, 4, 5742-5752.	2.3	18
779	Selfâ€Delivered Supramolecular Nanomedicine with Transformable Shape for Ferroceneâ€Amplified Photodynamic Therapy of Breast Cancer and Bone Metastases. Advanced Functional Materials, 2021, 31, 2104645.	7.8	73

#	Article	IF	CITATIONS
780	Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordination Chemistry Reviews, 2021, 438, 213888.	9.5	151
781	A Biomimetic Aggregationâ€Induced Emission Photosensitizer with Antigenâ€Presenting and Hitchhiking Function for Lipid Droplet Targeted Photodynamic Immunotherapy. Advanced Materials, 2021, 33, e2102322.	11.1	83
782	Phototherapy meets immunotherapy: a win–win strategy to fight against cancer. Nanophotonics, 2021, 10, 3229-3245.	2.9	43
783	Multifunctional AIE iridium (III) photosensitizer nanoparticles for two-photon-activated imaging and mitochondria targeting photodynamic therapy. Journal of Nanobiotechnology, 2021, 19, 254.	4.2	25
784	Nanostructured Phthalocyanine Assemblies with Efficient Synergistic Effect of Type I Photoreaction and Photothermal Action to Overcome Tumor Hypoxia in Photodynamic Therapy. Journal of the American Chemical Society, 2021, 143, 13980-13989.	6.6	107
785	Smallâ€Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. Small, 2021, 17, e2101460.	5.2	87
786	Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials, 2021, 275, 120915.	5.7	28
787	BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angewandte Chemie, 2021, 133, 20065-20073.	1.6	14
788	Nanotechnology, a booster for the multitarget drug verteporfin. Journal of Drug Delivery Science and Technology, 2021, 64, 102562.	1.4	2
789	The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE Nanotechnology Magazine, 2021, 15, 8-28.	0.9	16
790	Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy. Biomaterials, 2021, 275, 120959.	5.7	19
791	Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Current Pharmaceutical Design, 2021, 27, .	0.9	1
792	Metal-organic frameworks for diagnosis and therapy of infectious diseases. Critical Reviews in Microbiology, 2022, 48, 161-196.	2.7	17
793	An endoplasmic reticulum-targeted organic photothermal agent for enhanced cancer therapy. Chinese Chemical Letters, 2022, 33, 793-797.	4.8	15
794	Dual Blood–Brain Barrier–Glioma Targeting Peptide–Poly(levodopamine) Hybrid Nanoplatforms as Potential Near Infrared Phototheranostic Agents in Glioblastoma. Bioconjugate Chemistry, 2021, 32, 2014-2031.	1.8	14
795	DNAâ€Triggered Enhancement of Singlet Oxygen Production by Pyridinium Alkynylanthracenes. Chemistry - A European Journal, 2021, 27, 13591-13604.	1.7	7
796	Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials, 2021, 275, 120934.	5.7	41
797	Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS Applied Bio Materials, 2021, 4, 6565-6574.	2.3	12

ARTICLE IF CITATIONS # PEGâ€Polymer Encapsulated Aggregationâ€Induced Emission Nanoparticles for Tumor Theranostics. 798 3.9 41 Advanced Healthcare Materials, 2021, 10, e2101036. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. 799 5.8 144 Nature Communications, 2021, 12, 4777. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human 800 1.8 15 colorectal carcinoma (HCT-116) cell line. Saudi Journal of Biological Sciences, 2022, 29, 154-160. Electronic Band-Engineered Nanomaterials for Biosafety and Biomedical Application. Accounts of 5.9 Materials Research, 2021, 2, 764-779. Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. Nano Letters, 2021, 21, 802 4.5 75 6764-6772. Assessment of natural antioxidants' effect on PDT cytotoxicity through fluorescence microscopy image analysis. Lasers in Surgery and Medicine, 2022, 54, 311-319. 1.1 BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet 804 7.2 186 Oxygen. Angewandte Chemie - International Edition, 2021, 60, 19912-19920. Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomaterialia, 2021, 130, 4.1 447-459 BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, 806 2.6 24 cellular imaging and targeted PDT. European Journal of Medicinal Chemistry, 2021, 220, 113438. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews, 2021, 441, 213978. Ultrahigh Sensitive and Tumor-Specific Photoacoustography in NIR-II Region: Optical Writing and 808 4.510 Redox-Responsive Graphic Fixing by AgBr@PLGA Nanocrystals. Nano Letters, 2021, 21, 6914-6922. Multifunctional wound dressing for rapid hemostasis, bacterial infection monitoring and 809 4.1 photodynamic antibacterial therapy. Acta Biomaterialia, 2021, 135, 179-190. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis 810 4.1 33 against tumor hypoxia. Acta Biomaterialia, 2021, 135, 617-627. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer 3.6 29 photothermal therapy. Rare Metals, 2022, 41, 56-66. Titania/iron oxide nanoplatform operates as hydrogen peroxide enriched vector for amplification of 812 6.6 6 fenton catalytic efficiency in cancer theranostics. Čhemical Engineering Journal, 2021, 418, 129381. Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chemical Reviews, 2021, 121, 14031-14087. Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced 814 5.718 tumor penetration and activatable photodynamic therapy. Biomaterials, 2021, 275, 120945. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Advances in Colloid and Interface Science, 2021, 294, 102407

#	Article	IF	CITATIONS
816	Polypeptide-based drug delivery systems for programmed release. Biomaterials, 2021, 275, 120913.	5.7	36
817	H2O2-responsive release of Fe3+ and NO: Anti-tumor therapy of Roussin's black salt. Inorganic Chemistry Communication, 2021, 130, 108740.	1.8	2
818	The effect of 5-Aminolaevulinic Acid Photodynamic Therapy versus CO2 laser in the Treatment of Cervical Low-grade Squamous Intraepithelial Lesions with High-Risk HPV Infection: A non-randomized, controlled pilot study. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102548.	1.3	12
819	Porpholactam-cinnamaldehyde conjugates for promoting ROS generation in photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2021, 25, 1111-1118.	0.4	3
820	Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Analytical Chemistry, 2021, 93, 13539-13547.	3.2	5
821	Effects of photodynamic therapy mediated by emodin in cervical carcinoma cells. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102394.	1.3	11
822	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
823	Charge density distribution effect in pyrrolidine-fused chlorins on microbial uptake and antimicrobial photoinactivation of microbial pathogens. Journal of Photochemistry and Photobiology B: Biology, 2021, 225, 112321.	1.7	10
824	Metal–Organic Framework-Based Nanoagents for Effective Tumor Therapy by Dual Dynamics-Amplified Oxidative Stress. ACS Applied Materials & Interfaces, 2021, 13, 45201-45213.	4.0	43
825	Light-Activated Biodegradable Covalent Organic Framework-Integrated Heterojunction for Photodynamic, Photothermal, and Gaseous Therapy of Chronic Wound Infection. ACS Applied Materials & Interfaces, 2021, 13, 42396-42410.	4.0	59
826	Recent Advances in AlEgenâ€Based Photodynamic Therapy and Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2101066.	3.9	39
827	Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Letters, 2021, 21, 7569-7578.	4.5	37
828	Metal peroxides for cancer treatment. Bioactive Materials, 2021, 6, 2698-2710.	8.6	46
829	A versatile Bi2S3/MnO2 based nano-theranostic agent for triple-modal imaging guided photothermal/photodynamic synergistic therapy. Chinese Journal of Analytical Chemistry, 2021, 49, 19-27.	0.9	2
830	Environment Responsive Metal–Organic Frameworks as Drug Delivery System for Tumor Therapy. Nanoscale Research Letters, 2021, 16, 140.	3.1	13
831	The AlEâ€Active Dualâ€Cationic Molecular Engineering: Synergistic Effect of Dark Toxicity and Phototoxicity for Anticancer Therapy. Advanced Functional Materials, 2021, 31, 2106988.	7.8	32
832	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	5.2	31
833	Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. Small, 2021, 17, e2102470.	5.2	33

ATION R

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
834	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	1.7	134
835	Combretastatin A4-combined photodynamic therapy for enhanced tumor therapeutic efficacy. Materials Today Communications, 2021, 28, 102616.	0.9	3
836	Facile Synthesis of ZnPcâ€Polydopamine Coâ€loaded Nanoparticles for Synergetic Photodynamicâ€Photothermal Therapy. ChemNanoMat, 2021, 7, 1322-1329.	1.5	3
837	Conquering the Hypoxia Limitation for Photodynamic Therapy. Advanced Materials, 2021, 33, e2103978.	11.1	262
838	Tuning the Toxicity of Reactive Oxygen Species into Advanced Tumor Therapy. Nanoscale Research Letters, 2021, 16, 142.	3.1	7
839	Degradable FeCuS-Lipid Nanoparticles Confer Ultrasound-Activated CO Release and O ₂ -Independent Radical Production for Synergistic Therapy. ACS Nano, 2021, 15, 16298-16313.	7.3	23
840	Singlet Oxygen "Afterglow―Therapy with NIRâ€I Fluorescent Molecules. Advanced Materials, 2021, 33, e2103627.	11.1	76
841	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	5.6	66
842	Berberine Photo-Activation Potentiates Cytotoxicity in Human Astrocytoma Cells through Apoptosis Induction. Journal of Personalized Medicine, 2021, 11, 942.	1.1	8
843	Mitoâ€Bomb: Targeting Mitochondria for Cancer Therapy. Advanced Materials, 2021, 33, e2007778.	11.1	168
844	Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chemical Engineering Journal, 2021, 419, 129557.	6.6	20
845	Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study. Scientific Reports, 2021, 11, 17871.	1.6	5
846	Photosensitizer with High Efficiency Generated in Cells via Lightâ€Induced Selfâ€Oligomerization of 4,6â€Dibromothieno[3,4â€ <i>b</i>]thiophene Compound Entailing a Triphenyl Phosphonium Group. Advanced Healthcare Materials, 2021, 10, e2100896.	3.9	3
847	Trace-Water-Induced Competitive Coordination Synthesis and Functionalization of Porphyrinic Metal–Organic Framework Nanoparticles for Treatment of Hypoxic Tumors. ACS Applied Bio Materials, 2021, 4, 7322-7331.	2.3	13
848	Sideâ€Chain Engineering of Aggregationâ€Induced Emission Molecules for Boosting Cancer Phototheranostics. Advanced Functional Materials, 2021, 31, 2107545.	7.8	37
849	Reactive Oxygen Species (ROS)-responsive Organic Nanotubes. Chemistry Letters, 2021, 50, 1743-1746.	0.7	1
850	Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials, 2021, 277, 121071.	5.7	51
851	Photodynamic therapy: When van der Waals heterojunction meets tumor. Chemical Engineering Journal, 2021, 421, 129773.	6.6	9

#	Article	IF	CITATIONS
852	Novel high-quantum-yield polydiacetylene conjugated AIE micelles for amplified fluorescence signaling and photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113461.	2.0	1
853	Cellular and mitochondrial dual-targeted nanoprobe with near-infrared emission for activatable tumor imaging and photodynamic therapy. Sensors and Actuators B: Chemical, 2021, 346, 130451.	4.0	9
854	Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coordination Chemistry Reviews, 2021, 447, 214155.	9.5	56
855	Photoactivatable nanogenerators of reactive species for cancer therapy. Bioactive Materials, 2021, 6, 4301-4318.	8.6	14
856	H2O2/O2 self-supplementing and GSH-depleting Ca2+ nanogenerator with hyperthermia-triggered, TME-responsive capacities for combination cancer therapy. Chemical Engineering Journal, 2021, 425, 131485.	6.6	29
857	Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Materials Science in Semiconductor Processing, 2022, 137, 106181.	1.9	49
858	CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomaterials Science, 2021, 9, 2020-2031.	2.6	15
859	Assembled small organic molecules for photodynamic therapy and photothermal therapy. RSC Advances, 2021, 11, 10061-10074.	1.7	29
860	Recent advances in <i>in situ</i> oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomaterials Science, 2021, 10, 51-84.	2.6	24
861	Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. Nanoscale, 2021, 13, 13610-13616.	2.8	15
862	Single component photoresponsive fluorescent organic nanoparticles: a smart platform for improved biomedical and agrochemical applications. Chemical Communications, 2021, 57, 1715-1733.	2.2	7
863	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	18.7	576
864	Multifunctional system for combined chemodynamic–photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polymer Chemistry, 0, , .	1.9	7
865	Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics, 2021, 11, 6407-6426.	4.6	63
866	Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chemical Science, 2021, 12, 9885-9894.	3.7	60
867	Hollow PtCo alloy nanospheres as a high- <i>Z</i> and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. Journal of Materials Chemistry B, 2021, 9, 4643-4653.	2.9	27
868	Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Materials Advances, 2021, 2, 7101-7117.	2.6	4
869	Piezo-photocatalytic effect mediating reactive oxygen species burst for cancer catalytic therapy. Materials Horizons, 2021, 8, 2273-2285.	6.4	38

#	Article	IF	CITATIONS
870	Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11, 3278-3300.	4.6	107
871	Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews, 2021, 426, 213548.	9.5	118
872	A pH/ultrasonic dual-response step-targeting enterosoluble granule for combined sonodynamic-chemotherapy guided <i>via</i> gastrointestinal tract imaging in orthotopic colorectal cancer. Nanoscale, 2021, 13, 4278-4294.	2.8	20
873	Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Imageâ€Guided Photoâ€Chemo Therapy. Advanced Functional Materials, 2020, 30, 2002431.	7.8	67
874	Dualâ€Functionalized Crescent Microgels for Selectively Capturing and Killing Cancer Cells. Angewandte Chemie, 2020, 132, 14180-14184.	1.6	2
875	Emerging Nanomaterials for Cancer Therapy. , 2020, , 25-54.		4
876	Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Research, 2020, 13, 2209-2215.	5.8	42
877	ROS-responsive drug delivery systems for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2018, 13, 101-112.	4.3	153
878	Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. Journal of Controlled Release, 2020, 324, 250-259.	4.8	38
879	Cyclometalated iridium(III) complexes containing an anthracene unit for sensing and imaging singlet oxygen in cellular mitochondria. Journal of Inorganic Biochemistry, 2020, 209, 111106.	1.5	10
880	Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Materials Science and Engineering C, 2020, 115, 111099.	3.8	53
881	Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications. Cell Reports Physical Science, 2020, 1, 100271.	2.8	40
882	Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using Rose Bengal Encapsulated in Metallocatanionic Vesicles in the Presence of Visible Light. ACS Applied Bio Materials, 2020, 3, 8515-8524.	2.3	15
883	<i>In Vivo</i> Regenerable Cerium Oxide Nanozyme-Loaded pH/H ₂ O ₂ -Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies. ACS Applied Materials & Interfaces, 2021, 13, 233-244.	4.0	50
884	Carrier-Free Triterpene Prodrugs with Glutathione Response and Biosafety for Synergistically Enhanced Photochemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 245-256.	4.0	20
885	Self-Driven Reactive Oxygen Species Generation via Interfacial Oxygen Vacancies on Carbon-Coated TiO _{2–<i>x</i>} with Versatile Applications. ACS Applied Materials & Interfaces, 2021, 13, 2033-2043.	4.0	34
886	Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. Journal of Materials Chemistry B, 2020, 8, 5305-5311.	2.9	20
887	Injectable hydrogels for antiâ€ŧumour treatment: a review. Biosurface and Biotribology, 2020, 6, 59-74	0.6	5

#	Article	IF	CITATIONS
888	Infrared neuromodulation:a neuroengineering perspective. Journal of Neural Engineering, 2020, 17, 051003.	1.8	26
889	Chitosan nanoparticle-mediated delivery of curcumin and phycocyanin for photodynamic therapy against biofilm forming bacteria. Materials Express, 2020, 10, 1854-1870.	0.2	9
890	Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo. Biomedical Optics Express, 2020, 11, 3900.	1.5	12
891	Evaluation of a Dextran-Poly(N-Isopropylacrylamide) Copolymer as a Potential Temperature-Dependent Nanocarrier for Photosensitizers with Different Properties. Ukrainian Journal of Physics, 2020, 65, 638.	0.1	1
892	Recent Developments of Nanoparticles in the Treatment of Photodynamic Therapy for Cervical Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 1809-1819.	0.9	7
893	Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 137-148.	0.9	19
894	Challenges in Biomaterial-Based Drug Delivery Approach for the Treatment of Neurodegenerative Diseases: Opportunities for Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 138.	1.8	23
895	De Novo Design of Polymeric Carrier to Photothermally Release Singlet Oxygen for Hypoxic Tumor Treatment. Research, 2019, 2019, 9269081.	2.8	18
896	Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. Research, 2020, 2020, 5351848.	2.8	12
897	Neferine induces apoptosis by modulating the ROS‑mediated JNK pathway in esophageal squamous cell carcinoma. Oncology Reports, 2020, 44, 1116-1126.	1.2	21
898	A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water. Chemical Communications, 2021, 57, 11217-11220.	2.2	12
899	Recent development in graphdiyne and its derivative materials for novel biomedical applications. Journal of Materials Chemistry B, 2021, 9, 9461-9484.	2.9	19
900	A multifunctional nano-delivery system enhances the chemo- <i>co</i> -phototherapy of tumor multidrug resistance <i>via</i> mitochondrial-targeting and inhibiting P-glycoprotein-mediated efflux. Journal of Materials Chemistry B, 2021, 9, 9174-9182.	2.9	14
901	Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules, 2021, 26, 5990.	1.7	4
902	Recent Advances in Hypoxiaâ€Overcoming Strategy of Aggregationâ€Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2101607.	3.9	46
903	A Literature Review on High-Performance Photocatalysts for Sustainable Cancer Therapy. Crystals, 2021, 11, 1241.	1.0	3
904	An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy. Journal of Colloid and Interface Science, 2022, 608, 1543-1552.	5.0	6
905	Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nature Communications, 2021, 12, 6145.	5.8	66

#	Article	IF	CITATIONS
906	Porphyrin crossâ€linked conjugated polymer nanoparticlesâ€based photosensitizer for antimicrobial and anticancer photodynamic therapies. Journal of Applied Polymer Science, 2022, 139, 51777.	1.3	3
907	Patient-Derived Human Basal and Cutaneous Squamous Cell Carcinoma Tissues Display Apoptosis and Immunomodulation following Gas Plasma Exposure with a Certified Argon Jet. International Journal of Molecular Sciences, 2021, 22, 11446.	1.8	9
908	Precise Subcellular Organelle Targeting for Boosting Endogenous‣timuliâ€Mediated Tumor Therapy. Advanced Materials, 2021, 33, e2101572.	11.1	47
909	Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, 2021, 15, 17080-17123.	7.3	73
910	Endowing AIE with Extraordinary Potential: A New Au(I)â€Containing AIEgen for Bimodal Bioimagingâ€Guided Multimodal Synergistic Cancer Therapy. Advanced Functional Materials, 2022, 32, 2108199.	7.8	9
911	A Heterogeneous Catalyzed Oxidase Consists of Zinc-Substituted Arsenomolybdate with Reactive Oxygen Species Catalytic Ability. Journal of Cluster Science, 0, , 1.	1.7	5
912	Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer. Bioconjugate Chemistry, 2021, 32, 2318-2326.	1.8	3
913	Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. Journal of Controlled Release, 2021, 339, 445-472.	4.8	78
914	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
915	Oxygen-Abundant and pH/NIR Dual-Responsive Nanocarriers for Tumor Hypoxia Reduction Therapy. ACS Applied Nano Materials, 2021, 4, 11480-11492.	2.4	5
916	Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioactive Materials, 2022, 12, 97-106.	8.6	23
917	The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging, 2021, 13, 1383-1409.	1.4	9
918	Type I macrophage activator photosensitizer against hypoxic tumors. Chemical Science, 2021, 12, 14773-14780.	3.7	18
919	Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews, 2022, 451, 214267.	9.5	89
920	Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS Applied Bio Materials, 2021, 4, 8023-8032.	2.3	7
921	Selfâ€Delivery Nanomedicine for Glutamineâ€Starvation Enhanced Photodynamic Tumor Therapy. Advanced Healthcare Materials, 2022, 11, e2102038.	3.9	19
922	A BODIPY-modified polymeric micelle for sustaining enhanced photodynamic therapy. Chinese Chemical Letters, 2022, 33, 3277-3280.	4.8	11
923	Engineered Nanoenzymes with Multifunctional Properties for Nextâ€Generation Biological and Environmental Applications. Advanced Functional Materials, 2022, 32, 2108650.	7.8	43

#	Article	IF	CITATIONS
924	Nanotechnologies for Reactive Oxygen Species"Turn-On―Detection. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780032.	2.0	9
925	Phototherapy and optical waveguides for the treatment of infection. Advanced Drug Delivery Reviews, 2021, 179, 114036.	6.6	26
926	Effect of Photodynamic Therapy on Cyclin D1 and P53 mRNA Levels in Head and Neck Squamous Cell Carcinoma Cell Line. Journal of Archives in Military Medicine, 2020, 8, .	0.0	0
927	A tri-component semiconducting polymer with ultrahigh photothermal conversion efficiency as a biodegradable photosensitizer for phototheranostics. Materials Chemistry Frontiers, 0, , .	3.2	1
928	Fabrication of denatured BSA-hemin-IR780 (dBHI) nanoplatform for synergistic combination of phototherapy and chemodynamic therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127957.	2.3	10
929	Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for <i>In Vivo</i> Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54783-54793.	4.0	20
930	Ligand Engineering of Titanium-Oxo Nanoclusters for Cerenkov Radiation-Reinforced Photo/Chemodynamic Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54727-54738.	4.0	16
931	Plasmonic Bi nanoparticles encapsulated by N-Carbon for dual-imaging and photothermal/photodynamic/chemo-therapy. Materials Science and Engineering C, 2022, 134, 112546.	3.8	11
932	Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. Nanomaterials, 2021, 11, 3064.	1.9	26
933	Photodynamic Therapy with Zinc Phthalocyanine Inhibits the Stemness and Development of Colorectal Cancer: Time to Overcome the Challenging Barriers?. Molecules, 2021, 26, 6877.	1.7	6
934	COUPY Coumarins as Novel Mitochondria-Targeted Photodynamic Therapy Anticancer Agents. Journal of Medicinal Chemistry, 2021, 64, 17209-17220.	2.9	30
935	Co-delivery of enzymes and photosensitizers via metal-phenolic network capsules for enhanced photodynamic therapy. Chinese Chemical Letters, 2022, 33, 1917-1922.	4.8	24
936	Light-Responsive Nanomaterials for Cancer Therapy. Engineering, 2022, 13, 18-30.	3.2	31
937	Recent advances in enhancing reactive oxygen species based chemodynamic therapy. Chinese Chemical Letters, 2022, 33, 2213-2230.	4.8	35
938	Engineering DNA on the Surface of Upconversion Nanoparticles for Bioanalysis and Therapeutics. ACS Nano, 2021, 15, 17257-17274.	7.3	39
939	Photocleavageâ€based Photoresponsive Drug Delivery ^{â€} . Photochemistry and Photobiology, 2022, 98, 288-302.	1.3	19
940	A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Advanced Healthcare Materials, 2022, 11, e2102017.	3.9	27
941	Transforming a Sword into a Knife: Persistent Phototoxicity Inhibition and Alternative Therapeutical Activation of Highly-Photosensitive Phytochlorin. ACS Nano, 2021, 15, 19793-19805.	7.3	38

#	Article	IF	CITATIONS
942	Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics, 2022, 14, 120.	2.0	28
943	Photodynamic therapy targeting nucleic acid G-quadruplexes. Journal of the Society of Japanese Women Scientists, 2022, 22, 25-35.	0.0	0
944	Ultrasound-triggered hydrogel formation through thiol-norbornene reaction. Chemical Communications, 2022, , .	2.2	2
945	Two-dimensional persistent luminescence "optical battery―for autophagy inhibition-augmented photodynamic tumor nanotherapy. Nano Today, 2022, 42, 101362.	6.2	16
946	Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102697.	1.3	46
947	Modulating Cell Specificity and Subcellular Localization by Molecular Charges and Lipophilicity. Chemistry of Materials, 2020, 32, 10383-10393.	3.2	10
948	Current Trends in Engineered Gold Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 1-40.	0.4	3
949	Enzyme-Activated Multifunctional Prodrug Combining Site-Specific Chemotherapy with Light-Triggered Photodynamic Therapy. Molecular Pharmaceutics, 2022, 19, 630-641.	2.3	8
950	Strategies to Improve Photodynamic Therapy Efficacy of Metal-Free Semiconducting Conjugated Polymers. International Journal of Nanomedicine, 2022, Volume 17, 247-271.	3.3	14
951	An Energyâ€Storing DNAâ€Based Nanocomplex for Laserâ€Free Photodynamic Therapy. Advanced Materials, 2022, 34, e2109920.	11.1	40
952	Construction and evaluation of curcumin upconversion nanocarriers decorated with MnO2 for tumor photodynamic therapy. Drug Delivery and Translational Research, 2022, 12, 2678-2692.	3.0	3
953	Ferroceneâ€Containing Nucleic Acidâ€Based Energyâ€6torage Nanoagent for Continuously Photoâ€Induced Oxidative Stress Amplification. Angewandte Chemie, 2022, 134, .	1.6	3
954	Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy. Nanoscale, 2022, 14, 766-779.	2.8	9
955	A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. Journal of Nanobiotechnology, 2022, 20, 14.	4.2	22
956	Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics, 2022, 12, 434-458.	4.6	154
957	Conjugated Oligomerâ€Directed Formation of Hollow Nanoparticles for Targeted Photokilling Cancer Cells under Hypoxia. Advanced Optical Materials, 2022, 10, .	3.6	9
958	Bioinspired nanocatalysts as hydrogen peroxide homeostasis regulators for tumor-specific synergistic therapy. Biomaterials Science, 2022, 10, 1364-1372.	2.6	10
959	A targeted self-assembling photosensitizer nanofiber constructed by multicomponent coordination. Biomaterials Science, 2021, 10, 114-123.	2.6	3

#	Article	IF	CITATIONS
960	La(<scp>iii</scp>)–curcumin-functionalized gold nanocomposite as a red light-activatable mitochondria-targeting PDT agent. Inorganic Chemistry Frontiers, 2022, 9, 686-701.	3.0	8
961	Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer. Biomaterials Science, 2022, 10, 1456-1469.	2.6	13
962	Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. Engineered Regeneration, 2022, , .	3.0	8
963	Atomically precise fluorescent metal nanoclusters. , 2022, , 207-242.		2
964	Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Materials Today Bio, 2022, 13, 100197.	2.6	45
965	A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy. Nano Research, 2022, 15, 4212-4223.	5.8	2
966	Spatially isolated CoNx quantum dots on carbon nanotubes enable a robust radical-free Fenton-like process. Chemical Communications, 2022, 58, 451-454.	2.2	5
967	F,N-Doped carbon dots as efficient Type I photosensitizers for photodynamic therapy. Dalton Transactions, 2022, 51, 2296-2303.	1.6	43
968	Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells, 2022, 11, 443.	1.8	18
969	Engineered Nanostructured Photocatalysts for Cancer Therapy. Catalysts, 2022, 12, 167.	1.6	10
970	Ferrocene ontaining Nucleic Acidâ€Based Energyâ€6torage Nanoagent for Continuously Photoâ€Induced Oxidative Stress Amplification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
971	Engineering 2D Cu-composed metal–organic framework nanosheets for augmented nanocatalytic tumor therapy. Journal of Nanobiotechnology, 2022, 20, 66.	4.2	22
972	Liposome co-loaded with β-elemene and IR780 for combined chemo-phototherapy. Journal of Drug Delivery Science and Technology, 2022, 68, 103122.	1.4	4
973	Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Medicinal Chemistry, 2022, 14, 363-383.	1.1	13
974	Balancing the toxicity, photothermal effect, and promotion of osteogenesis: Photothermal scaffolds for malignant bone tumor therapy. Materials Today Advances, 2022, 13, 100209.	2.5	17
975	Near-Infrared multifunctional theranostic agent with Wave-Like aggregates modulated by substituent position effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120881.	2.0	2
976	A multifunctional nanocomposite based on Pt-modified black phosphorus nanosheets loading with l-arginine for synergistic gas-sonodynamic cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128284.	2.3	11
977	Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted imaging and photodynamic therapy. RSC Advances, 2022, 12, 4484-4489.	1.7	6

#	Article	IF	CITATIONS
978	A carrier free photodynamic oxidizer for enhanced tumor therapy by redox homeostasis disruption. Biomaterials Science, 2022, 10, 1575-1581.	2.6	11
979	Glutathione-Responsive Biodegradable Core–Shell Nanoparticles That Self-Generate H ₂ O ₂ and Deliver Doxorubicin for Chemo–Chemodynamic Therapy. ACS Applied Nano Materials, 2022, 5, 2592-2602.	2.4	18
980	Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Research, 2022, 15, 4233-4242.	5.8	6
981	Peptide-based supramolecular photodynamic therapy systems: From rational molecular design to effective cancer treatment. Chemical Engineering Journal, 2022, 436, 135240.	6.6	15
982	Near infrared triggered chemo-PTT-PDT effect mediated by glioma directed twin functional-chimeric peptide-decorated gold nanoroses. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112407.	1.7	15
983	Phase-change cascaded nanomedicine for intensive photothermal-enhanced nanocatalytic therapy via tumor oxidative stress amplification. Composites Part B: Engineering, 2022, 234, 109707.	5.9	16
984	Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews, 2022, 458, 214427.	9.5	30
985	Biodegradable Materials with Disulfide-Bridged-Framework Confine Photosensitizers for Enhanced Photo-Immunotherapy. International Journal of Nanomedicine, 2021, Volume 16, 8323-8334.	3.3	5
986	A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. Journal of Nanobiotechnology, 2021, 19, 438.	4.2	15
987	Bonsai-Inspired AIE Nanohybrid Photosensitizer Based on Ultrathin Two-Dimensional Vermiculite Nanosheets for Ferroptosis-Assisted Oxygen Self-Sufficient Photodynamic Cancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
988	Spatiotemporal Sonodynamic Therapy for the Treatment of Rheumatoid Arthritis Based on Z-Scheme Heterostructure Sonosensitizer of Ho-1 Inhibitor Jointed Bismuth Nanotriangle. SSRN Electronic Journal, 0, , .	0.4	0
989	Tumor redox microenvironment modulating composite hydrogels for enhanced sonodynamic therapy of colorectal cancer. Journal of Materials Chemistry B, 2022, 10, 1960-1968.	2.9	13
991	Aggregation Enhanced Photoactivity of Photosensitizer Conjugated Metal Nanoparticles for Multimodal Imaging and Synergistic Phototherapy Below Skin Tolerance Threshold. SSRN Electronic Journal, O, , .	0.4	0
992	A bioorthogonal assembly based on metallophilic interactions for selective imaging and PDT treatment of cancer cells. Inorganic Chemistry Frontiers, 2022, 9, 2290-2297.	3.0	5
993	Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. Nanoscale, 2022, 14, 6171-6183.	2.8	6
994	A Multifunctional Near-Infrared Fluorescent Probe for in Vitro and in Vivo Imaging of Γ-Glutamyltranspeptidase and Photodynamic Cancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
995	Water-soluble thienoviologen derivatives for imaging bacteria and antimicrobial photodynamic therapy. Journal of Materials Chemistry B, 2022, , .	2.9	2
996	Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells. Journal of Materials Chemistry B, 2022, 10, 2160-2170.	2.9	4

#	Article	IF	CITATIONS
997	Organic photosensitizers for antimicrobial phototherapy. Chemical Society Reviews, 2022, 51, 3324-3340.	18.7	139
998	Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials, 2022, 15, 1606.	1.3	29
999	Electronic couplings for singlet oxygen photosensitization and its molecular orbital overlap description. Chinese Journal of Chemical Physics, 2022, 35, 219-226.	0.6	0
1000	Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework. Nature Biomedical Engineering, 2022, 6, 144-156.	11.6	47
1001	Biomimetic Metal-Organic Framework Nanoparticles for Synergistic Combining of SDT-Chemotherapy Induce Pyroptosis in Gastric Cancer. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796820.	2.0	17
1002	Stimuliâ€Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. Advanced Science, 2022, 9, e2104843.	5.6	54
1003	Multiple Light-Activated Photodynamic Therapy of Tetraphenylethylene Derivative with AIE Characteristics for Hepatocellular Carcinoma via Dual-Organelles Targeting. Pharmaceutics, 2022, 14, 459.	2.0	9
1004	Effect of <i>meso</i> Positioned Substituents on the Stability and Photodynamic Activity of Lipidâ€Membraneâ€Incorporated Porphyrin Derivatives. ChemMedChem, 2022, 17, .	1.6	2
1005	Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon Photosensitization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
1006	Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 14944-14952.	4.0	19
1007	Organic radical materials in biomedical applications: State of the art and perspectives. Exploration, 2022, 2, .	5.4	28
1008	Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon Photosensitization. Angewandte Chemie, 0, , .	1.6	1
1009	Liposome-Based Nanoencapsulation of a Mitochondria-Stapling Photosensitizer for Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 12050-12058.	4.0	16
1010	Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chemical Reviews, 2022, 122, 6850-6918.	23.0	94
1011	Delivering Singlet Oxygen in Dark Condition With an Anthracene-Functionalized Semiconducting Compound for Enhanced Phototheranostics. Frontiers in Bioengineering and Biotechnology, 2022, 10, 781766.	2.0	4
1012	Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy <i>via</i> Type I PDT and PTT. ACS Nano, 2022, 16, 4162-4174.	7.3	121
1013	Magnetically Boosted Generation of Intracellular Reactive Oxygen Species toward Magneto-Photodynamic Therapy. Journal of Physical Chemistry B, 2022, 126, 1895-1903.	1.2	3
1014	Autocatalytic Photodynamic Amplification of PpIX-Conjugated Shell-Cross-Linked (SCL) Micelles via ¹ O ₂ Cleaves Cross-Linkers. ACS Applied Polymer Materials, 2022, 4, 2432-2441.	2.0	0

#	Article	IF	CITATIONS
1015	Anti-tumor immunity and ferroptosis of hepatocellular carcinoma are enhanced by combined therapy of sorafenib and delivering modified GO-based PD-L1 siRNAs. , 2022, 136, 212761.		10
1016	GSH-Responsive and Hypoxia-Activated Multifunctional Nanoparticles for Synergetically Enhanced Tumor Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 1942-1955.	2.6	12
1017	Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.	5.2	27
1018	Metal-Organic Framework-Based Nanotherapeutics With Tumor Hypoxia-Relieving Ability for Synergistic Sonodynamic/Chemo-therapy. Frontiers in Materials, 2022, 9, .	1.2	8
1019	Controllable Microemulsion Synthesis of Hybrid TiO ₂ –SiO ₂ Hollow Spheres and Au-Doped Hollow Spheres with Enhanced Photocatalytic Activity. Langmuir, 2022, 38, 4001-4013.	1.6	14
1020	Improvement of Photodynamic Activity by a Stable System Consisting of a C ₆₀ Derivative and Photoantenna in Liposomes. ACS Medicinal Chemistry Letters, 2022, 13, 641-647.	1.3	8
1021	Photoactivatable carbon dots as a label-free fluorescent probe for picric acid detection and light-induced bacterial inactivation. Journal of Photochemistry and Photobiology B: Biology, 2022, 229, 112412.	1.7	10
1022	The new mitochondrial uncoupler BAM15 induces ROS production for treatment of acute myeloid leukemia. Biochemical Pharmacology, 2022, 198, 114948.	2.0	3
1023	An Overview of the Evidence and Mechanism of Drug–Herb Interactions Between Propolis and Pharmaceutical Drugs. Frontiers in Pharmacology, 2022, 13, 876183.	1.6	15
1024	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.	5.7	48
1025	Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy. Nano Today, 2022, 43, 101433.	6.2	33
1026	Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. Journal of Controlled Release, 2022, 345, 755-769.	4.8	86
1027	Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Advanced Drug Delivery Reviews, 2022, 184, 114241.	6.6	39
1028	Spatiotemporal sonodynamic therapy for the treatment of rheumatoid arthritis based on Z-scheme heterostructure sonosensitizer of HO-1 inhibitor jointed bismuth nanotriangle. Chemical Engineering Journal, 2022, 438, 135558.	6.6	8
1029	Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373.	6.6	12
1030	Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. Nano Today, 2022, 44, 101477.	6.2	24
1031	A multifunctional near-infrared fluorescent probe for in vitro and in vivo imaging of γ-glutamyltranspeptidase and photodynamic cancer therapy. Sensors and Actuators B: Chemical, 2022, 363, 131838.	4.0	11
1032	Polyatomic Liquid Oxygen (PLO [®]): A new methodology for the production in aqueous solution of reactive oxygen and nitrogen species (RONS) to be applied in medical treatments. AIP Advances, 2021, 11, 125218.	0.6	1

#	Article	IF	CITATIONS
1033	Graphitic Carbon Nitrideâ€Based Photocatalysts for Biological Applications. Advanced Sustainable Systems, 2022, 6, .	2.7	7
1034	Semiconductor Quantum Dots (CdX, X = S, Te, Se) Modify Titanium Dioxide Nanoparticles for Photodynamic Inactivation of Leukemia HL60 Cancer Cells. Journal of Nanomaterials, 2021, 2021, 1-24.	1.5	1
1035	Nanostructured Surfaces with Multimodal Antimicrobial Action. Accounts of Chemical Research, 2021, 54, 4508-4517.	7.6	14
1036	Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. Journal of Nanobiotechnology, 2021, 19, 440.	4.2	24
1037	Nitric oxide nano-prodrug platform with synchronous glutathione depletion and hypoxia relief for enhanced photodynamic cancer therapy. Materials Science and Engineering C, 2022, 133, 112616.	3.8	7
1038	Porphyrin-Based Two-Dimensional Layered Metal–Organic Framework with Sono-/Photocatalytic Activity for Water Decontamination. ACS Nano, 2022, 16, 1346-1357.	7.3	64
1039	Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS Nano, 2021, 15, 20164-20180.	7.3	69
1040	Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chemical Science, 2022, 13, 5505-5530.	3.7	26
1041	Mitochondria-Targeting and ROS-Responsive Nanocarriers via Amphiphilic TPP-PEG-TK-Ce6 for Nanoenabled Photodynamic Therapy. Advances in Polymer Technology, 2022, 2022, 1-9.	0.8	3
1042	Bioinspired Design of <i>seco</i> â€Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1043	Bioinspired Design of <i>seco</i> â€Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angewandte Chemie, 2022, 134, .	1.6	3
1045	Longâ€Circulating Theranostic 2D Metalâ€Organic Frameworks with Concurrent O ₂ Selfâ€Supplying and CSH Depletion Characteristic for Enhanced Cancer Chemodynamic Therapy. Small Methods, 2022, 6, e2200178.	4.6	12
1046	Tumor-responsive nanomedicine based on Ce ³⁺ -modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3824-3833.	2.9	2
1047	Coupling BODIPY with nitrogen-doped graphene quantum dots to address the water solubility of photosensitizers. Materials Chemistry Frontiers, 2022, 6, 1719-1726.	3.2	9
1048	A host–guest strategy for converting the photodynamic agents from a singlet oxygen generator to a superoxide radical generator. Chemical Science, 2022, 13, 5951-5956.	3.7	75
1049	Phototherapy: The novel emerging treatment for cancer. , 2022, , 31-50.		2
1050	Bubble-assisted HIFU ablation enabled by calcium peroxide. Journal of Materials Chemistry B, 2022, 10, 4442-4451.	2.9	4
1051	Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomaterials Science, 2022, 10, 3006-3016.	2.6	10

#	Article	IF	CITATIONS
1052	NIR-II-responsive AuNRs@SiO ₂ –RB@MnO ₂ nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 4274-4284.	2.9	13
1053	Oxygenâ€Independent Sulfate Radical for Stimuliâ€Responsive Tumor Nanotherapy. Advanced Science, 2022, 9, e2200974.	5.6	18
1054	Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	37
1055	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie, 2022, 134, .	1.6	9
1056	Two-photon responsive porphyrinic metal-organic framework involving Fenton-like reaction for enhanced photodynamic and sonodynamic therapy. Journal of Nanobiotechnology, 2022, 20, 217.	4.2	20
1057	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
1058	Photocatalytic detoxification of a sulfur mustard simulant under realistic conditions by imidazoline-based porous organic polymer composites. Cell Reports Physical Science, 2022, 3, 100888.	2.8	4
1059	C-Phycoycanin-Doxorubicin Nanoparticles for Chemo-Photodynamic Cancer Therapy. Macromolecular Research, 2022, 30, 486-494.	1.0	1
1060	How to Make Personal Protective Equipment Spontaneously and Continuously Antimicrobial (Incorporating Oxidase-like Catalysts). ACS Nano, 2022, 16, 7755-7771.	7.3	27
1061	Effect of cellulose nanocrystals on the properties of the photoactive aloe emodin poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) packaging film. , 0, , .		0
1062	Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15, 6372-6398.	5.8	15
1063	Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Advanced Drug Delivery Reviews, 2022, 186, 114344.	6.6	33
1064	The Role of Hitchhiking in Cancer Therapeutics—A Review. Advanced Therapeutics, 2022, 5, .	1.6	5
1065	Carbon Dots from Natural Sources for Biomedical Applications. Particle and Particle Systems Characterization, 2022, 39, .	1.2	15
1066	An oxygen-economical nano-photosensitizer with a high photodynamic therapeutic outcome <i>via</i> simultaneous reduction of the cellular respiration and oxygen depletion of PDT. Journal of Materials Chemistry B, 2022, 10, 4623-4631.	2.9	7
1067	Revealing excited-state dynamics of type I zinc phthalocyanine photosensitizer for photodynamic therapy. Scientia Sinica Chimica, 2022, 52, 1384-1392.	0.2	1
1068	The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.	6.4	21
1069	Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. Jacs Au, 2022, 2, 1472-1478.	3.6	23

#	Article	IF	Citations
1070	Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer. Journal of Colloid and Interface Science, 2023, 629, 773-784	5.0	1
1071	Photoactivation-triggered in situ self-supplied H2O2 for boosting chemodynamic therapy via layered double Hydroxide-mediated catalytic cascade reaction. Chemical Engineering Journal, 2022, 446, 137310.	6.6	11
1072	Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials, 2022, 287, 121603.	5.7	13
1073	A Novel Tetrameric Heptomolybdate with Reactive Oxygen Species Catalytic Ability. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 325-331.	0.3	1
1074	Anthracene-based fluorescent MOFs decorated by platinum nanozymes as a multifunctional nanoplatform for enhanced photodynamic therapy and self-monitoring of real-time singlet oxygen. Chemical Engineering Journal, 2022, 446, 137333.	6.6	17
1075	Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. International Journal of Nanomedicine, 0, Volume 17, 2707-2731.	3.3	9
1076	Synthesis of near-infrared-responsive hexagonal-phase upconversion nanoparticles with controllable shape and luminescence efficiency for theranostic applications. Journal of Biomaterials Applications, 2022, 37, 646-658.	1.2	4
1077	Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. Jacs Au, 2022, 2, 1488-1503.	3.6	44
1078	Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Frontiers in Pharmacology, 0, 13, .	1.6	51
1079	Porphyrins and Metalloporphyrins Combined with N-Heterocyclic Carbene (NHC) Gold(I) Complexes for Photodynamic Therapy Application: What Is the Weight of the Heavy Atom Effect?. Molecules, 2022, 27, 4046.	1.7	7
1080	A Novel Tri-Coordination Zinc Complex Functionalized Silicotungstate with ROS Catalytic Ability and Anti-Tumor Cells Activity. Catalysts, 2022, 12, 695.	1.6	3
1081	Free-Radical Cascade Generated by AIPH/Fe ₃ O ₄ -Coloaded Nanoparticles Enhances MRI-Guided Chemo/Thermodynamic Hypoxic Tumor Therapy. ACS Applied Materials & Interfaces, 2022, 14, 29563-29576.	4.0	10
1082	Tumor pH-Responsive Nanocarriers With Light-Activatable Drug Release for Chemo-Photodynamic Therapy of Breast Cancer. Frontiers in Chemistry, 0, 10, .	1.8	1
1083	Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nature Communications, 2022, 13, .	5.8	95
1084	Composition tunability of semiconductor radiosensitizers for low-dose X-ray induced photodynamic therapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
1085	Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane–Polyurea Hybrid Nanocarrier. Biomacromolecules, 2022, 23, 2900-2913.	2.6	14
1086	Minimalist O2 generator formed by in situ KMnO4 oxidation for tumor cascade therapy. Biomaterials, 2022, 287, 121596.	5.7	4
1087	An advanced multifunctional prodrug combining photodynamic therapy with chemotherapy for highly efficient and precise tumor ablation. Dyes and Pigments, 2022, 205, 110500.	2.0	3

#	Article	IF	CITATIONS
1088	Mitochondria/RNA cascade-targeted and fluorescence-switchable photosensitizer for photodynamic therapy augmentation and real-time efficacy self-monitoring. Sensors and Actuators B: Chemical, 2022, 369, 132260.	4.0	7
1089	Tumor pH-Responsive Autocatalytic Nanoreactor as H ₂ O ₂ and O ₂ Self-Supplying Granary for Enhanced ROS-Based Chemodynamic/Photodynamic Therapy. SSRN Electronic Journal, 0, , .	0.4	0
1090	Layered double hydroxide-based nanomaterials for biomedical applications. Chemical Society Reviews, 2022, 51, 6126-6176.	18.7	133
1091	Lanthanide porphyrinoids as molecular theranostics. Chemical Society Reviews, 2022, 51, 6177-6209.	18.7	34
1092	Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews, 2022, 11, 2595-2631.	2.6	19
1093	Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs. Current Drug Metabolism, 2022, 23, 757-780.	0.7	4
1094	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	6.6	19
1095	Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy. Green Chemical Engineering, 2023, 4, 324-330.	3.3	2
1096	Oxygen Selfâ€Supplying Enzymatic Nanoplatform for Precise and Enhanced Photodynamic Therapy. Advanced Therapeutics, 2022, 5, .	1.6	4
1097	Integrating Au and ZnO nanoparticles onto graphene nanosheet for enhanced sonodynamic therapy. Nano Research, 2022, 15, 9223-9233.	5.8	20
1098	Microneedle Patches with O ₂ Propellant for Deeply and Fast Delivering Photosensitizers: Towards Improved Photodynamic Therapy. Advanced Science, 2022, 9, .	5.6	23
1099	Lightâ€Triggered Hypoxiaâ€Responsive Nanoscale Metalâ€Organic Frameworks for Highly Efficient Antitumor Treatment. Advanced Optical Materials, 0, , 2201043.	3.6	1
1100	Aggregation enhanced photoactivity of photosensitizer conjugated metal nanoparticles for multimodal imaging and synergistic phototherapy below skin tolerance threshold. Nano Today, 2022, 45, 101534.	6.2	12
1101	A glutathione and hydrogen sulfide responsive photosensitizer for enhanced photodynamic therapy. Dyes and Pigments, 2022, 205, 110529.	2.0	6
1102	Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coordination Chemistry Reviews, 2022, 469, 214656.	9.5	43
1103	A hexa-Cu cluster sandwiched silicotungstate with reactive oxygen species catalytic ability and anti-tumor activity in PC12 cells. Journal of Molecular Structure, 2022, 1267, 133616.	1.8	3
1104	Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. Journal of Medicinal Chemistry, 2022, 65, 10161-10182.	2.9	9
1105	A novel carbon-nanodots-based theranostic nano-drug delivery system for mitochondria-targeted imaging and glutathione-activated delivering camptothecin. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112712.	2.5	9

#	Article	IF	CITATIONS
1106	Photodynamic Alzheimer's disease therapy: From molecular catalysis to photo-nanomedicine. Coordination Chemistry Reviews, 2022, 470, 214726.	9.5	12
1107	Promoted Type I and II ROS Generation by a Covalent Organic Framework through Sonosensitization and PMS Activation. ACS Catalysis, 2022, 12, 9621-9628.	5.5	10
1108	Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy. Frontiers in Chemistry, 0, 10, .	1.8	14
1109	Low-Dose Near-Infrared Light-Activated Mitochondria-Targeting Photosensitizers for PDT Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 9525.	1.8	4
1110	A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	2
1111	Janus-Nanojet as an efficient asymmetric photothermal source. Scientific Reports, 2022, 12, .	1.6	2
1113	Nanomaterials: A powerful tool for tumor immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	5
1114	Tumor Microenvironmentâ€Responsive Cu/CaCO ₃ â€Based Nanoregulator for Mitochondrial Homeostasis Disruptionâ€Enhanced Chemodynamic/Sonodynamic Therapy. Small, 2022, 18, .	5.2	28
1115	Zein-Based Nanomedicines for Synergistic Chemodynamic/Photodynamic Therapy. ACS Omega, 2022, 7, 29256-29265.	1.6	12
1116	Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygenâ€Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors. Small, 2022, 18, .	5.2	24
1117	Secure transplantation by tissue purging using photodynamic therapy to eradicate malignant cells. Journal of Photochemistry and Photobiology B: Biology, 2022, 234, 112546.	1.7	9
1118	Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomedicine and Pharmacotherapy, 2022, 153, 113483.	2.5	7
1119	Mitochondria-targeted red light-activated superoxide radical-mediated photodynamic therapy of breast cancer. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114196.	2.0	0
1120	Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioactive Materials, 2023, 21, 1-19.	8.6	19
1121	Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O ₂ Consumption for Robust Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1123	Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry, 2022, 4, 1028-1043.	0.9	6
1124	Research progress on tumor hypoxia-associative nanomedicine. Journal of Controlled Release, 2022, 350, 829-840.	4.8	28
1125	Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials, 2022, 289, 121812.	5.7	9

#	Article	IF	CITATIONS
1126	A novel Pim-1 kinase-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy and reduced metastasis. Dyes and Pigments, 2022, 207, 110778.	2.0	1
1127	State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OpenNano, 2022, 8, 100078.	1.8	11
1128	A MCL-1-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy, sensitization to ROS-induced damage, and immune response. Journal of Inorganic Biochemistry, 2022, 237, 111997.	1.5	0
1129	Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews, 2022, 472, 214765.	9.5	15
1130	Biomimetic PLGA-based nanocomplexes for improved tumor penetration to enhance chemo-photodynamic therapy against metastasis of TNBC. Materials Today Advances, 2022, 16, 100289.	2.5	6
1131	Porphycenes as broad-spectrum antimicrobial photosensitizers. Potentiation with potassium iodide. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114288.	2.0	2
1132	Research progress in enhanced photodynamic therapy on tumor. AIP Conference Proceedings, 2022, , .	0.3	0
1133	Dual-responsive and NIR-driven free radical nanoamplifier with glutathione depletion for enhanced tumor-specific photothermal/thermodynamic/chemodynamic synergistic Therapy. Biomaterials Science, 2022, 10, 5912-5924.	2.6	9
1134	Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics, 2022, 6, 400-423.	2.7	43
1135	Benzophenone core-based AIE-active photosensitizers for mitochondria-targeted photodynamic therapy. New Journal of Chemistry, 2022, 46, 19909-19914.	1.4	3
1136	Elevating the Reactive Oxygen Species in Cancer Cells by Photodynamic Therapy. , 2022, , 1145-1162.		0
1137	Tuning intramolecular charge transfer and spin–orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 6228-6236.	2.9	6
1138	Glutathione-depleting polymer delivering chlorin e6 for enhancing photodynamic therapy. RSC Advances, 2022, 12, 21609-21620.	1.7	4
1139	Cerium-based nanoparticles for cancer photodynamic therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	9
1140	Recent Advances in Reactive Oxygen Species (ROS)-Responsive Polyfunctional Nanosystems 3.0 for the Treatment of Osteoarthritis. Journal of Inflammation Research, 0, Volume 15, 5009-5026.	1.6	3
1141	Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nature Communications, 2022, 13, .	5.8	53
1142	Structure and functions of Aggregation-Induced Emission-Photosensitizers in anticancer and antimicrobial theranostics. Frontiers in Chemistry, 0, 10, .	1.8	3
1143	Enhancing electron transfer of a semiconducting polymer for type I photodynamic and photothermal synergistic therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2

#	Article	IF	CITATIONS
1144	Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1145	Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. International Journal of Molecular Sciences, 2022, 23, 11343.	1.8	4
1146	BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. International Journal of Molecular Sciences, 2022, 23, 10198.	1.8	18
1147	Exploration of Site-Specific Drug Targeting—A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. Journal of Oncology, 2022, 2022, 1-26.	0.6	0
1148	Multi-Omics Analysis Reveals the Unexpected Immune Regulatory Effects of Arsenene Nanosheets in Tumor Microenvironment. ACS Applied Materials & Interfaces, 2022, 14, 45137-45148.	4.0	11
1149	Selfâ€Propelled Magnetic Dendriteâ€Shaped Microrobots for Photodynamic Prostate Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1150	Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. Nanomaterials, 2022, 12, 3138.	1.9	10
1151	Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy. Biosensors, 2022, 12, 722.	2.3	9
1152	High reactive oxygen species produced from fluorescence carbon dots for anticancer and photodynamic therapies: A review. Luminescence, 2022, 37, 2006-2017.	1.5	3
1154	Molecular Tailoring Based on Forster Resonance Energy Transfer for Initiating Two-Photon Theranostics with Amplified Reactive Oxygen Species. Analytical Chemistry, 2022, 94, 14029-14037.	3.2	7
1155	A Microneedle Patch with Self-Oxygenation and Glutathione Depletion for Repeatable Photodynamic Therapy. ACS Nano, 2022, 16, 17298-17312.	7.3	33
1156	Selfâ€propelled magnetic dendriteâ€shaped microrobots for photodynamic prostate cancer therapy. Angewandte Chemie, 0, , .	1.6	0
1157	Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O ₂ Consumption for Robust Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	0
1158	The antioxidative capacities of <i>Lactobacillus</i> and its potential mechanisms <i>via</i> chemical and cellular assessments. International Journal of Food Science and Technology, 0, , .	1.3	0
1159	Endoperoxides Compounds for Highly Efficient Cancer Treatment under Hypoxia. Chemistry - A European Journal, 2022, 28, .	1.7	5
1160	Catalytic Biomaterials and Nanomedicines with Exogenous and Endogenous Activations. Advanced Healthcare Materials, 2023, 12, .	3.9	16
1161	Very sensitive probes for quantitative and organoleptic detection of oxygen based on conformer-induced room-temperature phosphorescence enhancement of the derivative of triazatruxene and phenothiazine. Sensors and Actuators B: Chemical, 2022, 373, 132727.	4.0	15
1162	Attachment of â^'tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Materials Today Bio, 2022, 16, 100446.	2.6	4

#	Article	IF	CITATIONS
1163	Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics, 2022, 12, 7404-7419.	4.6	5
1164	Harnessing the Power of Nanomaterials to Alleviate Tumor Hypoxia in Favor of Cancer Therapy. Nanomedicine and Nanotoxicology, 2022, , 135-174.	0.1	0
1165	A Cyclen-Functionalized Cobalt-Substituted Sandwich-Type Tungstoarsenate with Versatility in Removal of Methylene Blue and Anti-ROS-Sensitive Tumor Cells. Molecules, 2022, 27, 6451.	1.7	3
1166	Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy. ACS Applied Nano Materials, 2022, 5, 14954-14960.	2.4	13
1167	Selfâ€Amplifying Iridium(III) Photosensitizer for Ferroptosisâ€Mediated Immunotherapy Against Transferrin Receptorâ€Overexpressing Cancer. Small, 2022, 18, .	5.2	18
1168	Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nature Communications, 2022, 13, .	5.8	25
1169	Tumor Antigen Loaded Nanovaccine Induced NIRâ€Activated Inflammation for Enhanced Antigen Presentation During Immunotherapy of Tumors. Small, 2022, 18, .	5.2	7
1170	Modified hollow mesoporous silica nanoparticles as immune adjuvant-nanocarriers for photodynamically enhanced cancer immunotherapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1171	Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical. Nature Communications, 2022, 13, .	5.8	54
1172	Cyano-substituted stilbene (CSS)-based conjugated polymers: Photophysical properties exploration and applications in photodynamic therapy. Biomaterials, 2022, 291, 121885.	5.7	2
1173	Covalent Organic Frameworks as Nanocarriers for Improved Delivery of Chemotherapeutic Agents. Materials, 2022, 15, 7215.	1.3	4
1174	A tumor pH-responsive autocatalytic nanoreactor as a H2O2 and O2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomaterialia, 2022, 154, 510-522.	4.1	13
1175	Hypoxiaâ€Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors. Small, 2023, 19, .	5.2	18
1176	Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS Applied Materials & Interfaces, 2022, 14, 48341-48355.	4.0	5
1177	Self-amplified ROS production from fatty acid oxidation enhanced tumor immunotherapy by atorvastatin/PD-L1 siRNA lipopeptide nanoplexes. Biomaterials, 2022, 291, 121902.	5.7	9
1178	Dual-activity nanozyme to initiate tandem catalysis for doubly enhancing ATP-depletion anti-tumor therapy. , 2022, 143, 213181.		5
1179	An Overview of Recent Advancements on Manganese-Based Nanostructures and Their Application for ROS-Mediated Tumor Therapy. , 2022, 4, 2415-2433.		2
1180	Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communication, 2022, 146, 110038.	1.8	6

#	Article	IF	CITATIONS
1181	Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chemical Society Reviews, 2022, 51, 9759-9830.	18.7	17
1182	Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews, 2023, 476, 214908.	9.5	48
1183	White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy. Science China Chemistry, 2022, 65, 2528-2537.	4.2	3
1184	Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Research, 2023, 16, 2660-2671.	5.8	16
1185	Molecularly engineering a dual-drug nanoassembly for self-sensitized photodynamic therapy via thioredoxin impairment and glutathione depletion. Drug Delivery, 2022, 29, 3281-3290.	2.5	2
1186	Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. Biosensors, 2022, 12, 1027.	2.3	1
1187	Multifunctional Mesoporous Hollow Cobalt Sulfide Nanoreactors for Synergistic Chemodynamic/Photodynamic/Photothermal Therapy with Enhanced Efficacy. ACS Applied Materials & Interfaces, 2022, 14, 50601-50615.	4.0	8
1188	Switchable ROS Scavenger/Generator for MRIâ€Guided Antiâ€Inflammation and Antiâ€Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Advanced Healthcare Materials, 2023, 12, .	3.9	6
1189	Recent Progress in Carrierâ€Free Nanomedicine for Tumor Phototherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	17
1190	Boosting Type-I and Type-II ROS Production of Water-Soluble Porphyrin for Efficient Hypoxic Tumor Therapy. Molecular Pharmaceutics, 2023, 20, 606-615.	2.3	10
1191	Sterilization Procedures for Titanium Alloy Surfaces Leads to Higher Expression of Biofilm-Related Staphylococcus aureus Genes. Antibiotics, 2022, 11, 1647.	1.5	2
1192	Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy. Theranostics, 2023, 13, 295-323.	4.6	59
1193	Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coordination Chemistry Reviews, 2023, 478, 214979.	9.5	11
1194	Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioactive Materials, 2023, 24, 96-111.	8.6	24
1195	Biomarkerâ€Responsive Nanosystems for Chronic Disease Theranostics. Advanced Functional Materials, 2023, 33, .	7.8	8
1196	An Oxygen-Sufficient Nanoplatform for Enhanced Imaging-Guided Microwave Dynamic Therapy Against Hypoxic Tumors. International Journal of Nanomedicine, 0, Volume 17, 5525-5545.	3.3	0
1197	Bio-nanocomplexes with autonomous O2 generation efficiently inhibit triple negative breast cancer through enhanced chemo-PDT. Journal of Nanobiotechnology, 2022, 20, .	4.2	7
1198	Light-triggered theranostic hydrogels for real-time imaging and on-demand photodynamic therapy of skin abscesses. Acta Biomaterialia, 2023, 155, 292-303.	4.1	11

		CITATION REPORT		
#	Article		IF	CITATIONS
1199	Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells, 2022,	11, 3995.	1.8	20
1200	Cationic telluroviologen derivatives as type†photosensitizers for tumor photodynan Aggregate, 2023, 4, .	nic theranostics.	5.2	23
1201	All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlle generation, storage and release of singlet oxygen. Frontiers of Chemical Science and E	ed Ingineering, 0, , .	2.3	1
1202	A novel 450-nm laser-mediated sinoporphyrin sodium-based photodynamic therapy ind cell death in gastric cancer through regulation of the ROS/PI3K/Akt/mTOR signaling pa Medicine, 2022, 20, .	luces autophagic thway. BMC	2.3	5
1203	Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. , 2023, , 179-	203.		0
1204	Integration of Manganese Dioxideâ€Based Nanomaterials for Biomedical Applications. NanoBiomed Research, 2023, 3, .	Advanced	1.7	4
1205	Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS Omega, 2022	t, 7, 45882-45909.	1.6	25
1206	Electricityâ€Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Integrated with Nanotechnologies. Advanced NanoBiomed Research, 2023, 3, .	Methods	1.7	8
1207	An "all in one―strategy to boost antibacterial phototherapy via porphyrin and bo based covalent organic framework. Chemical Engineering Journal, 2023, 457, 141017.	ron dipyrromethenes	6.6	17
1208	Plasmonic nanomaterials: A versatile phototheranostic platform of cancers. Materials 1 168-189.	Today, 2023, 62,	8.3	9
1209	Nearâ€Infraredâ€Triggered Onâ€Demand Controlled Release of Adenoâ€Associated V Hydrogel Microbeads with Heat Transducer for Gene Therapy. Small, 2023, 19, .	irus from Alginate	5.2	3
1210	Fullâ€Color Emissive Dâ€Dâ€A Carbazole Luminophores: Redâ€toâ€NIR Mechanoâ€flu Aggregationâ€Induced Nearâ€Infrared Emission, and Application in Photodynamic The European Journal, 2023, 29, .	iorochromism, rapy. Chemistry - A	1.7	15
1211	Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomec Applications. Advanced Materials, 2023, 35, .	lical	11.1	45
1212	Inflammatory Cellâ€Inspired Cascade Nanozyme Induces Intracellular Radical Storm fo Anticancer Therapy. Small Methods, 2023, 7, .	r Enhanced	4.6	6
1213	Directly imaging emergence of phase separation in peroxidized lipid membranes. Com Chemistry, 2023, 6, .	munications	2.0	10
1214	Engineering lactate-modulating nanomedicines for cancer therapy. Chemical Society R 973-1000.	eviews, 2023, 52,	18.7	17
1215	Acidityâ€Biodegradable Iridiumâ€Coordinated Nanosheets for Amplified Ferroptotic C Multiple Regulatory Pathways. Advanced Healthcare Materials, 2023, 12, .	ell Death Through	3.9	5
1216	The design of small-molecule prodrugs and activatable phototherapeutics for cancer the Chemical Society Reviews, 2023, 52, 879-920.	herapy.	18.7	64

#	Article	IF	CITATIONS
1217	Smart Nanosensitizers for Activatable Sonoâ€Photodynamic Immunotherapy of Tumors by Redoxâ€Controlled Disassembly. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1218	Smart Nanosensitizers for Activatable Sonoâ€Photodynamic Immunotherapy of Tumors by Redoxâ€Controlled Disassembly. Angewandte Chemie, 2023, 135, .	1.6	1
1219	Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Research International, 2023, 164, 112435.	2.9	5
1220	Emerging Applications of Aggregationâ€Induced Emission Luminogens in Bacterial Biofilm Imaging and Antibiofilm Theranostics. Small Structures, 2023, 4, .	6.9	6
1221	Drug-independent NADPH-consuming micelles collaborate with ROS-generator for cascade ferroptosis amplification by impairing redox homeostasis. Materials Today Bio, 2023, 18, 100532.	2.6	6
1222	Photodynamic therapy for glioblastoma: A light at the end of the tunnel. Journal of Photochemistry and Photobiology, 2023, 13, 100161.	1.1	8
1223	De Novo Design of Reversibly pH-Switchable NIR-II Aggregation-Induced Emission Luminogens for Efficient Phototheranostics of Patient-Derived Tumor Xenografts. Journal of the American Chemical Society, 2023, 145, 334-344.	6.6	46
1224	Recent Advances in Tetrakis (4 arboxyphenyl) Porphyrinâ€Based Nanocomposites for Tumor Therapy. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
1226	Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharmaceutica Sinica B, 2023, 13, 2926-2954.	5.7	6
1227	Mitochondria-Targeting and Multiresponsive Nanoplatform Based on AlEgens for Synergistic Chemo-Photodynamic Therapy and Enhanced Immunotherapy. Biomacromolecules, 2023, 24, 977-990.	2.6	3
1228	Imaging of Mitochondria/Lysosome in Live cells and C. elegans. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1229	Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy. Current Drug Delivery, 2024, 21, 326-338.	0.8	5
1230	Graphitic carbon nitride-based materials for biomedical applications. , 2023, , 377-404.		0
1231	Nanotheranostics: The Afterglow for Cancer Immunotherapy. , 2023, , 1-43.		0
1232	Multi-shell structured nanocarriers with enhanced multiphoton upconversion luminescence efficiency for NIR-mediated targeted photodynamic therapy. Applied Materials Today, 2023, 31, 101755.	2.3	2
1233	Cancer cell membrane camouflaging mesoporous nanoplatform interfering with cellular redox homeostasis to amplify photodynamic therapy on oral carcinoma. Journal of Drug Targeting, 2023, 31, 511-520.	2.1	2
1234	The fabrication strategies of near-infrared absorbing transition metal complexes. Coordination Chemistry Reviews, 2023, 483, 215096.	9.5	7
1235	Cerenkov radiation induced chemo-photodynamic therapy using ROS-responsive agent. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114641.	2.0	0

ARTICLE IF CITATIONS # Light excitation of gold Nanorod-Based hybrid nanoplatforms for simultaneous bimodal 1236 2.3 2 phototherapy. Journal of Molecular Liquids, 2023, 377, 121511. A GSH-activated AIE-based polymer photosensitizer for killing cancer cells. Talanta, 2023, 258, 124473. Red light-activable biotinylated copper(II) complex-functionalized gold nanocomposite (Biotin-Cu@AuNP) towards targeted photodynamic therapy. Journal of Inorganic Biochemistry, 2023, 1238 7 1.5 243, 112183. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis and Photodynamic Therapy, 2023, 42, 1239 1.3 103504 Radionuclide labeled nanocarrier for imaging guided combined radionuclide, sonodynamic, and 1240 photothermal therapy of pancreatic tumours. Journal of Colloid and Interface Science, 2023, 642, 5.0 4 789-799. Metal-phenolic network for cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 1241 1.4 81, 104194. The chronological evolution of fluorescent GPCR probes for bioimaging. Coordination Chemistry 1242 9.5 1 Reviews, 2023, 480, 215040. Bio-inspired Oxidative Stress Amplifier for Suppressing Cancer Metastasis and Imaging-Guided 1243 Combination Therapy. ACS Applied Materials & amp; Interfaces, 2023, 15, 6572-6583. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal 1244 5.0 32 Research Reviews, 2023, 43, 717-774. Amphiphilic photosensitizer polymer as a nanocarrier of cytotoxic molecule for carrier $\hat{a} \in \mathbf{f}$ ree combination therapy., 2023, 2, . Manipulating the Subcellular Localization and Anticancer Effects of Benzophenothiaziniums by Minor 1246 0 1.7 Alterations of N-Alkylation. Molecules, 2023, 28, 1714. Tumor-specific activated nano-domino-CRISPR to amplify intrinsic oxidative and activate endogenous 5.7 apoptosis for spatiotemporally specific therapy. Biomatérials, 2023, 295, 122056. Immuno-photodynamic Therapy (IPDT): Organic Photosensitizers and Their Application in Cancer 1248 3.6 21 Ablation. Jacs Au, 2023, 3, 682-699. Progress in the Clinical Application of Photodynamics in Gynecological Diseases. Advances in Clinical 1249 Medicine, 2023, 13, 2224-2231. A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS 1250 6.2 25 augment and autophagy blockage. Nano Today, 2023, 49, 101798. Albumin-based smart nanoplatform for ultrasound-mediated enhanced chemoâ€sonodynamic combination therapy. Materials and Design, 2023, 227, 111794. Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. 1252 1.7 15 Molecules, 2023, 28, 2303. Dissecting the Interactions between Chlorin e6 and Human Serum Albumin. Molecules, 2023, 28, 2348.

# 1254	ARTICLE Dual stimulus-triggered bioorthogonal nanosystem for spatiotemporally controlled prodrug activation and near-infrared fluorescence imaging. Chemical Communications, 2023, 59, 3878-3881.	IF 2.2	Citations
1255	Photon-Controlled Pyroptosis Activation (PhotoPyro): An Emerging Trigger for Antitumor Immune Response. Journal of the American Chemical Society, 2023, 145, 6007-6023.	6.6	35
1256	Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. Advanced Materials, 2023, 35, .	11.1	33
1257	Theoretical Investigation of Ru(II) Complexes with Long Lifetime and a Large Two-Photon Absorption Cross-Section in Photodynamic Therapy. Journal of Medicinal Chemistry, 2023, 66, 4167-4178.	2.9	10
1258	A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics, 2023, 15, 868.	2.0	21
1259	A Metalâ€Free Mesoporous Carbon Dots/Silica Hybrid Type I Photosensitizer with Enzymeâ€Activity for Synergistic Treatment of Hypoxic Tumor. Advanced Functional Materials, 2023, 33, .	7.8	25
1260	Coupling Probiotics with 2D CoCuMo‣DH Nanosheets as a Tumorâ€Microenvironmentâ€Responsive Platform for Precise NIRâ€II Photodynamic Therapy. Advanced Materials, 2023, 35, .	11.1	30
1261	Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers, 2023, 15, 1490.	2.0	7
1262	Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation. Nature Communications, 2023, 14, .	5.8	12
1263	Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia. Acta Biomaterialia, 2023, 162, 57-71.	4.1	4
1264	A Self-Assembled Copper-Selenocysteine Nanoparticle for Enhanced Chemodynamic Therapy via Oxidative Stress Amplification. , 2023, 5, 1237-1244.		5
1265	Comparison of Lowâ€Density Lipoprotein Oxidation by Hydrophilic O(³ P)â€Precursors and Lipidâ€O(³ P)â€Precursor Conjugates. Photochemistry and Photobiology, 2023, 99, 1412-1419.	1.3	0
1266	Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. Journal of Controlled Release, 2023, 356, 623-648.	4.8	28
1267	A supramolecular near-infrared nanophotosensitizer from host-guest complex of lactose-capped pillar[5]arene with aza-BODIPY derivative for tumor eradication. Organic Chemistry Frontiers, 2023, 10, 1927-1935.	2.3	7
1268	The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers, 2023, 15, 1892.	1.7	7
1269	Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. Nanomaterials, 2023, 13, 1130.	1.9	3
1270	Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Transactions, 2023, 52, 6226-6238.	1.6	41
1271	Theranostic inorganic–organic hybrid nanoparticles with a cocktail of chemotherapeutic and cytostatic drugs. Journal of Materials Chemistry B, 2023, 11, 3635-3649.	2.9	2

#	Article	IF	CITATIONS
1272	Development of Berberine-Loaded Nanoparticles for Astrocytoma Cells Administration and Photodynamic Therapy Stimulation. Pharmaceutics, 2023, 15, 1078.	2.0	5
1273	Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. International Journal of Molecular Sciences, 2023, 24, 6308.	1.8	11
1274	An Intelligent Laserâ€Free Photodynamic Therapy Based on Endogenous miRNAâ€Amplified CRET Nanoplatform**. Chemistry - A European Journal, 2023, 29, .	1.7	3
1275	ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer. Acta Biomaterialia, 2023, 164, 511-521.	4.1	5
1276	Carbon dots/platinum nanoparticles-loaded mesoporous silica for synergistic photodynamic/catalytic therapy of hypoxic tumors. Materials Chemistry Frontiers, 2023, 7, 2706-2720.	3.2	4
1277	Polymeric Phthalocyanineâ€Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Advanced Healthcare Materials, 2023, 12, .	3.9	2
1278	Three-in-one: exploration of co-encapsulation of cabazitaxel, bicalutamide and chlorin e6 in new mixed cyclodextrin-crosslinked polymers. RSC Advances, 2023, 13, 10923-10939.	1.7	1
1279	NIR-II Light-Activated Gold Nanorods for Synergistic Thermodynamic and Photothermal Therapy of Tumor. ACS Applied Bio Materials, 2023, 6, 1934-1942.	2.3	4
1280	Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega, 2023, 8, 14290-14320.	1.6	31
1281	An Alkaline Phosphatase-Responsive Aggregation-Induced Emission Photosensitizer for Selective Imaging and Photodynamic Therapy of Cancer Cells. ACS Nano, 2023, 17, 7145-7156.	7.3	18
1282	Engineering a new member of MXenes M5C4 phases nanoplatforms as synergistically photothermal and chemodynamic therapeutics for methicillin-resistant Staphylococcus aureus. Chemical Engineering Journal, 2023, 466, 143004.	6.6	9
1283	Visible-light-induced strong oxidation capacity of metal-free carbon nanodots through photo-induced surface reduction for photocatalytic antibacterial and tumor therapy. Journal of Colloid and Interface Science, 2023, 644, 107-115.	5.0	2
1284	Use of titanium dioxide nanoparticles for cancertreatment: A comprehensive review and bibliometric analysis. Biocatalysis and Agricultural Biotechnology, 2023, 50, 102710.	1.5	6
1285	Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules, 2023, 24, 1943-1979.	2.6	5
1286	Autophagyâ€Activated Selfâ€reporting Photosensitizer Promoting Cell Mortality in Cancer Starvation Therapy. Advanced Science, 2023, 10, .	5.6	6
1287	Organic Semiconducting Nanoparticles for Biosensor: A Review. Biosensors, 2023, 13, 494.	2.3	2
1288	Photodegradation of carbonic anhydrase by iridium complexes for induction of immunogenic cell death under hypoxia. Inorganic Chemistry Frontiers, 2023, 10, 3284-3292.	3.0	3
1289	Application of infrared waves in cancer therapy. , 2023, , 151-237.		1
	CITATION	CITATION REPORT	
------	---	-----------------	-----------
#	Article	IF	Citations
1290	Hypoxic tumor therapy based on free radicals. Materials Chemistry Frontiers, 0, , .	3.2	0
1298	AlEgens for synergistic anticancer therapy. Journal of Materials Chemistry B, 2023, 11, 5953-5975.	2.9	2
1305	Introduction to Nanomedicine. SpringerBriefs in Applied Sciences and Technology, 2023, , 1-15.	0.2	0
1309	Synthesis and properties of novel type I photosensitizer polycyclic amide. Nanoscale Advances, 0, , .	2.2	1
1326	Editorial: Synthesis of novel photosensitizers for cancer theranostics. Frontiers in Chemistry, 0, 11, .	1.8	0
1334	Upconversion Phenomenon and Its Implications in Core–Shell Architecture. Progress in Optical Science and Photonics, 2023, , 97-126.	0.3	Ο
1350	Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Medicinal Chemistry, 2023, 14, 2438-2458.	1.7	1
1354	Polyoxometalates based nanocomposites for bioapplications. Rare Metals, 2023, 42, 3570-3600.	3.6	4
1359	Genetically targeted chemical assembly. , 0, , .		1
1379	The nano-revolution in the diagnosis and treatment of endometriosis. Nanoscale, 2023, 15, 17313-17325.	2.8	1
1385	Hybrid micro- and nanoparticles for drug delivery. Advances in Chemical Engineering, 2023, , 337-370.	0.5	0
1391	Cancer Therapy with Carbon Dots. , 2023, , 301-333.		Ο
1392	Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
1396	Metal Oxide Nanostructure for Biomedical Applications. , 2024, , 43-69.		0
1414	Perspectives in ROS/Redox Regulation Cancer Therapy. , 2023, , 411-431.		0
1423	Supramolecular nanosheet formation induced photosensitisation mechanism change of Rose Bengal dye in aqueous media. Chemical Communications, 0, , .	2.2	0
1426	Nanomaterials in Cancer Therapy. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 217-248.	0.1	0