Progressive incision of the Channeled Scablands by out

Nature 538, 229-232 DOI: 10.1038/nature19817

Citation Report

#	Article	IF	CITATIONS
1	Megafloods downsized. Nature, 2016, 538, 174-175.	13.7	8
2	Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan?. Earth Surface Processes and Landforms, 2017, 42, 1535-1548.	1.2	11
3	¹⁰ Be dating of late Pleistocene megafloods and Cordilleran Ice Sheet retreat in the northwestern United States. Geology, 2017, 45, 583-586.	2.0	24
4	Amazonian fluvial outflow channels in Jovis Tholus region, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 927-949.	1.5	5
5	Excavation of subglacial bedrock channels by seasonal meltwater flow. Earth Surface Processes and Landforms, 2018, 43, 1960-1972.	1.2	24
6	Incision of Licus Vallis, Mars, From Multiple Lake Overflow Floods. Journal of Geophysical Research E: Planets, 2018, 123, 405-420.	1.5	25
7	Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States. Journal of Hydrology, 2018, 556, 625-633.	2.3	16
8	Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000 years. Quaternary Science Reviews, 2018, 187, 41-61.	1.4	30
9	Is Kasei Valles (Mars) the largest volcanic channel in the solar system?. Icarus, 2018, 301, 37-57.	1.1	13
10	Experiments on the morphological controls of velocity inversions in bedrock canyons. Earth Surface Processes and Landforms, 2018, 43, 654-668.	1.2	12
11	Substrate controls on valley formation by groundwater on Earth and Mars. Geology, 2018, 46, 531-534.	2.0	23
12	Origin and Evolution of Biodiversity. , 2018, , .		10
13	Natura Fecit Saltum: Punctuationalism Pervades the Natural Sciences. , 2018, , 341-361.		0
14	Variableâ€Threshold Behavior in Rivers Arising From Hillslopeâ€Derived Blocks. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1931-1957.	1.0	30
15	Outburst floods provide erodability estimates consistent with long-term landscape evolution. Scientific Reports, 2018, 8, 10573.	1.6	34
16	Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica. Cryosphere, 2019, 13, 1959-1981.	1.5	25
17	Incision of paleolake outlet canyons on Mars from overflow flooding. Geology, 2019, 47, 7-10.	2.0	20
18	Formation of Ares Vallis (Mars) by effusions of low-viscosity lava within multiple regions of chaotic terrain. Geomorphology, 2019, 345, 106828	1.1	7

ATION RED

#	Article	IF	CITATIONS
19	Canyon shape and erosion dynamics governed by channel-hillslope feedbacks. Geology, 2019, 47, 650-654.	2.0	30
20	The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1056-1079.	1.0	58
22	Knickpoints in Martian channels indicate past ocean levelsÂ. Scientific Reports, 2019, 9, 15153.	1.6	12
23	Constraints on the nature of the effusive volcanic eruptions that incised Ravi Vallis, Mars. Planetary and Space Science, 2019, 167, 54-70.	0.9	7
24	Struggles with stream power: Connecting theory across scales. Geomorphology, 2020, 366, 106817.	1.1	21
25	Catastrophic glacial-lake outburst flooding of the Patagonian Ice Sheet. Earth-Science Reviews, 2020, 200, 102996.	4.0	37
26	The Zanclean megaflood of the Mediterranean – Searching for independent evidence. Earth-Science Reviews, 2020, 201, 103061.	4.0	34
27	What can Olympus Mons tell us about the Martian lithosphere?. Journal of Volcanology and Geothermal Research, 2020, 402, 106981.	0.8	2
28	Quantitative Paleoflood Hydrology. , 2020, , .		6
29	Morphometry of bedrock meltwater channels on Antarctic inner continental shelves: Implications for channel development and subglacial hydrology. Geomorphology, 2020, 370, 107369.	1.1	10
30	The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Scientific Reports, 2020, 10, 18571.	1.6	6
31	Pliocene–Pleistocene megafloods as a mechanism for Greenlandic megacanyon formation. Geology, 2020, 48, 737-741.	2.0	12
32	Morpho-sedimentary and stratigraphic characteristics of the 2000 Yigong River landslide dam outburst flood deposits, eastern Tibetan Plateau. Geomorphology, 2020, 367, 107293.	1.1	17
33	Entrainment and suspension of sand and gravel. Earth Surface Dynamics, 2020, 8, 485-504.	1.0	32
34	Incision of Ma'adim Vallis (Mars) by dry volcanic megafloods effused from multiple highland sources. Planetary and Space Science, 2020, 191, 105021.	0.9	8
35	The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 2020, 6, eaay2915.	4.7	48
36	Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya. Earth and Planetary Science Letters, 2020, 535, 116113.	1.8	24
37	A Mechanistic Model for Lateral Erosion of Bedrock Channel Banks by Bedload Particle Impacts. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005509.	1.0	28

CITATION REPORT

#	Article	IF	Citations
38	The Missoula and Bonneville floods—A review of ice-age megafloods in the Columbia River basin. Earth-Science Reviews, 2020, 208, 103181.	4.0	31
39	Overspilling small craters on a dry Mars: Insights from breach erosion modeling. Earth and Planetary Science Letters, 2021, 554, 116671.	1.8	8
40	Dry megafloods on Mars: formation of the outflow channels by voluminous effusions of low viscosity lava. , 2021, , 61-93.		0
41	Bedrock Rivers. , 2022, , 865-903.		8
42	Glacial Lake Outburst Floods: Geomorphological Agents and Hazardous Phenomena. , 2022, , 313-329.		4
43	Geomorphological impact, hydraulics and watershed- lake connectivity during extreme floods in mountain areas: The 1959 Vega de Tera dam failure, NW Spain. Geomorphology, 2021, 375, 107531.	1.1	5
44	Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005944.	1.0	6
45	Late Holocene canyon-carving floods in northern Iceland were smaller than previously reported. Communications Earth & Environment, 2021, 2, .	2.6	3
47	Catastrophic Drainage From the Northwestern Outlet of Glacial Lake Agassiz During the Younger Dryas. Geophysical Research Letters, 2021, 48, e2021GL093919.	1.5	11
48	Assessment of local outburst flood risk from successive landslides: Case study of Baige landslide-dammed lake, upper Jinsha river, eastern Tibet. Journal of Hydrology, 2021, 599, 126294.	2.3	27
49	Landslide-lake outburst floods accelerate downstream hillslope slippage. Earth Surface Dynamics, 2021, 9, 1251-1262.	1.0	8
50	From Process to Centuries: Upscaling Fieldâ€Calibrated Models of Fluvial Bedrock Erosion. Geophysical Research Letters, 2021, 48, e2021GL093415.	1.5	2
51	Characterization of a glacial paleo-outburst flood using high-resolution 3-D seismic data: BjÃ,rnelva River Valley, SW Barents Sea. Journal of Glaciology, 2021, 67, 404-420.	1.1	5
52	Fluvial palaeohydrology in the 21st century and beyond. Earth Surface Processes and Landforms, 2022, 47, 58-81.	1.2	16
53	Extraterrestrial Fluvial Environments. , 2020, , 994-994.		0
54	Outburst Floods. , 2020, , .		3
55	Modeling the Hydrodynamics, Sediment Transport, and Valley Incision of Outletâ€Forming Floods From Martian Crater Lakes. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006979.	1.5	6
56	Upper Grand Coulee: New views of a channeled scabland megafloods enigma. , 2021, , 245-300.		1

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
57	Bedrock gorge incision via anthropogenic meander cutoff. Geology, 2022, 50, 321-325		2.0	1
58	Two megafloods in the middle reach of Yarlung Tsangpo River since Last-glacial period: giant bars. Global and Planetary Change, 2022, 208, 103726.	Evidence from	1.6	11
59	Long-period variability in ice-dammed glacier outburst floods due to evolving catchmen Cryosphere, 2022, 16, 333-347.	it geometry.	1.5	4
60	Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal o Research F: Earth Surface, 2022, 127, .	f Geophysical	1.0	4
61	Bed and Bank Stress Partitioning in Bedrock Rivers. Journal of Geophysical Research F: I 2022, 127, .	Earth Surface,	1.0	4
62	Glacial isostatic adjustment directed incision of the Channeled Scabland by Ice Age me Proceedings of the National Academy of Sciences of the United States of America, 202	gafloods. 2, 119, .	3.3	4
63	Reconstructing glacial outburst floods (jĶkulhlaups) from geomorphology: Challenges and an enhanced interpretive framework. Progress in Physical Geography, 2022, 46, 39	s, solutions, 98-421.	1.4	4
64	Channel trajectories control deepâ€water stratigraphic architecture. Depositional Recc 880-894.	rd, 2022, 8,	0.8	5
65	Development of Shalbatana Vallis (Mars) by dry volcanic processes. Planetary and Spac 215, 105464.	e Science, 2022,	0.9	1
66	The Erosional and Depositional Potential of Holocene Tibetan Megafloods Through the Tsangpo Gorge, Eastern Himalaya: Insights From 2D Hydraulic Simulations. Journal of C Research F: Earth Surface, 2022, 127, .	Yarlung eophysical	1.0	6
67	Experiments on Pool Formation in Bedrock Canyons. Journal of Geophysical Research F 2022, 127, .	: Earth Surface,	1.0	4
68	Narrower Paleoâ \in canyons Downsize Megafloods. Geophysical Research Letters, 0, , .		1.5	2
69	Terrestrial martian analogues from the Indian subcontinent: Implications for hydrologic Mars. Icarus, 2022, 385, 115118.	al activity on	1.1	0
70	Amplification of plunging flows in bedrock canyons. Geophysical Research Letters, 0, , .		1.5	1
71	Quantitative relationships between river and channel-belt planform patterns. Geology, 1053-1057.	2022, 50,	2.0	5
72	New Evidence of High-Magnitude Flood(S) in the Region of Eastern Himalayan Syntaxis Tibet Plateau. SSRN Electronic Journal, 0, , .	, Southeastern	0.4	0
73	Geomorphic response of outburst floods: Insight from numerical simulations and obser 2018 Baige outburst flood in the upper Yangtze River. Science of the Total Environmen 158378.	vations––The ıt, 2022, 851,	3.9	6
74	Multi grainâ€size total sediment load model based on the disequilibrium length. Journa Research F: Earth Surface, 0, , .	l of Geophysical	1.0	0

CITATION REPORT

#	Article	IF	CITATIONS
75	Rapid megaflood-triggered base-level rise on Mars. Geology, 0, , .	2.0	0
77	HIMALAYAN HAZARD CASCADES – MODERN AND MEDIEVAL OUTBURST FLOODS IN POKHARA, NEPAL. Earth Surface Processes and Landforms, 0, , .	1.2	0
78	Reconstruction of a Holocene landslide-dammed lake in the Yalong basin, eastern Tibetan Plateau. Frontiers in Earth Science, 0, 10, .	0.8	0
79	Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature, 2023, 614, 701-707.	13.7	11
80	Timing and maximum flood level of the Early Holocene glacial lake Nedre GlomsjÃ, outburst flood, Norway. Boreas, 2023, 52, 295-313.	1.2	2
81	Channel aggradation triggered by dam failure amplifies the damage of outburst flood. Landslides, 2023, 20, 1343-1362.	2.7	3