The accuracy of large-area forest canopy cover estimati

International Journal of Applied Earth Observation and Geoinfo 53, 118-127

DOI: 10.1016/j.jag.2016.08.009

Citation Report

#	Article	IF	CITATIONS
1	Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 2017, 195, 259-274.	4.6	252
2	Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sensing of Environment, 2018, 209, 363-374.	4.6	67
3	Calibration of nationwide airborne laser scanning based stem volume models. Remote Sensing of Environment, 2018, 210, 179-192.	4.6	13
4	Canopy Cover Estimation from Landsat Images: Understory Impact onTop-of-canopy Reflectance in a Northern Hardwood Forest. Canadian Journal of Remote Sensing, 2018, 44, 435-446.	1.1	9
5	Estimating forest canopy cover dynamics in Valles Caldera National Preserve, New Mexico, using LiDAR and Landsat data. Applied Geography, 2018, 99, 120-132.	1.7	6
6	A study on the drivers of canopy reflectance variability in a boreal forest. Remote Sensing Letters, 2018, 9, 666-675.	0.6	6
7	A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sensing, 2019, 11, 2757.	1.8	44
8	Identifying Variables to Discriminate between Conserved and Degraded Forest and to Quantify the Differences in Biomass. Forests, 2020, 11, 1020.	0.9	5
9	Estimation of boreal forest floor reflectance from airborne hyperspectral data of coniferous forests. Remote Sensing of Environment, 2020, 249, 112018.	4.6	17
10	Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images. Forests, 2020, 11, 597.	0.9	14
11	Multi-angular reflectance spectra of small single trees. Remote Sensing of Environment, 2021, 255, 112302.	4.6	9
12	Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. Journal of Remote Sensing, 2021, 2021, .	3.2	75
13	Estimating Forest Canopy Cover by Multiscale Remote Sensing in Northeast Jiangxi, China. Land, 2021, 10, 433.	1.2	7
14	Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal. Remote Sensing Applications: Society and Environment, 2021, 22, 100502.	0.8	7
15	Estimating canopy cover in artificial forests using high spatial resolution GF-1 and ZY-3 images: across-sensor and across-site comparison. International Journal of Remote Sensing, 2021, 42, 7166-7187.	1.3	1
16	Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 77-85.	4.9	31
17	Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10953-10963.	2.3	8
18	Regional Sampling of Forest Canopy Covers Using UAV Visible Stereoscopic Imagery for Assessment of Satellite-Based Products in Northeast China. Journal of Remote Sensing, 2022, 2022, .	3.2	3

#	Article	IF	CITATIONS
19	Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests, 2021, 12, 1768.	0.9	8
20	Stand Canopy Closure Estimation in Planted Forests Using a Geometric-Optical Model Based on Remote Sensing. Remote Sensing, 2022, 14, 1983.	1.8	3
21	Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine. Remote Sensing, 2022, 14, 2051.	1.8	1
22	Measuring ungulate-forest interactions: A methods primer. Journal of Fish and Wildlife Management, 0, , .	0.4	0
23	Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sensing of Environment, 2022, 281, 113242.	4.6	14
24	Moderate resolution LAI prediction using Sentinel-2 satellite data and indirect field measurements in Sikkim Himalaya. Environmental Monitoring and Assessment, 2022, 194, .	1.3	3
25	Comparative performance of Sentinel-2 MSI and Landsat-8 OLI data in canopy cover prediction using Random Forest model: Comparing model performance and tuning parameters. Advances in Space Research, 2023, 71, 4691-4709.	1.2	3
26	Spatiotemporal changes in the boreal forest in Siberia over the period 1985–2015 against the background of climate change. Earth System Dynamics, 2023, 14, 223-239.	2.7	1