Three protective agents for pectin-rice bran capsules for plantarum

Food Bioscience 16, 56-65 DOI: 10.1016/j.fbio.2016.10.001

Citation Report

#	Article	IF	CITATIONS
1	Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 2017, 168, 227-239.	5.1	307
2	Encapsulation of <i>Lactobacillus casei</i> into Calcium Pectinateâ€Chitosan Beads for Enteric Delivery. Journal of Food Science, 2017, 82, 2954-2959.	1.5	49
3	Low-moisture food matrices as probiotic carriers. FEMS Microbiology Letters, 2019, 366, .	0.7	36
4	Pectin-microfibrillated cellulose microgel: Effects on survival of lactic acid bacteria in a simulated gastrointestinal tract. International Journal of Biological Macromolecules, 2020, 158, 826-836.	3.6	17
5	Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste and Biomass Valorization, 2021, 12, 2477-2494.	1.8	22
6	Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science and Nutrition, 2022, 62, 4393-4417.	5.4	62
7	A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 2022, 40, 2199-2216.	1.7	19
8	Healthy chocolate enriched with probiotics: a review. Food Science and Technology, 2021, 41, 531-543.	0.8	18
9	Nanoencapsulation of <i>Saccharomycopsis fibuligera</i> VITâ€MN04 using electrospinning technique for easy gastrointestinal transit. IET Nanobiotechnology, 2020, 14, 766-773.	1.9	7
10	Low-moisture food matrices as probiotic carriers. FEMS Microbiology Letters, 2019, 366, i49-i59.	0.7	0
11	Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. Food and Bioprocess Technology, 2022, 15, 998-1039.	2.6	34
12	Study of Melamine-Formaldehyde/Phase Change Material Microcapsules for the Preparation of Polymer Films by Extrusion. Membranes, 2022, 12, 266.	1.4	5
13	Biopolymerâ€Based Multilayer Microparticles for Probiotic Delivery to Colon. Advanced Healthcare Materials, 2022, 11, e2102487.	3.9	9
15	Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. Food Bioscience, 2023, 51, 102260.	2.0	9
18	Capsule corrosion inhibitor loaded with hyperbranched chitosan: Carbon dioxide corrosion protection for downhole pipelines in oil fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131106.	2.3	2
19	Millet Grains as an Immobilizing Matrix for Probiotics in Dry Fermented Sausage. Food and Bioprocess Technology, 2023, 16, 1451-1463.	2.6	3