Applications of Palladium-Catalyzed C–N Cross-Coup

Chemical Reviews 116, 12564-12649 DOI: 10.1021/acs.chemrev.6b00512

Citation Report

#	Article	IF	CITATIONS
3	Palladiumâ€Catalyzed Chemoselective Switch: Synthesis of a New Class of Indenochromenes and Pyrano[2,3â€ <i>c</i>]carbazoles. Asian Journal of Organic Chemistry, 2017, 6, 534-543.	1.3	10
4	n-Butyllithium-mediated synthesis of N-aryl tertiary amines by reactions of fluoroarenes with secondary amines at room temperature. Tetrahedron, 2017, 73, 1466-1472.	1.0	21
5	Evaluating 1,1′-Bis(phosphino)ferrocene Ancillary Ligand Variants in the Nickel-Catalyzed C–N Cross-Coupling of (Hetero)aryl Chlorides. Organometallics, 2017, 36, 679-686.	1.1	46
6	Bimetallic catalysis for C–C and C–X coupling reactions. Chemical Science, 2017, 8, 1705-1718.	3.7	307
7	A Polystyrene-Cross-Linking Bisphosphine: Controlled Metal Monochelation and Ligand-Enabled First-Row Transition Metal Catalysis. ACS Catalysis, 2017, 7, 1681-1692.	5.5	65
8	A Cross-Coupling Approach to Amide Bond Formation from Esters. ACS Catalysis, 2017, 7, 2176-2180.	5.5	124
9	Mechanistic Study of the Role of Substrate Steric Effects and Aniline Inhibition on the Bis(trineopentylphosphine)palladium(0)-Catalyzed Arylation of Aniline Derivatives. ACS Catalysis, 2017, 7, 2516-2527.	5.5	24
10	Selective C(sp 2)â^'H Functionalization of Arenes for Amination Reactions by Using Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 469-474.	1.3	15
11	Light on Unsaturated Hydrocarbons – "Gotta Heterofunctionalize Them All― European Journal of Organic Chemistry, 2017, 2017, 2008-2055.	1.2	37
12	Well-defined nickel and palladium precatalysts for cross-coupling. Nature Reviews Chemistry, 2017, 1, .	13.8	331
13	Palladium-Catalyzed Direct Intramolecular C–N Bond Formation: Access to Multisubstituted Dihydropyrroles. Organic Letters, 2017, 19, 914-917.	2.4	28
14	Selective C(sp ²)–H Halogenation of "Click―4-Aryl-1,2,3-triazoles. Organic Letters, 2017, 19, 962-965.	2.4	34
15	Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1385-1389.	1.0	15
16	Flexible Steric Bulky Bis(Imino)acenaphthene (BIAN)-Supported N-Heterocyclic Carbene Palladium Precatalysts: Catalytic Application in Buchwald–Hartwig Amination in Air. Journal of Organic Chemistry, 2017, 82, 2914-2925.	1.7	69
17	Phenanthridine-Containing Pincer-like Amido Complexes of Nickel, Palladium, and Platinum. Inorganic Chemistry, 2017, 56, 3674-3685.	1.9	31
18	First Total Synthesis of the Cytotoxic Carbazole Alkaloid Excavatineâ€A and Regioselective Annulation to Pyrano[2,3â€ <i>a</i>]carbazoles and [1,4]Oxazepino[2,3,4â€ <i>jk</i>]carbazoles. European Journal of Organic Chemistry, 2017, 2017, 3288-3300.	1.2	10
19	Unified Synthesis of 1,2-Oxy-aminoarenes via a Bio-inspired Phenol-Amine Coupling. CheM, 2017, 2, 533-549.	5.8	43
20	An Organic Intermolecular Dehydrogenative Annulation Reaction. Organic Letters, 2017, 19, 2006-2009.	2.4	66

#	Article	IF	CITATIONS
21	Rh(<scp>iii</scp>)-catalyzed sequential C–H activation and annulation: access to N-fused heterocycles from arylazoles and α-diazocarbonyl compounds. RSC Advances, 2017, 7, 20548-20552.	1.7	35
22	[P,N]-phosphinobenzimidazole ligands in palladium-catalyzed C-N cross-coupling reactions: The effect of the N -substituent of the benzimidazole scaffold on catalyst performance. Journal of Organometallic Chemistry, 2017, 841, 57-61.	0.8	7
23	Copper(I) Oxide/ <i>N</i> N′â€Bis[(2â€furyl)methyl]oxalamideâ€Catalyzed Coupling of (Hetero)aryl Halides and Nitrogen Heterocycles at Low Catalytic Loading. Advanced Synthesis and Catalysis, 2017, 359, 1631-1636.	2.1	48
24	Reversible Gas–Solid Ammonia N–H Bond Activation Mediated by an Organopalladium Complex. Inorganic Chemistry, 2017, 56, 5342-5351.	1.9	11
25	Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Organic Letters, 2017, 19, 2853-2856.	2.4	62
26	Rhodium(I)â€Catalyzed Tertiary Phosphine Directed Câ^'H Arylation: Rapid Construction of Ligand Libraries. Angewandte Chemie, 2017, 129, 7339-7343.	1.6	32
27	Rhodium(I) atalyzed Tertiary Phosphine Directed Câ	7.2	93
28	New Approaches for Biaryl-Based Phosphine Ligand Synthesis via Pâ•O Directed C–H Functionalizations. Accounts of Chemical Research, 2017, 50, 1480-1492.	7.6	169
29	Diarylamino- and Diarylboryl-Substituted Donor–Acceptor Pyrene Derivatives: Influence of Substitution Pattern on Their Photophysical Properties. Journal of Organic Chemistry, 2017, 82, 5111-5121.	1.7	47
30	Nature Inspires an Aerobic Coupling of Phenol and Amine. CheM, 2017, 2, 461-462.	5.8	3
31	Pd atalyzed Amination of Functionalized 6â€Bromoâ€pyridinylâ€1,2,4â€triazine Complexant Scaffolds. European Journal of Organic Chemistry, 2017, 2017, 3318-3327.	1.2	10
32	Fe(II)/Au(I) Relay Catalyzed Propargylisoxazole to Pyridine Isomerization: Access to 6-Halonicotinates. Journal of Organic Chemistry, 2017, 82, 5367-5379.	1.7	34
33	Highly Diastereoselective α-Arylation of Cyclic Nitriles. Organic Letters, 2017, 19, 3446-3449.	2.4	19
34	Making Copper(0) Nanoparticles in Glycerol: A Straightforward Synthesis for a Multipurpose Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 2832-2846.	2.1	48
35	Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catalysis, 2017, 7, 4999-5022.	5.5	334
36	Metal-free regioselective formation of C–N and C–O bonds with the utilization of diaryliodonium salts in water: facile synthesis of N-arylquinolones and aryloxyquinolines. Organic and Biomolecular Chemistry, 2017, 15, 4956-4961.	1.5	23
37	Hydrogen Bond-Directed Cruciform and Stacked Packing of a Pyrrole-Based Azaphenacene. Crystal Growth and Design, 2017, 17, 3371-3378.	1.4	10
38	One-pot reductive amination of carbonyl compounds with nitro compounds with CO/H2O as the hydrogen donor over non-noble cobalt catalyst. Journal of Catalysis, 2017, 352, 264-273.	3.1	64

#	Article	IF	CITATIONS
39	Molecular Adsorbates Switch on Heterogeneous Catalysis: Induction of Reactivity by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2017, 139, 9144-9147.	6.6	133
40	Palladium-catalyzed hydroamination of farnesene—Long chain amines as building blocks for surfactants based on a renewable feedstock. Applied Catalysis A: General, 2017, 543, 173-179.	2.2	8
41	NIS Mediated Cross-Coupling of C(sp ²)–H and N–H Bonds: A Transition-Metal-Free Approach toward Indolo[1,2- <i>a</i>]quinazolinones. Journal of Organic Chemistry, 2017, 82, 7657-7665.	1.7	21
42	Synthesis and characterization of carbazolo[2,1-a]carbazole in thin film and single crystal field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 7020-7027.	2.7	8
43	Carbon–Nitrogen Bond Formation Through Cross-Dehydrogenative Coupling Reactions. Advances in Organometallic Chemistry, 2017, , 401-481.	0.5	20
44	Engaging Radicals in Transition Metal-Catalyzed Cross-Coupling with Alkyl Electrophiles: Recent Advances. ACS Catalysis, 2017, 7, 4697-4706.	5.5	130
45	Synthesis of (1 → 2)-S-Linked Saccharides and S-Linked Glycoconjugates via a Palladium-G3-XantPhos Precatalyst Catalysis. Journal of Organic Chemistry, 2017, 82, 6720-6728.	1.7	43
46	Pd(II)-Catalyzed, Picolinamide-Assisted, <i>Z</i> -Selective γ-Arylation of Allylamines To Construct <i>Z</i> -Cinnamylamines. Journal of Organic Chemistry, 2017, 82, 6550-6567.	1.7	42
47	A segmented flow platform for on-demand medicinal chemistry and compound synthesis in oscillating droplets. Chemical Communications, 2017, 53, 6649-6652.	2.2	73
48	Rhodium(III)-Catalyzed Annulation of Pyridinones with Alkynes via Double C–H Activation: A Route to Functionalized Quinolizinones. Organic Letters, 2017, 19, 3083-3086.	2.4	65
49	Iridium(III)-Catalyzed Synthesis of Benzimidazoles via C–H Activation and Amidation of Aniline Derivatives. Organic Letters, 2017, 19, 3243-3246.	2.4	69
50	Mechanistic Insight Leads to a Ligand Which Facilitates the Palladiumâ€Catalyzed Formation of 2â€(Hetero)Arylaminooxazoles and 4â€(Hetero)Arylaminothiazoles. Angewandte Chemie - International Edition, 2017, 56, 10569-10572.	7.2	47
51	Dibenzothiophene Sulfoximine as an NH ₃ Surrogate in the Synthesis of Primary Amines by Copper atalyzed Câ^'X and Câ^'H Bond Amination. Angewandte Chemie, 2017, 129, 9660-9663.	1.6	13
52	Dibenzothiophene Sulfoximine as an NH ₃ Surrogate in the Synthesis of Primary Amines by Copper atalyzed Câ^'X and Câ^'H Bond Amination. Angewandte Chemie - International Edition, 2017, 56, 9532-9535.	7.2	61
53	A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki–Heck Reaction. Organometallics, 2017, 36, 1981-1992.	1.1	119
54	Iridium-Catalyzed <i>ortho</i> -C(sp ²)–H Amidation of Benzaldehydes with Organic Azides. Journal of Organic Chemistry, 2017, 82, 4497-4503.	1.7	53
55	Metal-free chloroamidation of indoles with sulfonamides and NaClO. Organic Chemistry Frontiers, 2017, 4, 1354-1357.	2.3	20
56	An efficient palladium-catalyzed synthesis of 1-heteroaryl-4-aminopiperidine derivatives from heteroaryl chlorides. Tetrahedron Letters, 2017, 58, 1976-1979.	0.7	3

#	Article	IF	CITATIONS
57	Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–N Bond Activation. Journal of the American Chemical Society, 2017, 139, 5313-5316.	6.6	272
58	Copper-Catalyzed Selective <i>ortho</i> -C–H/N–H Annulation of Benzamides with Arynes: Synthesis of Phenanthridinone Alkaloids. Organic Letters, 2017, 19, 1764-1767.	2.4	77
59	Entropic electrolytes for anodic cycloadditions of unactivated alkene nucleophiles. Chemical Communications, 2017, 53, 3960-3963.	2.2	38
60	Selective Palladiumâ€Catalyzed Domino Heck/Buchwald–Hartwig Arylations of <i>N</i> â€Glycosylcinnamamides: An Efficient Route to 4â€Arylâ€ <i>N</i> â€glycosylquinolinâ€2â€ones. Advanc Synthesis and Catalysis, 2017, 359, 1320-1330.	e d. 1	11
61	Regioselective Access to 1,2â€Diarylhistidines through the Copperâ€Catalyzed N1â€Arylation of 2â€Arylhistidines. European Journal of Organic Chemistry, 2017, 2017, 984-988.	1.2	13
62	Nickel/Photoredox-Catalyzed Amidation via Alkylsilicates and Isocyanates. ACS Catalysis, 2017, 7, 7957-7961.	5.5	56
63	A general and mild Cu-catalytic N-arylation of iminodibenzyls and iminostilbenes using unactivated aryl halides. RSC Advances, 2017, 7, 49600-49604.	1.7	3
64	Nucleo-Palladation-Triggering Alkene Functionalization: A Route to Î ³ -Lactones. Organic Letters, 2017, 19, 5756-5759.	2.4	17
65	Copper-Mediated C–X Functionalization of Aryl Halides. Organic Process Research and Development, 2017, 21, 1889-1924.	1.3	80
66	Palladium-Catalyzed Cross-Coupling of Monochlorosilanes and Grignard Reagents. ACS Catalysis, 2017, 7, 8113-8117.	5.5	65
67	Immobilized Pd nanoparticles on silica-starch substrate (PNP-SSS): Efficient heterogeneous catalyst in Buchwald–Hartwig C–N cross coupling reaction. Journal of Organometallic Chemistry, 2017, 851, 210-217.	0.8	32
68	Palladium(II) acetate catalyzed acylative cleavage of cyclic and acyclic ethers under neat conditions. Tetrahedron Letters, 2017, 58, 4648-4651.	0.7	5
69	Catalytic applications of small bite-angle diphosphorus ligands with single-atom linkers. Dalton Transactions, 2017, 46, 15157-15174.	1.6	50
70	Rhodium(III) atalyzed Directed Câ^'H Amidation of <i>N</i> â€Nitrosoanilines and Subsequent Formation of 1,2â€Disubstituted Benzimidazoles. Chemistry - an Asian Journal, 2017, 12, 2804-2808.	1.7	25
71	The synthesis of planar chiral pseudo-gem aminophosphine pre-ligands based on [2.2]paracyclophane. Organic and Biomolecular Chemistry, 2017, 15, 8975-8984.	1.5	6
72	Cross-Coupling of Primary Amides to Aryl and Heteroaryl Partners Using (DiMelHept ^{Cl})Pd Promoted by Trialkylboranes or B(C ₆ F ₅) ₃ . Journal of the American Chemical Society, 2017, 139, 18436-18439.	6.6	32
73	Rhodium-Catalyzed [4 + 3] Annulations of Sulfoximines with α,β-Unsaturated Ketones Leading to 1,2-Benzothiazepine 1-Oxides. Organic Letters, 2017, 19, 6020-6023.	2.4	56
74	Selenium-containing analogues of WC-9 are extremely potent inhibitors of Trypanosoma cruzi proliferation. Bioorganic and Medicinal Chemistry, 2017, 25, 6435-6449.	1.4	29

#	Article	IF	CITATIONS
75	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Reviews, 2017, 46, 7399-7420.	18.7	135
76	Chemoselective <i>N</i> -arylation of aminobenzamides <i>via</i> copper catalysed Chan–Evans–Lam reactions. Organic and Biomolecular Chemistry, 2017, 15, 9288-9292.	1.5	21
77	Electrochemically Enabled, Nickel atalyzed Amination. Angewandte Chemie - International Edition, 2017, 56, 13088-13093.	7.2	252
78	Rapid Continuous Ruthenium-Catalysed Transfer Hydrogenation of Aromatic Nitriles to Primary Amines. Synlett, 2017, 28, 2855-2858.	1.0	8
79	Electrochemically Enabled, Nickel atalyzed Amination. Angewandte Chemie, 2017, 129, 13268-13273.	1.6	78
80	Origins of high catalyst loading in copper(<scp>i</scp>)-catalysed Ullmann–Goldberg C–N coupling reactions. Chemical Science, 2017, 8, 7203-7210.	3.7	42
81	Copper-Catalyzed Coupling Reaction of (Hetero)Aryl Chlorides and Amides. Organic Letters, 2017, 19, 4864-4867.	2.4	68
82	Fused Systems Based on 2â€Aminopyrimidines: Synthesis Combining Deprotolithiationâ€in situ Zincation with <i>N</i> â€Arylation Reactions and Biological Properties. European Journal of Organic Chemistry, 2017, 2017, 5903-5915.	1.2	21
83	Pd–PEPPSI: a general Pd–NHC precatalyst for Buchwald–Hartwig cross-coupling of esters and amides (transamidation) under the same reaction conditions. Chemical Communications, 2017, 53, 10584-10587.	2.2	153
84	DFT Investigation of Suzuki–Miyaura Reactions with Aryl Sulfamates Using a Dialkylbiarylphosphine-Ligated Palladium Catalyst. Organometallics, 2017, 36, 3664-3675.	1.1	15
85	Oxidation State-Dependent Intramolecular Electronic Interaction of Carbazole-Based Azacyclophanes with 9,10-Anthrylene Units. Journal of Organic Chemistry, 2017, 82, 10699-10703.	1.7	5
86	Chloride-Tolerant Gold(I)-Catalyzed Regioselective Hydrochlorination of Alkynes. ACS Catalysis, 2017, 7, 6798-6801.	5.5	47
87	High Catalytic Activity of Peptide Nanofibres Decorated with Ni and Cu Nanoparticles for the Synthesis of 5-Substituted 1H-Tetrazoles and N-Arylation of Amines. Australian Journal of Chemistry, 2017, 70, 1127.	0.5	9
88	Pd-Catalyzed Decarbonylative Cross-Couplings of Aroyl Chlorides. Organic Letters, 2017, 19, 4142-4145.	2.4	80
89	Bisphosphineâ€Ligated Nickel Preâ€catalysts in C(<i>sp</i> ²)–N Crossâ€Couplings of Aryl Chlorides: A Comparison of Nickel(I) and Nickel(II). Advanced Synthesis and Catalysis, 2017, 359, 2972-2980.	2.1	51
90	Secondary phosphine oxides assisted palladium complexes catalyzed catellani reaction for the formation of carbazole derivatives. Journal of Organometallic Chemistry, 2017, 846, 389-396.	0.8	3
91	Mechanistic Insight Leads to a Ligand Which Facilitates the Palladium atalyzed Formation of 2â€(Hetero)Arylaminooxazoles and 4â€(Hetero)Arylaminothiazoles. Angewandte Chemie, 2017, 129, 10705-10708.	1.6	4
92	Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite. Angewandte Chemie - International Edition, 2017, 56, 11807-11811.	7.2	75

#	Article	IF	CITATIONS
93	Copper atalyzed Amination of Congested and Functionalized αâ€Bromocarboxamides with either Amines or Ammonia at Room Temperature. Angewandte Chemie, 2017, 129, 11768-11772.	1.6	5
94	HydroxamsÃ ¤ ren als chemoselektive (<i>ortho</i> â€Amino)arylierungsreagenzien durch sigmatrope Umlagerung. Angewandte Chemie, 2017, 129, 11078-11081.	1.6	12
95	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	1.6	10
96	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	7.2	36
97	Hydroxamic Acids as Chemoselective (<i>ortho</i> â€Amino)arylation Reagents via Sigmatropic Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 10938-10941.	7.2	40
98	Copper atalyzed Amination of Congested and Functionalized αâ€Bromocarboxamides with either Amines or Ammonia at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 11610-11614.	7.2	39
99	Buttressing Effect as a Key Design Principle towards Highly Efficient Palladium/Nâ€Heterocyclic Carbene Buchwald–Hartwig Amination Catalysts. Chemistry - A European Journal, 2017, 23, 13792-13801.	1.7	50
100	Nickel-Catalyzed <i>N</i> -Arylation of Cyclopropylamine and Related Ammonium Salts with (Hetero)aryl (Pseudo)halides at Room Temperature. ACS Catalysis, 2017, 7, 6048-6059.	5.5	41
101	Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite. Angewandte Chemie, 2017, 129, 11969-11973.	1.6	22
102	Durch sichtbares Licht vermittelte Deaminierung zur Erzeugung von Alkylradikalen. Angewandte Chemie, 2017, 129, 12505-12509.	1.6	82
103	Deaminative Strategy for the Visibleâ€Lightâ€Mediated Generation of Alkyl Radicals. Angewandte Chemie - International Edition, 2017, 56, 12336-12339.	7.2	295
104	Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. Advanced Synthesis and Catalysis, 2017, 359, 3950-3961.	2.1	19
105	Isolable Triradical Trication of Hexaaza[1 ₆]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System. Organic Letters, 2017, 19, 4371-4374.	2.4	16
106	A Chlorinating Reagent Yields Vinyl Chlorides with High Regioselectivity under Heterogeneous Gold Catalysis. Organic Letters, 2017, 19, 4524-4527.	2.4	23
107	Effective Adsorption of Precious Metal Palladium over Polyethyleneimine-Functionalized Alumina Nanopowder and Its Reusability as a Catalyst for Energy and Environmental Applications. ACS Omega, 2017, 2, 4494-4504.	1.6	28
108	UV-irradiation-mediated palladium nanoparticle catalytic system: Heck and decarboxylative coupling reactions. Molecular Catalysis, 2017, 441, 21-27.	1.0	8
109	Metal-Free Oxidative C–C Coupling of Arylamines Using a Quinone-Based Organic Oxidant. Journal of Organic Chemistry, 2017, 82, 8958-8972.	1.7	29
110	Recent Advances in Asymmetric Hydrogenation of Tetrasubstituted Olefins. Journal of the American Chemical Society, 2017, 139, 11630-11641.	6.6	139

#	Article	IF	CITATIONS
111	Acceleration of Pd-Catalyzed Amide N-Arylations Using Cocatalytic Metal Triflates: Substrate Scope and Mechanistic Study. ACS Catalysis, 2017, 7, 5862-5870.	5.5	26
112	Exploring Tandem Ruthenium-Catalyzed Hydrogen Transfer and S _N Ar Chemistry. Organic Letters, 2017, 19, 6716-6719.	2.4	7
113	Copper-Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light. Journal of the American Chemical Society, 2017, 139, 17707-17710.	6.6	115
114	Teaching Old Compounds New Tricks: DDQâ€Photocatalyzed Câ`'H Amination of Arenes with Carbamates, Urea, and Nâ€Heterocycles. Chemistry - A European Journal, 2017, 23, 18161-18165.	1.7	99
115	Tetraaza[14]- and Octaaza[18]paracyclophane: Synthesis and Characterization of Their Neutral and Cationic States. Journal of Organic Chemistry, 2017, 82, 13348-13358.	1.7	21
116	Cycloheptatrienyl Cyclopentadienyl Titanium Phosphane Ligands in Palladiumâ€Catalyzed Suzuki–Miyaura Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 5588-5597.	1.0	6
117	Synthesis of N-heterocyclic carbene-Pd(II) complexes and their catalytic activity in the Buchwald-Hartwig amination of aryl chlorides. Tetrahedron, 2017, 73, 7308-7314.	1.0	18
118	Pd-Catalyzed Suzuki coupling reactions of aryl halides containing basic nitrogen centers with arylboronic acids in water in the absence of added base. New Journal of Chemistry, 2017, 41, 15420-15432.	1.4	11
119	<i>N</i> , <i>N</i> ′-Bisoxalamides Enhance the Catalytic Activity in Cu-Catalyzed Coupling of (Hetero)Aryl Bromides with Anilines and Secondary Amines. Journal of Organic Chemistry, 2017, 82, 12603-12612.	1.7	34
120	Palladium-catalyzed three-component tandem reaction of sulfonyl hydrazones, aryl iodides and allenes: highly stereoselective synthesis of (Z)-α-hydroxymethyl allylic sulfones. RSC Advances, 2017, 7, 50372-50377.	1.7	8
121	Aromatic C–H amination: a radical approach for adding new functions into biology- and materials-oriented aromatics. Organic and Biomolecular Chemistry, 2017, 15, 6071-6075.	1.5	37
122	Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.	1.7	196
123	Ecocatalyzed Suzuki cross coupling of heteroaryl compounds. Green Chemistry, 2017, 19, 4093-4103.	4.6	44
124	Polystyrene-supported diaminocarbene complexes of palladium(II): synthesis, characterization and application as a precatalyst in Sonogashira–Hagihara and Suzuki–Miyaura cross coupling. Russian Chemical Reviews, 2017, 86, 459-473.	2.5	19
125	Zinc Acetate-Promoted Buchwald–Hartwig Couplings of Heteroaromatic Amines. Journal of Organic Chemistry, 2017, 82, 7420-7427.	1.7	19
126	The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, 1, .	13.8	1,591
127	Bipyridyl– and pyridylquinolyl–phenothiazine structures as potential photoactive ligands: Syntheses and complexation to palladium. Tetrahedron Letters, 2017, 58, 3096-3100.	0.7	1
128	Indole–Indole Ullmann Crossâ€Coupling for C _{Ar} –N Bond Formation: Total Synthesis of (–)â€Aspergilazine A. European Journal of Organic Chemistry, 2017, 2017, 4948-4954.	1.2	10

#	Article	IF	CITATIONS
129	Combining Eosin Y with Selectfluor: A Regioselective Brominating System for <i>Para</i> -Bromination of Aniline Derivatives. Organic Letters, 2017, 19, 3799-3802.	2.4	47
130	Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 2017, 7, 20.	1.6	20
131	Pd- and Cu-catalyzed approaches in the syntheses of new cholane aminoanthraquinone pincer-like ligands. Beilstein Journal of Organic Chemistry, 2017, 13, 564-570.	1.3	7
132	Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chemical Reviews, 2018, 118, 2249-2295.	23.0	892
133	Rapid access to diverse, trifluoromethyl-substituted alkenes using complementary strategies. Chemical Science, 2018, 9, 3215-3220.	3.7	21
134	Cu-doped CoFe2O4 nanoparticles as magnetically recoverable catalyst for C N cross-coupling reaction. Catalysis Communications, 2018, 109, 38-42.	1.6	35
135	Palladium atalyzed Enantioselective Câ^'H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization. Angewandte Chemie - International Edition, 2018, 57, 5129-5133.	7.2	68
136	Cleavage of C–C Bonds for the Synthesis of C2-Substituted Quinolines and Indoles by Catalyst-Controlled Tandem Annulation of 2-Vinylanilines and Alkynoates. Organic Letters, 2018, 20, 1534-1537.	2.4	34
137	Elucidating the Mechanism of Aryl Aminations Mediated by NHC-Supported Nickel Complexes: Evidence for a Nonradical Ni(0)/Ni(II) Pathway. ACS Catalysis, 2018, 8, 3733-3742.	5.5	53
138	Palladium functionalized phosphinite polyethyleneimine grafted magnetic silica nanoparticles as an efficient catalyst for the synthesis of isoquinolino[1,2- <i>b</i>]quinazolin-8-ones. New Journal of Chemistry, 2018, 42, 5499-5507.	1.4	25
139	Recent advantages in the metal (bulk and nano)-catalyzed S-arylation reactions of thiols with aryl halides in water: a perfect synergy for eco-compatible preparation of aromatic thioethers. Journal of Sulfur Chemistry, 2018, 39, 332-349.	1.0	42
140	Synthesis, Photophysical, and Electrochemical Properties of Pyrenes Substituted with Donors or Acceptors at the 4- or 4,9-Positions. Journal of Organic Chemistry, 2018, 83, 3599-3606.	1.7	50
141	Electrochemical synthesis of 1,2,4-triazole-fused heterocycles. Green Chemistry, 2018, 20, 1732-1737.	4.6	85
142	Palladium(II)-Catalyzed Mono- and Bis-alkenylation of <i>N</i> -Acetyl-2-aminobiaryls through Regioselective C–H Bond Activation. Journal of Organic Chemistry, 2018, 83, 3840-3856.	1.7	19
143	Metal-free catalyzed synthesis of the (E)-vinyl sulfones via aromatic olefins with arylsulfonyl hydrazides. Tetrahedron Letters, 2018, 59, 1446-1450.	0.7	17
144	Nickel Dual Photoredox Catalysis for the Synthesis of Aryl Amines. Organometallics, 2018, 37, 1468-1472.	1.1	33
145	Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines. Organometallics, 2018, 37, 1483-1492.	1.1	45
146	Magnesium Ethoxide Promoted Conversion of Nitriles to Amidines and Its Application in 5,6-Dihydroimidazobenzoxazepine Synthesis. Organic Letters, 2018, 20, 2624-2627.	2.4	17

#	ARTICLE	IF	CITATIONS
147	Potent Inhibitors of <i>Plasmodial</i> Serine Hydroxymethyltransferase (SHMT) Featuring a Spirocyclic Scaffold. ChemMedChem, 2018, 13, 931-943.	1.6	21
148	Facile Nâ€Alkylation/N′â€Arylation Process: A Direct Approach to Aromatic Aminoalkyl Amines. Chemistry - an Asian Journal, 2018, 13, 1124-1128.	1.7	3
149	Mechanochemical Cobaltâ€Catalyzed Câ^'H Bond Functionalizations by Ball Milling. Advanced Synthesis and Catalysis, 2018, 360, 1800-1804.	2.1	74
150	Recent Advances in the Construction of C–N Bonds Through Coupling Reactions between Carbon Radicals and Nitrogen Radicals. Advanced Synthesis and Catalysis, 2018, 360, 2076-2086.	2.1	93
151	Metal-free C–H arylation of imidazoheterocycles with aryl hydrazines. RSC Advances, 2018, 8, 12360-12367.	1.7	21
152	Catalyst-Directed Chemoselective Double Amination of Bromo-chloro(hetero)arenes: A Synthetic Route toward Advanced Amino-aniline Intermediates. Organic Letters, 2018, 20, 2301-2305.	2.4	11
153	Palladium atalyzed Enantioselective Câ^'H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization. Angewandte Chemie, 2018, 130, 5223-5227.	1.6	15
154	An Efficient Buchwald–Hartwig/Reductive Cyclization for the Scaffold Diversification of Halogenated Phenazines: Potent Antibacterial Targeting, Biofilm Eradication, and Prodrug Exploration. Journal of Medicinal Chemistry, 2018, 61, 3962-3983.	2.9	47
155	Towards a Sequential Oneâ€Pot Preparation of 1,2,3â€Benzotriazinâ€4(3 <i>H</i>)â€ones Employing a Key Cp*Co(III) atalyzed Câ^'H Amidation Step. Advanced Synthesis and Catalysis, 2018, 360, 2324-2332.	2.1	24
156	Electron atalyzed Coupling of Magnesium Amides with Aryl Iodides. Chemistry - A European Journal, 2018, 24, 4519-4522.	1.7	12
157	Developing backbone-modified Mor-DalPhos ligand variants for use in palladium-catalyzed C–N and C–C cross-coupling. Canadian Journal of Chemistry, 2018, 96, 712-721.	0.6	6
158	Palladium-Catalyzed Amination of Aryl Sulfoxides. Organic Letters, 2018, 20, 1134-1137.	2.4	41
159	<i>N</i> â€(Acyloxy)phthalimides as Redoxâ€Active Esters in Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1735-1753.	2.1	294
160	Heterogenization of cobalt nanoparticles on hollow carbon capsules: Lab-in-capsule for catalytic transfer hydrogenation of carbonyl compounds. Molecular Catalysis, 2018, 448, 153-161.	1.0	11
161	Shining a light on amine synthesis. Nature Catalysis, 2018, 1, 97-98.	16.1	4
162	Predicting reaction performance in C–N cross-coupling using machine learning. Science, 2018, 360, 186-190.	6.0	613
163	Pdâ€PEPPSI: Waterâ€Assisted Suzukiâ~'Miyaura Crossâ€Coupling of Aryl Esters at Room Temperature using a Practical Palladiumâ€NHC (NHC=Nâ€Heterocyclic Carbene) Precatalyst. Advanced Synthesis and Catalysis, 2018, 360, 1538-1543.	2.1	46
164	Copper atalyzed Direct Câ^'H Bond Arylation of Benzoxazoles with Anilines. Asian Journal of Organic Chemistry, 2018, 7, 788-792.	1.3	13

#	Article	IF	CITATIONS
165	Isolation of an Elevenâ€Atom Polydentate Carbonâ€Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angewandte Chemie - International Edition, 2018, 57, 3154-3157.	7.2	36
166	Isolation of an Elevenâ€Atom Polydentate Carbonâ€Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angewandte Chemie, 2018, 130, 3208-3211.	1.6	11
169	Buchwald–Hartwig amination using Pd(<scp>i</scp>) dimer precatalysts supported by biaryl phosphine ligands. Dalton Transactions, 2018, 47, 3684-3688.	1.6	22
170	Hydroaminomethylation in Aqueous Solvent Systems – An Efficient Pathway to Highly Functionalized Amines. Advanced Synthesis and Catalysis, 2018, 360, 1473-1482.	2.1	16
171	Palladium atalyzed Selective Amination of Aryl(haloaryl)amines with 9 <i>H</i> â€Carbazole Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 1007-1018.	2.1	9
172	Palladium-Catalyzed, Norbornene-Mediated, <i>ortho</i> -Amination <i>ipso</i> -Amidation: Sequential C–N Bond Formation. Organic Letters, 2018, 20, 345-348.	2.4	44
173	Synthesis and structural characterization of well-defined bis(oxamato)palladate(II) precatalysts for Suzuki and Heck reactions. Inorganica Chimica Acta, 2018, 471, 788-796.	1.2	5
174	Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. Journal of Organic Chemistry, 2018, 83, 930-938.	1.7	121
175	pH-Induced Linkage Isomerism of Pd(II) Complexes: A Pathway to Air- and Water-Stable Suzuki–Miyaura-Reaction Catalysts. Inorganic Chemistry, 2018, 57, 471-477.	1.9	25
176	Amination of Bridging Vinyliminium Ligands in Diiron Complexes: C–N Bond Forming Reactions for Amidine-Alkylidene Species. Organometallics, 2018, 37, 107-115.	1.1	13
177	An Effective Synthesis of N,N-Diphenyl Carbazolium Salts. Synlett, 2018, 29, 1314-1318.	1.0	15
178	Metal-Free Sulfonylation of 3,4-Dihalo-2(5H)-furanones (X = Cl, Br) with Sodium Sulfinates under Air Atmosphere in Aqueous Media via a Radical Pathway. ACS Sustainable Chemistry and Engineering, 2018, 6, 4147-4153.	3.2	24
179	Theoretical studies on copper-catalyzed arylation of nitrogen heterocycles from benzenediazonium acetate under ligand-free conditions. Journal of Organometallic Chemistry, 2018, 864, 50-57.	0.8	10
180	Imidazolium-based ionic liquid functionalized reduced graphene oxide supported palladium as a reusable catalyst for Suzuki–Miyaura reactions. New Journal of Chemistry, 2018, 42, 2364-2367.	1.4	16
181	Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions: expanding the scope of ring opening metathesis polymerization. Chemical Science, 2018, 9, 1846-1853.	3.7	12
182	Dual Role of a Photocatalyst: Generation of Ni(0) Catalyst and Promotion of Catalytic C–N Bond Formation. ACS Catalysis, 2018, 8, 1456-1463.	5.5	69
183	Metalâ€Free N–H/C–H Coupling for Efficient Asymmetric Synthesis of Chiral Dihydroquinoxalinones from Readily Available αâ€Amino Acids. European Journal of Organic Chemistry, 2018, 2018, 1067-1070.	1.2	16
184	Pd/PTABS: Catalyst for Room Temperature Amination of Heteroarenes. Organic Letters, 2018, 20, 473-476.	2.4	49

#	Article	IF	CITATIONS
185	Solvent-free mechanochemical Buchwald-Hartwig amination of aryl chlorides without inert gas protection. Tetrahedron Letters, 2018, 59, 2277-2280.	0.7	52
186	Ligand Rearrangement and Hemilability in Rhodium(I) and Iridium(I) Complexes Bearing Terphenyl Phosphanes. European Journal of Inorganic Chemistry, 2018, 2018, 2309-2321.	1.0	13
187	The Literature of Heterocyclic Chemistry, Part XVI, 2016. Advances in Heterocyclic Chemistry, 2018, 126, 173-254.	0.9	6
188	Synthesis of <i>N</i> ‣ubstituted Condensed Tetrahydropyridineâ€Based Enaminones <i>via</i> Palladiumâ€Catalyzed Intramolecular C–N Crossâ€coupling. Journal of Heterocyclic Chemistry, 2018, 55, 670-684.	1.4	4
189	Application of Diazaphospholidine/Diazaphospholene-Based Bisphosphines in Room-Temperature Nickel-Catalyzed C(sp ²)–N Cross-Couplings of Primary Alkylamines with (Hetero)aryl Chlorides and Bromides. ACS Catalysis, 2018, 8, 5328-5339.	5.5	26
190	Cu3(BTC)2 metal-organic framework catalyzed N-arylation of benzimidazoles and imidazoles with phenylboronic acid. Journal of Industrial and Engineering Chemistry, 2018, 65, 120-126.	2.9	20
191	Arynes, diaryliodonium salts and azine N-oxides in transition metal-free electrophilic N-arylation. Russian Chemical Reviews, 2018, 87, 272-301.	2.5	12
192	<i>O</i> -Substituted hydroxyl amine reagents: an overview of recent synthetic advances. Organic and Biomolecular Chemistry, 2018, 16, 3314-3327.	1.5	47
193	Palladium-Catalyzed C–O Coupling of a Sterically Hindered Secondary Alcohol with an Aryl Bromide and Significant Purity Upgrade in the API Step. Organic Process Research and Development, 2018, 22, 585-594.	1.3	13
194	Photoredox-catalyzed C(sp2)–N coupling reactions. Tetrahedron Letters, 2018, 59, 1605-1613.	0.7	51
195	A Novel Approach to Access Aryl Iodides and Disulfides via Dehydrazination of Arylhydrazines and Arylsulfonylhydrazides. ChemistrySelect, 2018, 3, 2800-2804.	0.7	4
196	Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling. Journal of the American Chemical Society, 2018, 140, 4721-4725.	6.6	130
197	Development of Halogenase Enzymes for Use in Synthesis. Chemical Reviews, 2018, 118, 232-269.	23.0	230
198	Extension of the Pd-catalyzed C N bond forming reaction to the synthesis of large polydentate ligands containing N H functions. Inorganica Chimica Acta, 2018, 470, 416-422.	1.2	9
199	Recent Progress in Application of Graphene Supported Metal Nanoparticles in Câ^'C and Câ^'X Coupling Reactions. Chemical Record, 2018, 18, 165-229.	2.9	92
200	Synthesis of Metal Nanoparticles in Metalâ€Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles. Advanced Healthcare Materials, 2018, 7, 1700934.	3.9	55
201	Near-infrared off-on fluorescent probe for fast and selective detection of palladium (II) in living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 158-164.	2.0	17
202	Nickelâ€Catalyzed Denitrogenative Annulation of 1,2,3â€Benzotriazinâ€4â€(3 <i>H</i>)â€ones with Benzynes for Construction of Phenanthridinone Scaffolds. Advanced Synthesis and Catalysis, 2018, 360, 284-289.	2.1	39

#	Article	IF	CITATIONS
203	Ligandâ€free Iron(II)â€Catalyzed Nâ€Alkylation of Hindered Secondary Arylamines with Nonâ€activated Secondary and Primary Alcohols <i>via</i> a Carbocationic Pathway. Advanced Synthesis and Catalysis, 2018, 360, 730-737.	2.1	30
204	Mechanistic and Performance Studies on the Ligand-Promoted Ullmann Amination Reaction. ACS Catalysis, 2018, 8, 101-109.	5.5	34
205	Hydrogen-Bonding-Assisted BrÃ,nsted Acid and Gold Catalysis: Access to Both (<i>E</i>)- and (<i>Z</i>)-1,2-Haloalkenes via Hydrochlorination of Haloalkynes. ACS Catalysis, 2018, 8, 904-909.	5.5	50
206	Transition-Metal-Catalyzed Monoarylation of Ammonia. ACS Catalysis, 2018, 8, 405-418.	5.5	66
207	Rapidly Activating Pd-Precatalyst for Suzuki–Miyaura and Buchwald–Hartwig Couplings of Aryl Esters. Journal of Organic Chemistry, 2018, 83, 469-477.	1.7	83
208	Copper-Mediated Cascade C–H/N–H Annulation of Indolocarboxamides with Arynes: Construction of Tetracyclic Indoloquinoline Alkaloids. Organic Letters, 2018, 20, 220-223.	2.4	66
209	Featuring Xantphos. Catalysis Science and Technology, 2018, 8, 26-113.	2.1	97
210	Cu(<scp>i</scp>)-Catalyzed amidation/imidation of <i>N</i> -arylglycine ester derivatives <i>via</i> C–N coupling under mild conditions. Organic Chemistry Frontiers, 2018, 5, 788-792.	2.3	20
211	Highly Efficient Synthesis of a <i>Staphylococcus aureus</i> Targeting Payload to Enable the First Antibody–Antibiotic Conjugate. Chemistry - A European Journal, 2018, 24, 2837-2840.	1.7	7
212	Zn-Catalyzed <i>tert</i> -Butyl Nicotinate-Directed Amide Cleavage as a Biomimic of Metallo-Exopeptidase Activity. ACS Catalysis, 2018, 8, 203-218.	5.5	67
213	Mechanism and origins of chemo- and regioselectivities of (NHC)NiH-catalyzed cross-hydroalkenylation of vinyl ethers with α-olefins: a computational study. Organic Chemistry Frontiers, 2018, 5, 3410-3420.	2.3	8
214	Visible-light-mediated allylation of alkyl radicals with allylic sulfones <i>via</i> a deaminative strategy. Organic Chemistry Frontiers, 2018, 5, 3443-3446.	2.3	81
215	Microwave assisted hydrogenation of olefins by Pd NPs@polystyrene resin using a gas addition kit: a robust and sustainable protocol. New Journal of Chemistry, 2018, 42, 18935-18941.	1.4	8
216	Decarbonylative cross-coupling of amides. Organic and Biomolecular Chemistry, 2018, 16, 7998-8010.	1.5	138
217	New 5-arylamino-4-(5-nitrofuran-2-yl)pyrimidines as promising antibacterial agents. Mendeleev Communications, 2018, 28, 393-395.	0.6	13
218	N2H4 as traceless mediator for homo- and cross- aryl coupling. Nature Communications, 2018, 9, 4739.	5.8	42
219	Enantioselective Total Synthesis and Assignment of the Absolute Configuration of the Furo[3,2- <i>a</i>]carbazole Alkaloid Furoclausine-B. Journal of Organic Chemistry, 2018, 83, 15136-15143.	1.7	13
220	Comment on "Predicting reaction performance in C–N cross-coupling using machine learningâ€. Science, 2018, 362, .	6.0	96

#	Article	IF	CITATIONS
221	Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan–Lam coupling reaction of aryl boronic acids and amines. Green Chemistry, 2018, 20, 4891-4900.	4.6	142
222	Irradiation-induced palladium-catalyzed decarboxylative desaturation enabled by a dual ligand system. Nature Communications, 2018, 9, 5215.	5.8	83
223	Catalytic Enantioselective Synthesis of 3,4-Polyfused Oxindoles with Quaternary All-Carbon Stereocenters: A Rh-Catalyzed C–C Activation Approach. Organic Letters, 2018, 20, 7689-7693.	2.4	30
224	Photocatalytic Hydrogen-Evolving Cross-Coupling of Arenes with Primary Amines. Organic Letters, 2018, 20, 7753-7757.	2.4	27
225	Efficient Synthesis of Fluoroalkylated Imidazoles via a Metalâ€Free Cascade Michael Addition/Azidation/Cycloamination Process. European Journal of Organic Chemistry, 2018, 2018, 6758-6763.	1.2	12
226	N-Arylation of DABCO with Diaryliodonium Salts: General Synthesis of <i>N</i> -Aryl-DABCO Salts as Precursors for 1,4-Disubstituted Piperazines. Organic Letters, 2018, 20, 6389-6393.	2.4	37
227	Transition-metal-free access to 2-aminopyridine derivatives from 2-fluoropyridine and acetamidine hydrochloride. Organic and Biomolecular Chemistry, 2018, 16, 7564-7567.	1.5	9
228	Electrophilic halogenation of hydrazones of CF ₃ -ynones. Regioselective synthesis of 4-halo-substituted 3-CF ₃ -pyrazoles. Organic and Biomolecular Chemistry, 2018, 16, 7935-7946.	1.5	19
229	An Efficient Metalâ€Free Mono Nâ€Alkylation of Anilines via Reductive Amination Using Hydrosilanes. European Journal of Organic Chemistry, 2018, 2018, 6729-6732.	1.2	9
230	Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Accounts of Chemical Research, 2018, 51, 2589-2599.	7.6	316
231	Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Organic Chemistry Frontiers, 2018, 5, 3186-3193.	2.3	30
232	Popping of g-C3N4 mixed with cupric nitrate: Facile synthesis of Cu-based catalyst for construction of C N bond. Green Energy and Environment, 2018, 3, 368-374.	4.7	8
233	Hydrogen bonding network assisted regio- and stereo- controlled hydrohalogenations of sulfonyl alkynes. Tetrahedron Letters, 2018, 59, 3950-3954.	0.7	7
234	Facile synthesis of palladium nanoparticles on hierarchical hollow silica spheres and its catalytic properties in Suzuki-reaction. Royal Society Open Science, 2018, 5, 180545.	1.1	11
235	Auâ€Catalyzed Addition of Nucleophiles to Chloroalkynes: A Regio―and Stereoselective Synthesis of (<i>Z</i>)â€Alkenyl Chlorides. European Journal of Organic Chemistry, 2018, 2018, 6537-6540.	1.2	15
236	5,12â€Diaminotetracenes: The Impact of Orbital Interactions between the Acene Ï€ System and Amino Groups on Their Electronic States. Chemistry - A European Journal, 2018, 24, 16113-16125.	1.7	1
237	Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor–Acceptor Complex. Chemistry - A European Journal, 2018, 24, 17210-17214.	1.7	195
238	Halodifluoroacetates as formylation reagents for various amines <i>via</i> unprecedented quadruple cleavage. Organic Chemistry Frontiers, 2018, 5, 3505-3509.	2.3	51

#	Article	IF	CITATIONS
239	Palladium-catalyzed asymmetric annulation between aryl iodides and racemic epoxides using a chiral norbornene cocatalyst. Organic Chemistry Frontiers, 2018, 5, 3108-3112.	2.3	42
240	Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature, 2018, 561, 522-527.	13.7	191
241	Pyridyl-Directed C–H and C–Br Bond Activations Promoted by Dimer Iridium-Olefin Complexes. Organometallics, 2018, 37, 3770-3779.	1.1	14
242	Probing the Influence of PAd-DalPhos Ancillary Ligand Structure on Nickel-Catalyzed Ammonia Cross-Coupling. Organometallics, 2018, 37, 4015-4023.	1.1	10
243	Redox-Activated Amines in C(<i>sp</i> ³)–C(<i>sp</i>) and C(<i>sp</i> ³)–C(<i>sp</i> ²) Bond Formation Enabled by Metal-Free Photoredox Catalysis. ACS Catalysis, 2018, 8, 11362-11367.	5.5	126
244	Copper-Mediated Amination of Aryl C–H Bonds with the Direct Use of Aqueous Ammonia via a Disproportionation Pathway. Journal of the American Chemical Society, 2018, 140, 14350-14356.	6.6	81
245	Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals. Open Chemistry, 2018, 16, 1001-1058.	1.0	39
246	Copper-Mediated C–H Amination of Imidazopyridines with <i>N</i> -Fluorobenzenesulfonimide. Journal of Organic Chemistry, 2018, 83, 13991-14000.	1.7	55
247	Modifications to the Aryl Group of dppf-Ligated Ni σ-Aryl Precatalysts: Impact on Speciation and Catalytic Activity in Suzuki–Miyaura Coupling Reactions. Organometallics, 2018, 37, 3943-3955.	1.1	20
248	Intermolecular Reductive C–N Cross Coupling of Nitroarenes and Boronic Acids by P ^{III} /P ^V â•O Catalysis. Journal of the American Chemical Society, 2018, 140, 15200-15205.	6.6	126
249	lr ^{III} /Au ^I and Rh ^{III} /Au ^I Heterobimetallic Complexes as Catalysts for the Coupling of Nitrobenzene and Benzylic Alcohol. Organometallics, 2018, 37, 4092-4099.	1.1	39
250	Alkylamination of Styrenes with Alkyl <i>N</i> -Hydroxyphthalimide Esters and Amines by B(C ₆ H ₅) ₃ -Facilitated Photoredox Catalysis. Organic Letters, 2018, 20, 6659-6662.	2.4	60
251	Design, Synthesis, and Characterization of Novel Small Molecules as Broad Range Antischistosomal Agents. ACS Medicinal Chemistry Letters, 2018, 9, 967-973.	1.3	17
252	MnIII-Peroxo adduct supported by a new tetradentate ligand shows acid-sensitive aldehyde deformylation reactivity. Dalton Transactions, 2018, 47, 13442-13458.	1.6	8
253	Additive-Driven Rhodium-Catalyzed [4+1]/[4+2] Annulations of <i>N</i> -Arylphthalazine-1,4-dione with α-Diazo Carbonyl Compounds. Journal of Organic Chemistry, 2018, 83, 11661-11673.	1.7	38
254	Optimization of Phenyl Indole Inhibitors of the AAA+ ATPase p97. ACS Medicinal Chemistry Letters, 2018, 9, 1075-1081.	1.3	17
255	Discrete and Polymeric Selfâ€Assembled Palladium(II) Complexes as Supramolecular Gelators. Chemistry - an Asian Journal, 2018, 13, 3777-3789.	1.7	8
256	Reconfigurable system for automated optimization of diverse chemical reactions. Science, 2018, 361, 1220-1225.	6.0	339

#	Article	IF	CITATIONS
257	Tetrabutylammonium Bromide-Promoted Metal-Free, Efficient, Rapid, and Scalable Synthesis of N-Aryl Amines. ACS Omega, 2018, 3, 10886-10890.	1.6	9
258	Synthesis and palladium(II) metal chemistry of thiazoline/imidazoline derived ligands: An efficient catalyst for cross-coupling reactions of arylboronic acids with acid chlorides and aryl halides. Inorganica Chimica Acta, 2018, 483, 598-608.	1.2	8
259	A Unified Approach to Couple Aromatic Heteronucleophiles to Azines and Pharmaceuticals. Angewandte Chemie, 2018, 130, 12694-12698.	1.6	10
260	ï€â€Allylpalladium Species in Micelles of Flâ€750â€M for Sustainable and General Suzukiâ€Miyaura Couplings of Unactivated Quinoline Systems in Water. ChemCatChem, 2018, 10, 4229-4233.	1.8	42
261	Dialkyl(1,3-diarylimidazolin-2-ylidenamino)phosphines: Strongly Electron-Donating, Buchwald-Type Phosphines. Organometallics, 2018, 37, 3064-3072.	1.1	26
262	High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution. Journal of Organic Chemistry, 2018, 83, 11519-11531.	1.7	28
263	Nickel-Catalyzed Photoredox-Mediated Cross-Coupling of Aryl Electrophiles and Aryl Azides. ACS Catalysis, 2018, 8, 9120-9124.	5.5	37
264	Silver-catalyzed direct benzylation of acetanilide: a highly efficient approach to unsymmetrical triarylmethanes. RSC Advances, 2018, 8, 30374-30378.	1.7	9
265	Cross-Dehydrogenative Coupling Reactions Between P(O)–H and X–H (X = S, N, O, P) Bonds. Topics Current Chemistry, 2018, 376, 23.	iŋ 3.0	58
266	Spontaneous resolution of non-centrosymmetric coordination polymers of zinc(II) with achiral imidazole-biphenyl-carboxylate ligands. Inorganica Chimica Acta, 2018, 482, 275-283.	1.2	11
267	Nanographenes as electron-deficient cores of donor-acceptor systems. Nature Communications, 2018, 9, 1901.	5.8	33
268	Direct synthesis of benzylic amines by palladium-catalyzed carbonylative aminohomologation of aryl halides. Communications Chemistry, 2018, 1, .	2.0	10
269	Towards environmentally friendlier Suzuki–Miyaura reactions with precursors of Pd-NHC (NHC =) Tj ETQq0 0 0 r	gBT /Over 4.6	lock 10 Tf 5
270	Cu2O/Graphene as an Efficient and Ligand Free Heterogeneous Catalyst for Ullmann Coupling of N–H Containing Compounds with Aryl Halides. Catalysis Surveys From Asia, 2018, 22, 123-128.	1.0	6
271	C–N Cross-Coupling via Photoexcitation of Nickel–Amine Complexes. Journal of the American Chemical Society, 2018, 140, 7667-7673.	6.6	176
272	Synthesis of 4‣ubstituted Pyrrolo[2, 3―c]quinolines via Microwaveâ€Assisted Câ€N Bond Formation. ChemistrySelect, 2018, 3, 5386-5389.	0.7	10
273	Recent advances in sulfur–nitrogen bond formation <i>via</i> cross-dehydrogenative coupling reactions. RSC Advances, 2018, 8, 18456-18469.	1.7	58

274	NIXANTPHOS: a highly active ligand for palladium catalyzed Buchwald–Hartwig amination of unactivated aryl chlorides. Dalton Transactions, 2018, 47, 8690-8696.	1.6	20
-----	--	-----	----

#	Article	IF	Citations
275	A facile and sustainable protocol to the preparation of aryl iodides using stable arenediazonium bis(trifluoromethylsulfonyl)imide salts via the telescopic process. Heteroatom Chemistry, 2018, 29, .	0.4	3
276	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie - International Edition, 2018, 57, 10707-10711.	7.2	89
277	Copper Catalyzed Intramolecular N-Arylation of Ketene Aminals at Room Temperature: Synthesis of 2-Amino-3-cyanoindoles. Journal of Organic Chemistry, 2018, 83, 8668-8678.	1.7	14
278	Oxidative <i>N</i> -Arylation for Carbazole Synthesis by C–C Bond Activation. Journal of Organic Chemistry, 2018, 83, 8127-8138.	1.7	24
279	Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2143-2147.	1.0	39
280	Transitionâ€Metalâ€Free Nâ€Arylation of Amines by Triarylsulfonium Triflates. Chemistry - A European Journal, 2018, 24, 13744-13748.	1.7	39
281	Visible-Light-Mediated Nickel(II)-Catalyzed C–N Cross-Coupling in Water: Green and Regioselective Access for the Synthesis of Pyrazole-Containing Compounds. Organic Letters, 2018, 20, 4005-4009.	2.4	52
282	Palladium-Catalyzed Site-Selective Amidation of Dichloroazines. Organic Letters, 2018, 20, 3902-3906.	2.4	13
283	Ylideâ€Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie, 2018, 130, 13041-13046.	1.6	41
284	Nickelâ€Catalyzed Amination of Silyloxyarenes through C–O Bond Activation. Angewandte Chemie - International Edition, 2018, 57, 11045-11049.	7.2	29
285	Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angewandte Chemie, 2018, 130, 11201-11205.	1.6	19
286	Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angewandte Chemie - International Edition, 2018, 57, 11035-11039.	7.2	68
287	Nucleoside Modification Using Buchwald-Hartwig Amination Reactions. , 2018, , 295-333.		4
288	Copperâ€(II) Catalyzed <i>N</i> â€Formylation and <i>N</i> â€Acylation of Aromatic, Aliphatic, and Heterocyclic Amines and a Preventive Study in the Câ€N Cross Coupling of Amines with Aryl Halides. ChemCatChem, 2018, 10, 3907-3913.	1.8	27
289	Accelerated Ru–Cu Trinuclear Cooperative Câ^'H Bond Functionalization of Carbazoles: A Kinetic and Computational Investigation. Chemistry - A European Journal, 2018, 24, 15178-15184.	1.7	14
290	Catalytic Alkyne Arylation Using Traceless Directing Groups. Angewandte Chemie - International Edition, 2018, 57, 13598-13602.	7.2	16
291	A Unified Approach to Couple Aromatic Heteronucleophiles to Azines and Pharmaceuticals. Angewandte Chemie - International Edition, 2018, 57, 12514-12518.	7.2	55
292	Iodine-catalyzed synthesis of <i>N</i> , <i>N</i> ′-diaryl- <i>o</i> -phenylenediamines from cyclohexanones and anilines using DMSO and O ₂ as oxidants. Chemical Communications, 2018, 54, 9679-9682.	2.2	24

#	Article	IF	CITATIONS
293	Copper atalyzed Nâ€Arylation with Boronic Acid Pinacol Esters. Asian Journal of Organic Chemistry, 2018, 7, 1856-1863.	1.3	12
294	Direct Transformation of Arylamines to Aryl Halides via Sodium Nitrite and <i>N</i> â€Halosuccinimide. Chemistry - A European Journal, 2018, 24, 14622-14626.	1.7	33
295	Nucleophilic Amination and Etherification of Aryl Alkyl Thioethers. Organic Letters, 2018, 20, 4749-4753.	2.4	29
296	One-pot sequential synthesis of tetrasubstituted thiophenes via sulfur ylide-like intermediates. Beilstein Journal of Organic Chemistry, 2018, 14, 243-252.	1.3	11
297	Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. Journal of Agricultural and Food Chemistry, 2018, 66, 8914-8934.	2.4	266
298	Catalytic Alkyne Arylation Using Traceless Directing Groups. Angewandte Chemie, 2018, 130, 13786-13790.	1.6	2
299	Recent advances in synthetic methodologies for transition metal-free Ullmann condensation reactions. New Journal of Chemistry, 2018, 42, 13212-13224.	1.4	18
300	Die Arenâ€limitierte nichtâ€dirigierte Câ€Hâ€Aktivierung von Aromaten. Angewandte Chemie, 2018, 130, 13198-13209.	1.6	29
301	Areneâ€Limited Nondirected Câ^'H Activation of Arenes. Angewandte Chemie - International Edition, 2018, 57, 13016-13027.	7.2	139
302	First Metal-Free Synthesis of Tetracyclic Pyrido and Pyrazino Thienopyrimidinone Molecules. Molecules, 2018, 23, 1159.	1.7	4
303	Synthesis and Activity against Mycobacterium tuberculosis of Olivacine and Oxygenated Derivatives. Molecules, 2018, 23, 1402.	1.7	12
304	Experimental and computational studies on H ₂ O-promoted, Rh-catalyzed transient-ligand-free <i>ortho</i> -C(sp ²)–H amidation of benzaldehydes with dioxazolones. Chemical Communications, 2018, 54, 8889-8892.	2.2	35
305	Pd-PEPPSI-IPent ^{An} Promoted Deactivated Amination of Aryl Chlorides with Amines under Aerobic Conditions. Journal of Organic Chemistry, 2018, 83, 9144-9155.	1.7	48
306	Chelation-assisted de-aryloxylative amination of 2-aryloxy quinolines: a new synthetic route to a key fragment of a bioactive PRMT5 inhibitor. Organic and Biomolecular Chemistry, 2018, 16, 3716-3720.	1.5	7
307	Metal―and Baseâ€Free Roomâ€Temperature Amination of Organoboronic Acids with <i>N</i> â€Alkyl Hydroxylamines. Angewandte Chemie - International Edition, 2018, 57, 9456-9460.	7.2	38
308	Metal―and Baseâ€Free Roomâ€Temperature Amination of Organoboronic Acids with <i>N</i> â€Alkyl Hydroxylamines. Angewandte Chemie, 2018, 130, 9600-9604.	1.6	16
309	A General Palladium–Phosphine Complex To Explore Aryl Tosylates in the Nâ€Arylation of Amines: Scope and Limitations. Chemistry - an Asian Journal, 2018, 13, 2465-2474.	1.7	27
310	Palladium/H+-cocatalyzed kinetic resolution of tertiary propargylic alcohols. Chemical Communications, 2018, 54, 6064-6067.	2.2	32

#	Article	IF	CITATIONS
311	Probing the effect of donor-fragment substitution in Mor-DalPhos on palladium-catalyzed C–N and C–C cross-coupling reactivity. Canadian Journal of Chemistry, 2018, 96, 578-586.	0.6	7
312	Employing Small Polyfunctionalized Molecules for a Diastereoselective Synthesis of Highly Substituted Indolines. European Journal of Organic Chemistry, 2018, 2018, 3211-3223.	1.2	2
313	(Pyridin-2-yl)-NHC Organoruthenium Complexes: Antiproliferative Properties and Reactivity toward Biomolecules. Organometallics, 2018, 37, 1575-1584.	1.1	35
314	Chlorination of phenylallene derivatives with 1-chloro-1,2-benziodoxol-3-one: synthesis of <i>vicinal</i> -dichlorides and chlorodienes. Beilstein Journal of Organic Chemistry, 2018, 14, 796-802.	1.3	9
315	Acyl and Decarbonylative Suzuki Coupling of <i>N</i> -Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. ACS Catalysis, 2018, 8, 9131-9139.	5.5	91
316	Novel approach towards 3,7-disubstituted 1,6-naphthyridin-4(1H)-ones exploiting cross-coupling and SNAr reactions of a dihalogenated compound. Tetrahedron Letters, 2018, 59, 3519-3523.	0.7	2
317	Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid C(sp ²) and C(sp ³) Coupling of Câ`'Br, Câ`'OTf, and Câ`'Cl Bonds Enabled by a Single Palladium(I) Dimer. Angewandte Chemie, 2018, 130, 12753-12757.	1.6	55
318	FLP atalyzed Transfer Hydrogenation of Silyl Enol Ethers. Angewandte Chemie, 2018, 130, 12536-12539.	1.6	7
319	FLP atalyzed Transfer Hydrogenation of Silyl Enol Ethers. Angewandte Chemie - International Edition, 2018, 57, 12356-12359.	7.2	41
320	Accurate theoretical method for homolytic cleavage of C Sn bond: A benchmark approach. Computational and Theoretical Chemistry, 2018, 1140, 134-144.	1.1	11
321	Synthesis and Reactivity of <i>N</i> -Allenyl Cyanamides. Organic Letters, 2018, 20, 5282-5285.	2.4	20
322	Nucleophilic amination of methoxypyridines by a sodium hydride–iodide composite. Chemical Communications, 2018, 54, 10324-10327.	2.2	35
323	Nickel atalyzed Amination of Silyloxyarenes through C–O Bond Activation. Angewandte Chemie, 2018, 130, 11211-11215.	1.6	11
324	Otherwise Unstable Structures Self-Assemble in the Cavities of Cuboctahedral Coordination Cages. Journal of the American Chemical Society, 2018, 140, 11502-11509.	6.6	45
325	Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid C(sp ²) and C(sp ³) Coupling of Câ^'Br, Câ^'OTf, and Câ^'Cl Bonds Enabled by a Single Palladium(I) Dimer. Angewandte Chemie - International Edition, 2018, 57, 12573-12577.	7.2	96
326	Accessing Polysubstituted Quinazolines via Nickel Catalyzed Acceptorless Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 11154-11166.	1.7	87
327	Iodine(III)-Enabled Distal C–H Functionalization of Biarylsulfonanilides. Journal of Organic Chemistry, 2018, 83, 11278-11287.	1.7	32
328	One-pot aminobenzylation of aldehydes with toluenes. Nature Communications, 2018, 9, 3365.	5.8	69

#	Article	IF	CITATIONS
329	Ylideâ€Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie - International Edition, 2018, 57, 12859-12864.	7.2	97
330	An Intramolecular C(sp ²)–H Amidation Using <i>N</i> â€lodosuccinimide. European Journal of Organic Chemistry, 2018, 2018, 4178-4186.	1.2	8
331	Synthesis of Euchrestifoline Using Iron―and Palladium atalyzed C–H Bond Activations. European Journal of Organic Chemistry, 2018, 2018, 4272-4276.	1.2	13
332	Revealing the unusual role of bases in activation/deactivation of catalytic systems: O–NHC coupling in M/NHC catalysis. Chemical Science, 2018, 9, 5564-5577.	3.7	62
333	Catalyst―and Reagentâ€Free Electrochemical Azole Câ^'H Amination. Chemistry - A European Journal, 2018, 24, 12784-12789.	1.7	80
334	Palladium catalyzed chloroethoxylation of aromatic and heteroaromatic chlorides: an orthogonal functionalization of a chloroethoxy linker. Organic and Biomolecular Chemistry, 2018, 16, 4895-4899.	1.5	3
335	A dendritic oligoarylamine-substituted benzimidazole derivative as a useful n-type dopant. Journal of Materials Chemistry C, 2018, 6, 6429-6439.	2.7	7
336	Metal atalyzed Synthesis of Substituted Indoles. Asian Journal of Organic Chemistry, 2018, 7, 1467-1487.	1.3	58
337	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie, 2018, 130, 10867-10871.	1.6	26
338	<i>N</i> -Arylation of ferrocenyl 2,4-thiazolidinedione conjugates <i>via</i> a copper-catalysed Chan–Lam cross coupling reaction with aryl boronic acids and their optoelectronic properties. New Journal of Chemistry, 2018, 42, 12587-12594.	1.4	8
339	Electrochemical strategies for C–H functionalization and C–N bond formation. Chemical Society Reviews, 2018, 47, 5786-5865.	18.7	736
340	Electrochemical Cobalt atalyzed Câ^'H Activation. Chemistry - A European Journal, 2018, 24, 16209-16217.	1.7	121
341	Ureaâ€based amphiphilic porous organic polymerâ€supported palladium as a reusable catalyst for Suzuki–Miyaura coupling and hydroxycarbonylation reactions in water. Applied Organometallic Chemistry, 2018, 32, e4421.	1.7	16
342	Bisphosphines: A Prominent Ancillary Ligand Class for Application in Nickel-Catalyzed C–N Cross-Coupling. ACS Catalysis, 2018, 8, 7228-7250.	5.5	112
343	Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis. Nature, 2018, 559, 83-88.	13.7	303
344	Borrowing Hydrogen-Mediated N-Alkylation Reactions by a Well-Defined Homogeneous Nickel Catalyst. ACS Catalysis, 2019, 9, 9051-9059.	5.5	102
345	Step-by-step real time monitoring of a catalytic amination reaction. Chemical Communications, 2019, 55, 11727-11730.	2.2	13
346	Rigid hindered N-heterocyclic carbene palladium precatalysts: synthesis, characterization and catalytic amination. Organic Chemistry Frontiers, 2019, 6, 3292-3299.	2.3	26

#	Article	IF	CITATIONS
347	Dual function of carbon tetrachloride: synthesis of chlorinated heterocycles. Chemical Communications, 2019, 55, 10721-10724.	2.2	8
348	Cobalt(II)-Catalyzed Alkoxycarbonylation of Aliphatic Amines via C–N Bond Activation. Organic Letters, 2019, 21, 6919-6923.	2.4	31
349	C–N Cross-Couplings for Site-Selective Late-Stage Diversification via Aryl Sulfonium Salts. Journal of the American Chemical Society, 2019, 141, 13346-13351.	6.6	152
350	Intramolecular Remote C–H Activation via Sequential 1,4-Palladium Migration To Access Fused Polycycles. Organic Letters, 2019, 21, 6765-6769.	2.4	28
351	Cu/ <i>N</i> , <i>N</i> â€2-Dibenzyloxalamide-Catalyzed <i>N</i> -Arylation of Heteroanilines. Organic Letters, 2019, 21, 6874-6878.	2.4	43
352	BF ₃ â <et<sub>2Oâ€Promoted Aerobic Bromination of Heteroarenes with LiBr as the Bromination Sources. ChemistrySelect, 2019, 4, 8942-8945.</et<sub>	0.7	5
353	Well-Designed <i>N</i> -Heterocyclic Carbene Ligands for Palladium-Catalyzed Denitrative C–N Coupling of Nitroarenes with Amines. ACS Catalysis, 2019, 9, 8110-8115.	5.5	40
354	Persulfate-mediated synthesis of polyfunctionalized benzenes in water via the benzannulation of alkynes and \hat{I}_{\pm}, \hat{I}^2 -unsaturated compounds. Green Chemistry, 2019, 21, 5507-5511.	4.6	9
355	Cooperativity and serial ligand catalysis in an allylic amination reaction by Pd(<scp>ii</scp>)-bis-sulfoxide and BrÃ,nsted acids. Organic and Biomolecular Chemistry, 2019, 17, 7723-7734.	1.5	2
356	Synthesis and Study of a Dialkylbiaryl Phosphine Ligand; Lessons for Rational Ligand Design. Organometallics, 2019, 38, 3245-3256.	1.1	2
357	Photochemically-Mediated, Nickel-Catalyzed Synthesis of <i>N</i> -(Hetero)aryl Sulfamate Esters. Organic Letters, 2019, 21, 7049-7054.	2.4	20
358	A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21867-21873.	5.2	16
359	Microwaveâ€Assisted Suzuki–Miyaura and Sonogashira Coupling of 4â€Chloroâ€2â€(trifluoromethyl)pyrido[1,2â€ <i>e</i>]purine Derivatives. European Journal of Organic Chemistry, 2019, 2019, 5756-5767.	1.2	7
360	Effects of the Hydrogen Bonding Network on Electrophilic Activation and Electrode Passivation: Electrochemical Chlorination and Bromination of Aromatics. ChemElectroChem, 2019, 6, 3726-3730.	1.7	12
361	Copper-Catalyzed <i>ortho</i> -Selective Dearomative C–N Coupling of Simple Phenols with <i>O</i> -Benzoylhydroxylamines. ACS Catalysis, 2019, 9, 7343-7349.	5.5	21
362	Cooperative Pd/Cu Catalysis to Spiro[indoline-2,3′-pyrrolidin]-2′-ones: Tandem Benzylation of α-Isocyano Lactams, Amine Addition, and N-Arylation. Organic Letters, 2019, 21, 5747-5752.	2.4	12
363	Palladium-Catalyzed α-Arylation of Carboxylic Acids and Secondary Amides via a Traceless Protecting Strategy. Journal of the American Chemical Society, 2019, 141, 11749-11753.	6.6	35
364	C-N cross coupling: Novel approach towards effective aryl secondary amines modification on nanodiamond surface. Diamond and Related Materials, 2019, 98, 107468.	1.8	12

#	Article	IF	CITATIONS
365	Homopropargyl as a new recognition moiety of a fluorescent probe for detection of palladium in living cells. Analytical Methods, 2019, 11, 4093-4098.	1.3	10
366	Câ°'N Crossâ€Coupling Reactions Under Mild Conditions Using Singlet Diâ€Radical Nickel(II)â€Complexes as Catalyst: Nâ€Arylation and Quinazoline Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 4342-4353.	2.1	35
367	Palladium-Catalyzed Hydroxycarbonylation of (Hetero)aryl Halides for DNA-Encoded Chemical Library Synthesis. Bioconjugate Chemistry, 2019, 30, 2209-2215.	1.8	24
368	Fused Heteroaromatic Rings via Metal-Mediated/Catalyzed Intramolecular C–H Activation: A Comprehensive Review. Topics in Current Chemistry, 2019, 377, 21.	3.0	28
369	Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage. Beilstein Journal of Organic Chemistry, 2019, 15, 1612-1704.	1.3	53
370	Emerging Catalyst Control in Cobalt-Catalyzed Oxidative Hydrofunctionalization Reactions. Synlett, 2019, 30, 2015-2021.	1.0	10
371	Intramolecular Ullmann-type Câ 'N coupling for the synthesis of substituted benzo[4,5]imidazo[1,2-a]pyrrolo[3,4-c]pyridines. Tetrahedron, 2019, 75, 130473.	1.0	2
372	Use of a Droplet Platform To Optimize Pd-Catalyzed C–N Coupling Reactions Promoted by Organic Bases. Organic Process Research and Development, 2019, 23, 1594-1601.	1.3	50
373	Nitrene Insertion into Aromatic and Benzylic Câ^'H Bonds Catalyzed by Copper Complexes of Fluorinated Bis―and Tris(pyrazolyl)borates. ChemCatChem, 2019, 11, 4966-4973.	1.8	7
374	Mechanism of Palladium-Catalyzed C–N Coupling with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as a Base. ACS Catalysis, 2019, 9, 6851-6856.	5.5	23
375	Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation. Science Advances, 2019, 5, eaaw9516.	4.7	125
376	Synthesis of Nitrogenâ€Containing Goniothalamin Analogues with Higher Cytotoxic Activity and Selectivity against Cancer Cells. ChemMedChem, 2019, 14, 1403-1417.	1.6	3
377	Ruthenium(0)-sequential catalysis for the synthesis of sterically hindered amines by C–H arylation/hydrosilylation. Chemical Communications, 2019, 55, 9003-9006.	2.2	15
378	The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook. Organic Process Research and Development, 2019, 23, 1478-1483.	1.3	206
379	Cu-Catalyzed Couplings of Heteroaryl Primary Amines and (Hetero)aryl Bromides with 6-Hydroxypicolinamide Ligands. Organic Process Research and Development, 2019, 23, 1538-1551.	1.3	32
380	A Convenient Preparation Method for Benzophenone Imine Catalyzed by Tetrabutylammonium Fluoride. Organic Process Research and Development, 2019, 23, 1718-1724.	1.3	13
381	Palladate Precatalysts for the Formation of C–N and C–C Bonds. Organometallics, 2019, 38, 2812-2817.	1.1	23
382	Biphasic Aqueous Reaction Conditions for Process-Friendly Palladium-Catalyzed C–N Cross-Coupling of Aryl Amines. Organic Process Research and Development, 2019, 23, 1752-1757.	1.3	11

#	Article	IF	CITATIONS
383	Virtual Excited State Reference for the Discovery of Electronic Materials Database: An Open-Access Resource for Ground and Excited State Properties of Organic Molecules. Journal of Physical Chemistry Letters, 2019, 10, 6835-6841.	2.1	19
384	An Information-Rich Graphical Representation of Catalytic Cycles. Organometallics, 2019, 38, 4051-4053.	1.1	7
385	Stereospecific Synthesis of (Z , Z)â€lsobenzofurans via Radicalâ€Enabled Cleavage of C(sp 3)â^'C(sp 3) and C(sp 2)â€Halogen Bonds. Advanced Synthesis and Catalysis, 2019, 361, 5340-5345.	2.1	19
386	Cuâ€Mediated Amination of (Hetero)Aryl Câ^'H bonds with NH Azaheterocycles. Angewandte Chemie - International Edition, 2019, 58, 18141-18145.	7.2	28
387	Bulky 1,1′-Ferrocenyl Ligands Featuring Diazaphospholene or Dioxaphosphepine Donor Fragments: Catalytic Screening in Nickel-Catalyzed C-N Cross-Coupling. European Journal of Inorganic Chemistry, 2019, 2019, 4112-4116.	1.0	7
388	Copper(II) Oxide Nanoparticles Impregnated on Melamineâ€Modified UiOâ€66â€NH ₂ Metal–Organic Framework for C–N Crossâ€Coupling Reaction and Synthesis of 2â€&ubstituted Benzimidazoles. Journal of Heterocyclic Chemistry, 2019, 56, 2853-2865.	1.4	10
389	Formal Aniline Synthesis from Phenols through Deoxygenative N entered Radical Substitution. Chemistry - A European Journal, 2019, 25, 15267-15271.	1.7	14
390	Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Letters, 2019, 60, 151288.	0.7	3
392	Ruthenium Catalyzed Câ^'H Acylmethylation of <i>N</i> â€Arylphthalazineâ€1,4â€diones with αâ€Carbonyl Sulfoxonium Ylides: Highway to Diversely Functionalized Phthalazinoâ€fused Cinnolines. Chemistry - an Asian Journal, 2019, 14, 4274-4288.	1.7	26
393	Bridgeâ€Lengthâ€Dependent Intramolecular Charge Transfer in Bis(dianisylamino)â€Terminated Oligo(p) Tj ETQ	q110.78 1.7	4314 rgBT (
394	Twoâ€Step Preparation of Diverse 3â€Amidofurans from Chitin. ChemistrySelect, 2019, 4, 10097-10099.	0.7	25
395	Eine allgemeine Methode zur Hydroaminomethylierung von Alkenen und Alkinen. Angewandte Chemie, 2019, 131, 14781-14785.	1.6	12
396	Decarbonylative Phosphorylation of Carboxylic Acids via Redox-Neutral Palladium Catalysis. Organic Letters, 2019, 21, 9256-9261.	2.4	42
397	Potential Safety Hazards Associated with Pd-Catalyzed Cross-Coupling Reactions. Organic Process Research and Development, 2019, 23, 2608-2626.	1.3	24
398	HFIP Promoted Low-Temperature S _N Ar of Chloroheteroarenes Using Thiols and Amines. Journal of Organic Chemistry, 2019, 84, 15343-15354.	1.7	24
399	Cuâ€Mediated Amination of (Hetero)Aryl Câ^'H bonds with NH Azaheterocycles. Angewandte Chemie, 2019, 131, 18309-18313.	1.6	5
400	Synthetic Strategies for (â^') annabidiol and Its Structural Analogs. Chemistry - an Asian Journal, 2019, 14, 3749-3762.	1.7	28
401	Sodium Butylated Hydroxytoluene (NaBHT) as a New and Efficient Hydride Source for Pd atalysed Reduction Reactions. Chemistry - A European Journal, 2019, 25, 13099-13103.	1.7	2

#	Article	IF	Citations
402	Rate and Computational Studies for Pdâ€NHC atalyzed Amination with Primary Alkylamines and Secondary Anilines: Rationalizing Selectivity for Monoarylation versus Diarylation with NHC Ligands. Chemistry - A European Journal, 2019, 25, 14223-14229.	1.7	7
403	Oneâ€Pot Synthesis of Symmetrical Tertiary and Secondary Amines from Carbonyl Compounds, Ammonium Carbonate and Carbon Monoxide as a Reductant. European Journal of Organic Chemistry, 2019, 2019, 6557-6560.	1.2	4
404	Added catalyst-free, versatile and environment beneficial bromination of (hetero)aromatics using NBS in WEPA. SN Applied Sciences, 2019, 1, 1.	1.5	13
405	Decarboxylative C _{sp³} –N Bond Formation by Electrochemical Oxidation of Amino Acids. Organic Letters, 2019, 21, 9262-9267.	2.4	51
406	Pd-Catalyzed Cross-Coupling Reactions Promoted by Biaryl Phosphorinane Ligands. ACS Catalysis, 2019, 9, 11691-11708.	5.5	41
407	A General Acidâ€Mediated Hydroaminomethylation of Unactivated Alkenes and Alkynes. Angewandte Chemie - International Edition, 2019, 58, 14639-14643.	7.2	35
408	Mizoroki–Heck Crossâ€Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Preâ€Catalysts. European Journal of Inorganic Chemistry, 2019, 2019, 4695-4699.	1.0	11
409	Palladium Nanoparticles Immobilized on Schiff Baseâ€Functionalized Grapheneâ€Oxide: Application in Carbon arbon Crossâ€Coupling Reactions. ChemistrySelect, 2019, 4, 10828-10837.	0.7	8
410	Synthesis of αâ€Carbolines Using Palladiumâ€Catalyzed Intramolecular Amination of 3â€(2â€Chlorophenyl)â€2â€Aminopyridines. ChemistrySelect, 2019, 4, 469-472.	0.7	5
411	Bis(dialkylphosphino)ferrocene-Ligated Nickel(II) Precatalysts for Suzuki–Miyaura Reactions of Aryl Carbonates. Organometallics, 2019, 38, 3377-3387.	1.1	21
412	Palladium-mediated intramolecular dearomatization of ligated dialkylterphenyl phosphines. Dalton Transactions, 2019, 48, 14575-14579.	1.6	2
413	Site-Selective Protein Immobilization on Polymeric Supports through N-Terminal Imidazolidinone Formation. Biomacromolecules, 2019, 20, 3933-3939.	2.6	17
414	Rhodium(III) supported amination reaction of a pendant naphthyl group: Structure, electrochemistry and theoretical interpretation. Polyhedron, 2019, 171, 542-550.	1.0	2
415	Synthesis of Benzo[<i>b</i>]azocinâ€2â€ones by Aryl Amination and Ringâ€Expansion of αâ€(Iodophenyl)â€Î²â€oxoesters. Chemistry - A European Journal, 2019, 25, 14912-14920.	1.7	13
416	Copper or Silver-Mediated Oxidative C(sp ²)–H/N–H Cross-Coupling of Phthalimide and Heterocyclic Arenes: Access to <i>N</i> -Arylphthalimides. Organometallics, 2019, 38, 3617-3628.	1.1	15
417	Recent advances in transition metal-catalysed cross-coupling of (hetero)aryl halides and analogues under ligand-free conditions. Catalysis Science and Technology, 2019, 9, 5233-5255.	2.1	56
418	Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles. Journal of the American Chemical Society, 2019, 141, 14864-14869.	6.6	53
419	Three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8541-8545.	1.5	18

#	Article	IF	CITATIONS
420	Ullmann-type <i>N</i> -arylation of anilines with alkyl(aryl)sulfonium salts. Chemical Communications, 2019, 55, 11936-11939.	2.2	29
421	Nickel-Catalyzed C–N Cross-Coupling of Ammonia, (Hetero)anilines, and Indoles with Activated (Hetero)aryl Chlorides Enabled by Ligand Design. ACS Catalysis, 2019, 9, 9292-9297.	5.5	50
422	Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov Hydroamination of Alkenes. Organic Letters, 2019, 21, 7873-7877.	2.4	29
423	Synthetic Approaches for C-N Bonds by TiO2 Photocatalysis. Frontiers in Chemistry, 2019, 7, 635.	1.8	18
424	Mechanistic Study on the Decarboxylative <i>sp</i> ³ C–N Cross-Coupling between Alkyl Carboxylic Acids and Nitrogen Nucleophiles via Dual Copper and Photoredox Catalysis. Inorganic Chemistry, 2019, 58, 12669-12677.	1.9	14
425	Applications of sulfuryl fluoride (SO ₂ F ₂) in chemical transformations. Organic Chemistry Frontiers, 2019, 6, 3490-3516.	2.3	60
426	Ligand-Enabled Gold-Catalyzed C(sp ²)–N Cross-Coupling Reactions of Aryl Iodides with Amines. Organic Letters, 2019, 21, 8101-8105.	2.4	92
427	C–N Bond Activation of <i>N</i> , <i>N′</i> -Dialkylacylhydrazines Mediated by β-Fragmentation of Nitrogen-Centered Radical. Journal of Organic Chemistry, 2019, 84, 14202-14208.	1.7	7
428	Alkyl Radical Addition to Aliphatic and Aromatic <i>N</i> Acylhydrazones Using an Organic Photoredox Catalyst. Organic Letters, 2019, 21, 8290-8294.	2.4	30
429	Synthetic Routes for Venetoclax at Different Stages of Development. ACS Symposium Series, 2019, , 1-25.	0.5	0
430	Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorganic and Medicinal Chemistry, 2019, 27, 115096.	1.4	9
431	Star-shaped tetra- and octa-arylamine triptycene-based dendrimers: modular building blocks for blue emission materials. Materials Today Chemistry, 2019, 14, 100190.	1.7	5
432	Insights on Bimetallic Micellar Nanocatalysis for Buchwald–Hartwig Aminations. ACS Catalysis, 2019, 9, 10389-10397.	5.5	59
433	Discovery and Development of the First Antibody–Antibiotic Conjugate Linker-Drug. ACS Symposium Series, 2019, , 85-105.	0.5	2
434	Cu(0)/Selectfluor system-catalyzed intramolecular Csp2-H/Csp2-H cross-dehydrogenative coupling (CDC). Tetrahedron, 2019, 75, 130533.	1.0	16
435	Facile synthesis of Pd(<scp>ii</scp>) and Ni(<scp>ii</scp>) pincer carbene complexes by the double C–H bond activation of a new hexahydropyrimidine-based bis(phosphine): catalysis of C–N couplings. Dalton Transactions, 2019, 48, 7203-7210.	1.6	20
436	PhPAdâ€DalPhos: Ligandâ€Enabled, Nickelâ€Catalyzed Crossâ€Coupling of (Hetero)aryl Electrophiles with Bulky Primary Alkylamines. Angewandte Chemie, 2019, 131, 2507-2511.	1.6	20
437	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane. Angewandte Chemie - International Edition, 2019, 58, 4566-4570.	7.2	108

#	Article	IF	CITATIONS
438	Metal-catalyzed cross-coupling chemistry with polyhedral boranes. Chemical Communications, 2019, 55, 430-442.	2.2	99
439	Computational and experimental studies on copper-mediated selective cascade C–H/N–H annulation of electron-deficient acrylamide with arynes. Chemical Communications, 2019, 55, 755-758.	2.2	33
440	An intramolecular C(sp ³)–H imination using Phl– <i>m</i> CPBA. Chemical Communications, 2019, 55, 2066-2069.	2.2	22
441	Copper-catalyzed arene amination in pure aqueous ammonia. Organic and Biomolecular Chemistry, 2019, 17, 1791-1795.	1.5	11
442	Base-promoted direct synthesis of functionalized <i>N</i> -arylindoles <i>via</i> the cascade reactions of allenic ketones with indoles. Organic and Biomolecular Chemistry, 2019, 17, 789-793.	1.5	10
443	Palladium-Catalysed Amination of Hindered Aryl Halides with 9 <i>H</i> -Carbazole. Synthetic Communications, 2019, 49, 159-165.	1.1	5
444	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane. Angewandte Chemie, 2019, 131, 4614-4618.	1.6	17
445	Recent Advances in Intramolecular Metalâ€Free Oxidative C–H Bond Aminations Using Hypervalent Iodine(III) Reagents. European Journal of Organic Chemistry, 2019, 2019, 1687-1714.	1.2	67
446	Reductive Molybdenumâ€Catalyzed Direct Amination of Boronic Acids with Nitro Compounds. Angewandte Chemie, 2019, 131, 2151-2155.	1.6	13
447	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie - International Edition, 2019, 58, 3898-3902.	7.2	27
448	Pharmaceutical diversification via palladium oxidative addition complexes. Science, 2019, 363, 405-408.	6.0	112
449	Direct C(<i>sp</i> ²)â~H Amination to Synthesize Primary 3â€aminoquinoxalinâ€2(1 <i>H</i>)â€one: under Simple and Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 1662-1667.	^S 2.1	65
450	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie, 2019, 131, 3938-3942.	1.6	3
451	Graphene Oxide Immobilized Copper(II) Schiff Base Complex [GO@AFâ€SB u]: A Versatile Catalyst for Chan‣am Coupling Reaction. ChemistrySelect, 2019, 4, 1337-1345.	0.7	25
452	Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl–Alkyl Cross-Couplings. Journal of the American Chemical Society, 2019, 141, 2257-2262.	6.6	141
453	Facile Buchwald–Hartwig coupling of sterically encumbered substrates effected by PNP ligands. Dalton Transactions, 2019, 48, 2730-2734.	1.6	9
454	Molecularly engineering of truxene-based dopant-free hole-transporting materials for efficient inverted planar perovskite solar cells. Dyes and Pigments, 2019, 165, 81-89.	2.0	33
455	Chemoselective <i>N</i> -arylation of aminobenzene sulfonamides <i>via</i> copper catalysed Chan–Evans–Lam reactions. Organic Chemistry Frontiers, 2019, 6, 1356-1360.	2.3	20

#	Article	IF	CITATIONS
456	Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Advances, 2019, 9, 1536-1540.	1.7	20
457	Copper-Catalyzed Three-Component Carboamination of Arynes: Expeditious Synthesis of <i>o</i> -Alkynyl Anilines and <i>o</i> -Benzoxazolyl Anilines. Organic Letters, 2019, 21, 4250-4254.	2.4	21
458	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	1.7	143
459	Synthesis of anion conducting polymer electrolyte membranes by Pd-Catalyzed Buchwald-Hartwig Amination coupling reaction. Tetrahedron, 2019, 75, 4150-4155.	1.0	3
460	Roomâ€Temperature Câ€H Bromination and Iodination with Sodium Bromide and Sodium Iodide Using N â€Fluorobenzenesulfonimide as an Oxidant. ChemistrySelect, 2019, 4, 6043-6047.	0.7	18
461	Intramolecular Catalyst Transfer on a Variety of Functional Groups between Benzene Rings in a Suzuki–Miyaura Coupling Reaction. Chemistry - A European Journal, 2019, 25, 10059-10062.	1.7	12
462	Palladium-Catalyzed Amidation and Amination of (Hetero)aryl Chlorides under Homogeneous Conditions Enabled by a Soluble DBU/NaTFA Dual-Base System. Organic Process Research and Development, 2019, 23, 1529-1537.	1.3	39
463	Pyrrolo[3,4-c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Organic Letters, 2019, 21, 5046-5050.	2.4	29
464	Monophosphine Ligands Promote Pd-Catalyzed C–S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catalysis, 2019, 9, 6461-6466.	5.5	55
465	Two-channel responsive fluorescent probe of meso carboxylate of BODIPY with AIE characteristics for fast detection of palladium. Dyes and Pigments, 2019, 170, 107656.	2.0	19
466	Palladacycles as Efficient Precatalysts for Negishi and Buchwald-Hartwig Amination Reactions. , 2019, , 175-224.		5
467	Synthesis of secondary arylamine copolymers with Iron(II) clathrochelate units and their functionalization into tertiary Polyarylamines via Buchwald-Hartwig cross-coupling reaction. Polymer, 2019, 178, 121606.	1.8	11
468	Data-Rich Experimentation Enables Palladium-Catalyzed Couplings of Piperidines and Five-Membered (Hetero)aromatic Electrophiles. Organic Process Research and Development, 2019, 23, 1725-1739.	1.3	24
469	Copper-Catalyzed Cyanoalkylation of Amines via C–C Bond Cleavage: An Approach for C(sp ³)–N Bond Formations. Journal of Organic Chemistry, 2019, 84, 8615-8629.	1.7	26
470	3â€Aminoindole Synthesis from 2â€Nitrochalcones and Ammonia or Primary Amines. Advanced Synthesis and Catalysis, 2019, 361, 3718-3722.	2.1	14
471	Evaluating stereoelectronic properties of bulky dialkylterphenyl phosphine ligands. Journal of Organometallic Chemistry, 2019, 896, 120-128.	0.8	21
472	Nitrenium Ions from Amineâ€lodine(III) Combinations. Advanced Synthesis and Catalysis, 2019, 361, 4401-4425.	2.1	36
473	Selective Synthesis of Primary Anilines from NH 3 and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface. Angewandte Chemie, 2019, 131, 11009-11013.	1.6	9

#	Article	IF	CITATIONS
474	Cross-Coupling of Heteroatomic Electrophiles. Chemical Reviews, 2019, 119, 8192-8228.	23.0	151
475	Switchable Smiles Rearrangement for Enantioselective <i>O</i> -Aryl Amination. Organic Letters, 2019, 21, 4915-4918.	2.4	34
476	Nickel-catalyzed decarbonylation of <i>N</i> -acylated N-heteroarenes. Chemical Science, 2019, 10, 6666-6671.	3.7	40
477	Utilization of Cyclic Amides as Masked Aldehyde Equivalents in Reductive Amination Reactions. Journal of Organic Chemistry, 2019, 84, 7936-7949.	1.7	7
478	Elucidation of the electrochemical behavior of phenothiazine-based polyaromatic amines. Tetrahedron, 2019, 75, 4244-4249.	1.0	7
479	Electrochemically Enabled Chan–Lam Couplings of Aryl Boronic Acids and Anilines. Organic Letters, 2019, 21, 4540-4543.	2.4	34
480	Copper-Catalyzed Electrophilic Ortho C(sp2)–H Amination of Aryl Amines: Dramatic Reactivity of Bicyclic System. Organic Letters, 2019, 21, 4651-4656.	2.4	32
481	Ligand-supported palladium-catalyzed cross-coupling reactions of (hetero) aryl chlorides. Synthetic Communications, 2019, 49, 2117-2146.	1.1	14
482	C4â€Selective Synthesis of Vinyl Thiocyanates and Selenocyanates Through 3,4â€Dihaloâ€2(5 <i>H</i>)â€furanones. European Journal of Organic Chemistry, 2019, 2019, 4572-4580.	1.2	14
483	The Buchwald–Hartwig Amination After 25â€Years. Angewandte Chemie - International Edition, 2019, 58, 17118-17129.	7.2	371
484	URJCâ€1â€MOF as New Heterogeneous Recyclable Catalyst for Câ€Heteroatom Coupling Reactions. ChemCatChem, 2019, 11, 3376-3380.	1.8	24
485	Selective Synthesis of Primary Anilines from NH ₃ and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface. Angewandte Chemie - International Edition, 2019, 58, 10893-10897.	7.2	40
486	Theoretical and Experimental Studies: Cu(I)/Cu(II) Catalytic Cycle in CuI/Oxalamide-Promoted C–N Bond Formation. Organometallics, 2019, 38, 2502-2511.	1.1	15
487	The first radiosynthesis of 2-amino-5-[18F]fluoropyridines via a "minimalist― radiofluorination/palladium-catalyzed amination sequence from anisyl(2-bromopyridinyl)iodonium triflate. Organic and Biomolecular Chemistry, 2019, 17, 6359-6363.	1.5	4
488	Anticancer-Active <i>N</i> -Heteroaryl Amines Syntheses: Nucleophilic Amination of <i>N</i> -Heteroaryl Alkyl Ethers with Amines. Organic Letters, 2019, 21, 5111-5115.	2.4	10
489	The Buchwald–Hartwig Amination After 25â€Years. Angewandte Chemie, 2019, 131, 17276-17287.	1.6	59
490	Pd(OAc)2-catalyzed orthogonal synthesis of 2-hydroxybenzoates and substituted cyclohexanones from acyclic unsaturated 1,3-carbonyl compounds. Tetrahedron Letters, 2019, 60, 1653-1657.	0.7	6
491	Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. Journal of the American Chemical Society, 2019, 141, 8921-8927.	6.6	68

#	Article	IF	CITATIONS
492	Catalytic Generation of C1 Ammonium Enolates from Halides and CO for Asymmetric Cascade Reactions. Angewandte Chemie, 2019, 131, 7729-7733.	1.6	17
493	Intramolecular C(sp ³)–H Imination towards Benzimidazoles Using Tetrabutylammonium Iodide and <i>t</i> BuOOH. European Journal of Organic Chemistry, 2019, 2019, 4105-4109.	1.2	9
494	Copper―and Cobaltâ€Catalyzed Syntheses of Thiopheneâ€Based Tertiary Amines. European Journal of Organic Chemistry, 2019, 2019, 3244-3258.	1.2	8
495	Cu-Catalyzed Direct C–P Bond Formation through Dehydrogenative Cross-Coupling Reactions between Azoles and Dialkyl Phosphites. Journal of Organic Chemistry, 2019, 84, 6868-6878.	1.7	24
496	A Green and Sustainable Approach for Selective Halogenation of Anilides, Benzanilides, Sulphonamides and Heterocycles ^{â€} . Asian Journal of Organic Chemistry, 2019, 8, 1380-1384.	1.3	18
497	Intermolecular Oxidative Addition of Aryl Halides to Platinum(II) Alkyl Complexes. Organometallics, 2019, 38, 2273-2277.	1.1	9
498	Synthesis of distal and proximal fleximer base analogues and evaluation in the nucleocapsid protein of HIV-1. Bioorganic and Medicinal Chemistry, 2019, 27, 2883-2892.	1.4	10
499	Non-transition Metal-Mediated Diverse Aryl–Heteroatom Bond Formation of Arylammonium Salts. IScience, 2019, 15, 307-315.	1.9	44
500	Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Transactions, 2019, 48, 9851-9905.	1.6	33
501	Biaryl monophosphine ligands in palladium-catalyzed C–N coupling: An updated User's guide. Tetrahedron, 2019, 75, 4199-4211.	1.0	149
502	Streamlined Synthesis of Diaminopyridines by Pdâ€Catalyzed Ammonia Coupling with Deactivated Aminoâ€Chloropyridines. Chemistry - A European Journal, 2019, 25, 9006-9011.	1.7	6
503	Access to 3-Deazaguanosine Building Blocks for RNA Solid-Phase Synthesis Involving Hartwig–Buchwald C–N Cross-Coupling. Organic Letters, 2019, 21, 3900-3903.	2.4	9
504	Tuning the Luminescent Properties of Ruthenium(II) Aminoâ€1,10â€Phenanthroline Complexes by Varying the Position of the Amino Group on the Heterocycle. ChemPlusChem, 2019, 84, 498-503.	1.3	6
505	NNB-Type Tridentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. Molecules, 2019, 24, 1434.	1.7	6
506	Generic Ion Chromatography–Conductivity Detection Method for Analysis of Palladium Scavengers in New Drug Substances. Organic Process Research and Development, 2019, 23, 1060-1068.	1.3	13
507	Nickel-Catalyzed Decarboxylation of Aryl Carbamates for Converting Phenols into Aromatic Amines. Journal of the American Chemical Society, 2019, 141, 7261-7265.	6.6	41
508	Practical and regioselective amination of arenes using alkyl amines. Nature Chemistry, 2019, 11, 426-433.	6.6	181
509	Regioselective installation of fluorosulfate (–OSO2F) functionality into aromatic C(sp2)–H bonds for the construction of para-amino-arylfluorosulfates. Chemical Communications, 2019, 55, 6273-6276.	2.2	16

#	Article	IF	CITATIONS
510	Palladium-Catalyzed C(sp2)–N Bond Cross-Coupling with Triaryl Phosphates. Journal of Organic Chemistry, 2019, 84, 6366-6376.	1.7	15
511	Base-Promoted SNAr Reactions of Fluoro- and Chloroarenes as a Route to N-Aryl Indoles and Carbazoles. Molecules, 2019, 24, 1145.	1.7	17
512	Konzertierte nukleophile aromatische Substitutionen. Angewandte Chemie, 2019, 131, 16518-16540.	1.6	26
513	Concerted Nucleophilic Aromatic Substitution Reactions. Angewandte Chemie - International Edition, 2019, 58, 16368-16388.	7.2	156
514	Optimisation of a key cross-coupling reaction towards the synthesis of a promising antileishmanial compound. Tetrahedron Letters, 2019, 60, 1243-1247.	0.7	2
515	[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald–Hartwig Cross-coupling (Transamidation) of Amides and Esters by N–C/O–C Activation. Organic Letters, 2019, 21, 3304-3309.	2.4	90
516	Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis. Organic Letters, 2019, 21, 3346-3351.	2.4	139
517	Synthesis of tetraphenylethylene-based fluorescent conjugated microporous polymers for fluorescent sensing and adsorbing iodine. Microporous and Mesoporous Materials, 2019, 284, 468-475.	2.2	37
518	Synthesis of <i>N</i> -Arylpyrazoles by Palladium-Catalyzed Coupling of Aryl Triflates with Pyrazole Derivatives. Journal of Organic Chemistry, 2019, 84, 6508-6515.	1.7	19
519	Unusual substrate and halide versatility of phenolic halogenase PltM. Nature Communications, 2019, 10, 1255.	5.8	29
521	Recent developments in decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds. RSC Advances, 2019, 9, 8964-8976.	1.7	68
522	Modeling Key Pathways Proposed for the Formation and Evolution of "Cocktail―Type Systems in Pd-Catalyzed Reactions Involving ArX Reagents. ACS Catalysis, 2019, 9, 3991-4005.	5.5	63
523	Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019, 141, 6392-6402.	6.6	251
524	Sonogashira Cross-Coupling of Aryltrimethylammonium Salts. ACS Catalysis, 2019, 9, 3730-3736.	5.5	43
525	Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton's Tyrosine Kinase (BTK). Journal of Medicinal Chemistry, 2019, 62, 3228-3250.	2.9	78
526	Redox-responsive phosphonite gold complexes in hydroamination catalysis. Chemical Communications, 2019, 55, 5323-5326.	2.2	33
527	Weinreb Amides as Directing Groups for Transition Metal-Catalyzed C-H Functionalizations. Molecules, 2019, 24, 830.	1.7	42
528	PEt3-mediated deoxygenative C N coupling of nitroarenes and boronic acids. Tetrahedron, 2019, 75, 3248-3252.	1.0	12

#	Article	IF	CITATIONS
529	Deaminative Reductive Cross-Electrophile Couplings of Alkylpyridinium Salts and Aryl Bromides. Organic Letters, 2019, 21, 2941-2946.	2.4	118
530	N-Halo Reagents: Modern Synthetic Approaches for Heterocyclic Synthesis. Synthesis, 2019, 51, 1841-1870.	1.2	24
531	Electrooxidative and Regioselective Câ^'H Azolation of Phenol and Aniline Derivatives. Angewandte Chemie, 2019, 131, 8488-8492.	1.6	20
532	Electrooxidative and Regioselective Câ^H Azolation of Phenol and Aniline Derivatives. Angewandte Chemie - International Edition, 2019, 58, 8400-8404.	7.2	52
533	Formation of XPhosâ€Ligated Palladium(0) Complexes and Reactivity in Oxidative Additions. Chemistry - A European Journal, 2019, 25, 6980-6987.	1.7	26
534	Efficient Syntheses of New Super Lewis Basic Tris(dialkylamino)â€Substituted Terpyridines and Comparison of Their Methyl Cation Affinities. Chemistry - A European Journal, 2019, 25, 7526-7533.	1.7	13
535	The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews, 2019, 388, 126-171.	9.5	112
536	Synthesis and photophysical properties of dinaphtho[2,3-b:2′,3′-i]dihydrophenazine derivatives. Tetrahedron Letters, 2019, 60, 1113-1116.	0.7	14
537	Regulatory Mechanism and Kinetic Assessment of Energy Transfer Catalysis Mediated by Visible Light. ACS Catalysis, 2019, 9, 3672-3684.	5.5	31
538	PAd2â€DalPhos Enables the Nickelâ€Catalyzed Câ^'N Crossâ€Coupling of Primary Heteroarylamines and (Hetero)aryl Chlorides. Angewandte Chemie - International Edition, 2019, 58, 6391-6395.	7.2	64
539	Pd-Catalyzed C–N Coupling Reactions Facilitated by Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines. ACS Catalysis, 2019, 9, 3822-3830.	5.5	63
540	Ironâ€Catalyzed Borrowing Hydrogen <i>C</i> â€Alkylation of Oxindoles with Alcohols. ChemSusChem, 2019, 12, 2345-2349.	3.6	57
541	Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. Journal of Organic Chemistry, 2019, 84, 5118-5128.	1.7	20
542	Ruthenium-Catalyzed Gram-Scale Preferential C–H Arylation of Tertiary Phosphine. Organic Letters, 2019, 21, 2885-2889.	2.4	39
543	Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics, 2019, 38, 1828-1867.	1.1	50
544	Phosphine-Free Well-Defined Mn(I) Complex-Catalyzed Synthesis of Amine, Imine, and 2,3-Dihydro-1 <i>H</i> -perimidine via Hydrogen Autotransfer or Acceptorless Dehydrogenative Coupling of Amine and Alcohol. Organometallics, 2019, 38, 1815-1825.	1.1	80
545	Direct Installation of a Silyl Linker on Ready-Made NHC Ligands: Immobilized NHC-Pd Complex for Buchwald–Hartwig Amination. Organometallics, 2019, 38, 1872-1876.	1.1	14
546	Functionalized Polyisobutylene and Liquid/Liquid Separations as a Method for Scavenging Transition Metals from Homogeneously Catalyzed Reactions. Applied Sciences (Switzerland), 2019, 9, 120.	1.3	4

	CITATION REPORT	
Article	IF	Citations
Catalytic Generation of C1 Ammonium Enolates from Halides and CO for Asymmetric Cascade Reactions. Angewandte Chemie - International Edition, 2019, 58, 7647-7651.	7.2	51
Palladium-catalysed regioselective <i>N</i> -arylation of anthranilamides: a tandem route for dibenzodiazepinone synthesis. New Journal of Chemistry, 2019, 43, 7339-7343.	1.4	10
Ni-catalyzed Reductive Deaminative Arylation at sp ³ Carbon Centers. Organic Letter 21, 2947-2951.	rs, 2019, 2.4	97
Practical heterogeneous photoredox/nickel dual catalysis for C–N and C–O coupling reactior Chemical Communications, 2019, 55, 4853-4856.	ıs. 2.2	93
Visible-light-mediated hydrodehalogenation and Br/D exchange of inactivated aryl and alkyl halide with a palladium complex. Organic Chemistry Frontiers, 2019, 6, 1649-1654.	2S 2.3	46
Copperâ€Catalyzed Electrophilic Amidation of Organotrifluoroborates with Use of N â€Methoxya Chemistry - A European Journal, 2019, 25, 7941-7947.	amides. 1.7	11
Nickel-catalyzed N-arylation of amines with arylboronic acids under open air. Tetrahedron Letters, 2019, 60, 1277-1280.	, 0.7	16
PAd2â€DalPhos Enables the Nickelâ€Catalyzed Câ^N Crossâ€Coupling of Primary Heteroarylamii (Hetero)aryl Chlorides. Angewandte Chemie, 2019, 131, 6457-6461.	nes and 1.6	21
Palladium atalyzed Methylation of Nitroarenes with Methanol. Angewandte Chemie, 2019, 13 5471-5475.	31, 1.6	15
Palladiumâ€Catalyzed Methylation of Nitroarenes with Methanol. Angewandte Chemie - Internat Edition, 2019, 58, 5417-5421.	ional 7.2	59
A new strategy to design a graphene oxide supported palladium complex as a new heterogeneou nanocatalyst and application in carbon–carbon and carbonâ€heteroatom crossâ€coupling read Applied Organometallic Chemistry, 2019, 33, e4842.	s ctions. 1.7	26
Cobaltâ€Catalyzed Crossâ€Couplings and Electrophilic Aminations using Organozinc Pivalates. ChemCatChem, 2019, 11, 5188-5197.	1.8	26
Nickelâ€Catalyzed C(sp 2)â^'C(sp 3) Kumada Crossâ€Coupling of Aryl Tosylates with Alkyl Grig Reagents. Advanced Synthesis and Catalysis, 2019, 361, 2329-2336.	gnard 2.1	15
Computational Ligand Descriptors for Catalyst Design. Chemical Reviews, 2019, 119, 6561-6594	ł. 23.0	254
Structure Ligation Relationship of Amino Acids for the Amination Cross-Coupling Reactions. Jourr of Organic Chemistry, 2019, 84, 3004-3010.	nal 1.7	12
Highly efficient copper-catalyzed direct C–H amidation of quinoxalin-2(1 <i>H</i>)-ones with ar under microwave irradiation. Organic Chemistry Frontiers, 2019, 6, 925-935.	nidates 2.3	61

563	Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 6243-6250.	3.2	56	
564	Electronic and Photophysical Properties of 9,10â€Anthryleneâ€Bridged Bâ€ï€â€N Donorâ€Acceptor Molecules	1.3	4	

564 with Solidâ€**S**tate Emission in the Yellow to Red Region. ChemPlusChem, 2019, 84, 1305-1313.

#

547

548

549

551

553

555

557

559

561

#	Article	IF	CITATIONS
565	Further insights of selenium-containing analogues of WC-9 against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2019, 27, 1350-1361.	1.4	15
566	Cu(II)-Mediated <i>N</i> –H and <i>N</i> Alkyl Aryl Amination and Olefin Aziridination. Organic Letters, 2019, 21, 1926-1929.	2.4	35
567	One-pot, modular approach to functionalized ketones <i>via</i> nucleophilic addition/Buchwald–Hartwig amination strategy. Chemical Communications, 2019, 55, 2908-2911.	2.2	7
568	Process Development of an Efficient and Cost-Effective Telescoping Route to a Key Synthetic Precursor for the Preparation of a Renin Inhibitor. Organic Process Research and Development, 2019, 23, 499-511.	1.3	2
569	Making better decisions during synthetic route design: leveraging prediction to achieve greenness-by-design. Reaction Chemistry and Engineering, 2019, 4, 1595-1607.	1.9	29
570	Electrooxidative Amination of sp ² C–H Bonds: Coupling of Amines with Aryl Amides via Copper Catalysis. Organic Letters, 2019, 21, 1968-1972.	2.4	59
571	New Insights into the Reaction Capabilities of Ionic Organic Bases in Cu atalyzed Amination. European Journal of Organic Chemistry, 2019, 2019, 1944-1951.	1.2	10
572	Transition metal-free construction of trinuclear N-fused hybrid scaffolds by double nucleophilic aromatic substitution under microwave irradiation. Green Chemistry, 2019, 21, 6590-6593.	4.6	18
573	An <i>anti</i> -Carbopalladation/Amination Cascade with Alkynes: Access to Tetrasubstituted Enamines and Pyrroles. Organic Letters, 2019, 21, 9415-9419.	2.4	24
574	A highly sensitive and selective fluorescent probe based on a Pd-catalyzed reaction for detection of Pd ²⁺ . Analytical Methods, 2019, 11, 6053-6061.	1.3	5
575	Recyclable bimetallic CuMoO ₄ nanoparticles for C–N cross-coupling reaction under mild conditions. New Journal of Chemistry, 2019, 43, 19274-19278.	1.4	16
576	Total synthesis of (â^)-aplaminal by Buchwald–Hartwig cross-coupling of an aminal. New Journal of Chemistry, 2019, 43, 18442-18444.	1.4	3
577	Cerium catalyst promoted C–S cross-coupling: synthesis of thioethers, dapsone and RN-18 precursors. Organic and Biomolecular Chemistry, 2019, 17, 10103-10108.	1.5	4
578	Visible-light-mediated de-aminative alkylation of <i>N</i> -arylamines with alkyl Katritzky salts. Organic Chemistry Frontiers, 2019, 6, 3902-3905.	2.3	38
579	A Direct Approach to Decoration of Bioactive Compounds via C–H Amination Reaction. Organic Letters, 2019, 21, 9852-9855.	2.4	11
580	Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines. Nature Communications, 2019, 10, 5443.	5.8	57
581	Accelerating Effect of DMAP on Cul Catalyzed Buchwaldâ€Hartwig Câ€N Coupling: Mechanistic Insight to the Reaction Pathway. ChemistrySelect, 2019, 4, 13094-13098.	0.7	6
582	Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chemical Reviews, 2019, 119, 12491-12523.	23.0	276

#	Article	IF	CITATIONS
583	Organometallics in Process Chemistry: An Historical Snapshot. Topics in Organometallic Chemistry, 2019, , 1-29.	0.7	0
584	Engaging Alkenes and Alkynes in Deaminative Alkyl–Alkyl and Alkyl–Vinyl Cross-Couplings of Alkylpyridinium Salts. Organic Letters, 2019, 21, 9738-9741.	2.4	39
585	Electrochemical oxidation induced intermolecular aromatic C-H imidation. Nature Communications, 2019, 10, 5467.	5.8	73
586	Process Economics and Atom Economy for Industrial Cross Coupling Applications via LnPd(0)-Based Catalysts. Topics in Organometallic Chemistry, 2019, , 161-198.	0.7	2
587	Luminescent and Swellable Conjugated Microporous Polymers for Detecting Nitroaromatic Explosives and Removing Harmful Organic Vapors. ACS Applied Materials & Interfaces, 2019, 11, 48352-48362.	4.0	31
588	EDA complex directed N-centred radical generation from nitrosoarenes: a divergent synthetic approach. Chemical Communications, 2019, 55, 13590-13593.	2.2	13
589	Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold(i)-catalysed hydroaminations. Catalysis Science and Technology, 2019, 9, 6808-6815.	2.1	23
590	Palygorskite-anchored Pd complexes catalyze the coupling reactions of pyrimidin-2-yl sulfonates. RSC Advances, 2019, 9, 30526-30533.	1.7	5
591	Synthesis of new Pro-PYE ligands as co-catalysts toward Pd-catalyzed Heck–Mizoroki cross coupling reactions. RSC Advances, 2019, 9, 37986-38000.	1.7	8
592	SustainableÂppm level palladium-catalyzed aminations in nanoreactors under mild, aqueous conditions. Chemical Science, 2019, 10, 10556-10561.	3.7	46
593	Examining the Impact of Heteroaryl Variants of PAd-DalPhos on Nickel-Catalyzed C(<i>sp</i> ²)-N Cross-Couplings. Organometallics, 2019, 38, 167-175.	1.1	18
594	Late Stage Functionalization of Secondary Amines via a Cobalt-Catalyzed Electrophilic Amination of Organozinc Reagents. Organic Letters, 2019, 21, 494-497.	2.4	35
595	PhPAdâ€DalPhos: Ligandâ€Enabled, Nickelâ€Catalyzed Crossâ€Coupling of (Hetero)aryl Electrophiles with Bulky Primary Alkylamines. Angewandte Chemie - International Edition, 2019, 58, 2485-2489.	7.2	58
596	A Mild and Direct Site-Selective <i>sp</i> ² C–H Silylation of (Poly)Azines. Journal of the American Chemical Society, 2019, 141, 127-132.	6.6	56
597	Deaminative (Carbonylative) Alkylâ€Heckâ€ŧype Reactions Enabled by Photocatalytic Câ^'N Bond Activation. Angewandte Chemie, 2019, 131, 2424-2428.	1.6	23
598	Deaminative (Carbonylative) Alkylâ€Heckâ€ŧype Reactions Enabled by Photocatalytic Câ^'N Bond Activation. Angewandte Chemie - International Edition, 2019, 58, 2402-2406.	7.2	148
599	Steric and electronic effect of secondary phosphines in reactions with cyclopalladated complexes. Polyhedron, 2019, 159, 146-158.	1.0	1
600	One-pot propagation of (Hetero)Arylamines: Modular synthesis of diverse Amino-di(hetero)arylamines. Tetrahedron, 2019, 75, 721-731.	1.0	3

#	Article	IF	CITATIONS
601	General methodology for the chemoselective N-alkylation of (2,2,6,6)-tetramethylpiperidin-4-ol: Contribution of microwave irradiation. Tetrahedron Letters, 2019, 60, 240-243.	0.7	5
602	Amination of Aromatic Halides and Exploration of the Reactivity Sequence of Aromatic Halides. Journal of Organic Chemistry, 2019, 84, 181-190.	1.7	27
603	[Pd(4-R ₃ Si-IPr)(allyl)Cl], a Family of Silyl-Substituted Pd–NHC Complexes: Catalytic Systems for the Buchwald–Hartwig Amination. Organometallics, 2019, 38, 375-384.	1,1	22
604	Pyridinic Nitrogenâ€Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the <i>N</i> â€Allylation Reaction. ChemSusChem, 2019, 12, 858-865.	3.6	18
605	Reductive Molybdenumâ€Catalyzed Direct Amination of Boronic Acids with Nitro Compounds. Angewandte Chemie - International Edition, 2019, 58, 2129-2133.	7.2	83
606	A synthesis of (arylthio-ethylidene)indolin-2-ones via S-arylation of oxoindolin-ethanethiolates with aryl halides. Journal of Sulfur Chemistry, 2019, 40, 124-136.	1.0	0
607	Arylation Chemistry for Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 4810-4839.	7.2	169
608	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
609	Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics, 2019, 38, 3-35.	1.1	267
610	Buchwald-Hartwig amination of the chloro substituted benzobicyclo[3.2.1]octadiene skeleton using primary benzylic amines. Journal of Molecular Structure, 2019, 1179, 597-607.	1.8	6
611	Photoredoxâ€Initiated 1,2â€Difunctionalization of Alkenes with <i>N</i> â€Chloro <i>S</i> â€Fluoroalkyl Sulfoximines. Advanced Synthesis and Catalysis, 2019, 361, 436-440.	2.1	19
612	Arylierungschemie für die Biokonjugation. Angewandte Chemie, 2019, 131, 4860-4892.	1.6	39
613	Palladium-catalyzed N-Arylation of 1-substituted-1H-tetrazol-5-amines. Journal of Organometallic Chemistry, 2019, 880, 134-142.	0.8	5
614	Metal Speciation in Pharmaceutical Process Development: Case Studies and Process/Analytical Challenges for a Palladium-Catalyzed Cross-Coupling Reaction. Organometallics, 2019, 38, 185-193.	1.1	9
615	A Highly Active Ylideâ€Functionalized Phosphine for Palladiumâ€Catalyzed Aminations of Aryl Chlorides. Angewandte Chemie - International Edition, 2019, 58, 3203-3207.	7.2	91
616	Cuâ€Catalyzed Desulfonylative Amination of Benzhydryl Sulfones. Chemistry - A European Journal, 2019, 25, 1923-1926.	1.7	26
617	Carbon(sp3)-nitrogen bond-forming reductive elimination from phosphine-ligated alkylpalladium(II) amide complexes: A DFT study. Tetrahedron, 2019, 75, 137-143.	1.0	5
618	Ein hochaktives, Ylidâ€funktionalisiertes Phosphan für die palladiumkatalysierte Aminierung von Arylchloriden. Angewandte Chemie, 2019, 131, 3235-3239.	1.6	30

#	Article	IF	CITATIONS
619	Comparing Industrial Amination Reactions in a Combined Class and Laboratory Green Chemistry Assignment. Journal of Chemical Education, 2019, 96, 93-99.	1.1	17
620	The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363, .	6.0	312
621	Development, Scope, and Applications of Titanium(III)â€Catalyzed Cyclizations to Aminated Nâ€Heterocycles. Chemistry - A European Journal, 2019, 25, 3382-3390.	1.7	24
622	Use of Imidazo[1,2â€ <i>a</i>]pyridine as a Carbonyl Surrogate in a Mannichâ€Like, Catalyst Free, Oneâ€Pot Reaction. European Journal of Organic Chemistry, 2019, 2019, 770-777.	1.2	17
623	Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chemical Reviews, 2019, 119, 829-869.	23.0	155
624	Development of a Convergent Large-Scale Synthesis for Venetoclax, a First-in-Class BCL-2 Selective Inhibitor. Journal of Organic Chemistry, 2019, 84, 4814-4829.	1.7	33
625	Discovery and Development of Metal-Catalyzed Coupling Reactions in the Synthesis of Dasabuvir, an HCV-Polymerase Inhibitor. Journal of Organic Chemistry, 2019, 84, 4873-4892.	1.7	17
626	Ligand-Free Iron-Catalyzed C–F Amination of Diarylamines: A One-Pot Regioselective Synthesis of Diaryl Dihydrophenazines. Organic Letters, 2019, 21, 461-464.	2.4	20
627	Olefin-accelerated solid-state C–N cross-coupling reactions using mechanochemistry. Nature Communications, 2019, 10, 111.	5.8	107
628	Iron-Catalyzed/Mediated C–N Bond Formation: Competition between Substrate Amination and Ligand Amination. Inorganic Chemistry, 2019, 58, 1935-1948.	1.9	18
629	Engineered mesoporous ionicâ€modified γâ€Fe ₂ O ₃ @hydroxyapatite decorated with palladium nanoparticles and its catalytic properties in water. Applied Organometallic Chemistry, 2019, 33, e4622.	1.7	9
630	C–H Arylation in the Formation of a Complex Pyrrolopyridine, the Commercial Synthesis of the Potent JAK2 Inhibitor, BMS-911543. Journal of Organic Chemistry, 2019, 84, 4661-4669.	1.7	20
631	Effects of Multiple Catalyst Deactivation Pathways and Continuous Ligand Recycling on the Kinetics of Pd-Catalyzed C–N Coupling Reactions. Journal of Organic Chemistry, 2019, 84, 4653-4660.	1.7	10
632	Electrochemical Reductive Smiles Rearrangement for C–N Bond Formation. Organic Letters, 2019, 21, 10-13.	2.4	31
633	Directed, Nickel-Catalyzed Umpolung 1,2-Carboamination of Alkenyl Carbonyl Compounds. ACS Catalysis, 2019, 9, 224-229.	5.5	83
634	Palladium-catalyzed phosphination and amination through C H bond functionalization on biphenyl: Amido-substituent as directing group. Tetrahedron, 2019, 75, 387-397.	1.0	4
635	Peptide Nanofiber Templated Zinc Oxide Nanostructures as Non-precious Metal Catalyzed N-Arylation of Amines, One-Pot Synthesis of ImidazoHeterocycles and Fused Quinazolines. Catalysis Letters, 2019, 149, 151-168.	1.4	11
636	Electrochemical Transitionâ€Metal atalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	3.6	63

	ΟΙΤΑΤΙΟ	N REPORT	
#	Article	IF	Citations
637	A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics, 2019, 38, 36-46.	1.1	210
638	Anhydrideâ€Assisted Spontaneous Room Temperature Sintering of Printed Bioresorbable Electronics. Advanced Functional Materials, 2020, 30, 1905024.	7.8	14
639	Ironâ€Mediated Electrophilic Amination of Organozinc Halides using Organic Azides. Angewandte Chemie - International Edition, 2020, 59, 335-338.	7.2	21
640	N-donor-stabilized Pd(II) species supported by sulphonamide-azo ligands: Ligand architecture, solvent co-ligands, C–C coupling. Journal of Molecular Structure, 2020, 1199, 127030.	1.8	6
641	Fruit waste (Pulp) decorated CuO NFs as promising platform for enhanced catalytic response and its peroxidase mimics evaluation. Arabian Journal of Chemistry, 2020, 13, 4869-4881.	2.3	42
642	Syntheses of Bromo- <i>N</i> -heterocycles through Dibromohydantoin-Promoted Tandem C–H Amination/Bromination. Journal of Organic Chemistry, 2020, 85, 2918-2926.	1.7	17
643	Synthesis and reactivity of carbazole-containing hypervalent iodine(III) reagents. Chinese Chemical Letters, 2020, 31, 357-360.	4.8	15
644	Synthesis of 1-chlorocyclohexenyl-2-aminobenzenes: A new class of cyclic vinylamines by the Buchwald-Hartwig reaction. Tetrahedron Letters, 2020, 61, 151391.	0.7	5
645	Structure and Activity of the Thermophilic Tryptophanâ€6 Halogenase BorH. ChemBioChem, 2020, 21, 1121-1128.	1.3	17
646	Synthesis of high-performance triphenylamine-based polyfluorenes via C–N coupling reaction: thermal and photoelectric properties. Polymer Bulletin, 2020, 77, 5145-5154.	1.7	0
647	Green tea extract–modified silica gel decorated with palladium nanoparticles as a heterogeneous and recyclable nanocatalyst for Buchwald-Hartwig C–N cross-coupling reactions. Journal of Physics and Chemistry of Solids, 2020, 138, 109256.	1.9	75
648	Direct Catalytic Decarboxylative Amination of Aryl Acetic Acids. Angewandte Chemie - International Edition, 2020, 59, 1313-1319.	7.2	50
649	Transitionâ€Metalâ€Free Threeâ€Component Synthesis of Tertiary Aryl Amines from Nitro Compounds, Boronic Acids, and Trialkyl Phosphites. Advanced Synthesis and Catalysis, 2020, 362, 111-117.	2.1	13
650	Gold atalyzed Crossâ€Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry - A European Journal, 2020, 26, 1442-1487.	1.7	128
651	Synergistic Photoredox/Transitionâ€Metal Catalysis for Carbon–Carbon Bond Formation Reactions. European Journal of Organic Chemistry, 2020, 2020, 1327-1378.	1.2	64
652	Photochemical Strategies for Carbon–Heteroatom Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 1379-1392.	1.2	44
653	Eisenvermittelte elektrophile Aminierung von Organozinkâ€Halogeniden mit organischen Aziden. Angewandte Chemie, 2020, 132, 343-346.	1.6	0
654	Cascade Oneâ€Pot Synthesis of Orangeâ€Redâ€Fluorescent Polycyclic Cinnolino[2,3â€∢i>f]phenanthridinâ€9â€ium Salts by Palladium(II)â€Catalyzed Câ^'H Bond Activation of 2â€Azobiaryl Compounds and Alkenes. Angewandte Chemie - International Edition, 2020, 59, 689-694.	7.2	22

#	Article	IF	Citations
655	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
656	Oneâ€Pot Generation of Benzynes from Phenols: Formation of Primary Anilines by the Deoxyamination of Phenols. Chemistry - A European Journal, 2020, 26, 4320-4332.	1.7	13
657	How bulky ligands control the chemoselectivity of Pd-catalyzed <i>N</i> -arylation of ammonia. Chemical Science, 2020, 11, 1017-1025.	3.7	18
658	Merging polyacenes and cationic helicenes: from weak to intense chiroptical properties in the far red region. Chemical Science, 2020, 11, 1165-1169.	3.7	28
659	Sulfoxideâ€Promoted Chlorination of Indoles and Electronâ€Rich Arenes with Chlorine as Nucleophile. Advanced Synthesis and Catalysis, 2020, 362, 1039-1045.	2.1	11
660	Diaryliodonium Salt-Mediated Intramolecular C–N Bond Formation Using Boron-Masking <i>N</i> -Hydroxyamides. Organic Letters, 2020, 22, 781-785.	2.4	11
661	Air- and moisture-stable Xantphos-ligated palladium dialkyl complex as a precatalyst for cross-coupling reactions. Chemical Communications, 2020, 56, 407-410.	2.2	22
662	Copper-catalyzed stereoselective alkylhydrazination of alkynes. Chemical Communications, 2020, 56, 920-923.	2.2	5
663	Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators. Catalysis Science and Technology, 2020, 10, 1228-1247.	2.1	20
664	Buchwald–Hartwig cross-coupling of amides (transamidation) by selective N–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2020, 10, 710-716.	2.1	57
665	Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism. Synthesis, 2020, 52, 365-377.	1.2	12
666	Synthesis of β-Difluoroalkyl Azides via Elusive 1,2-Azide Migration. CheM, 2020, 6, 486-496.	5.8	37
667	2-Halo- and/or 4-ethoxycarbonyl-substituted asymmetric 1,3-diaryltriazenes and 1,3-diarylamidines as well as N-methylated congeners. Journal of Molecular Structure, 2020, 1205, 127622.	1.8	3
668	A Modular and Diastereoselective 5 + 1 Cyclization Approach to N-(Hetero)Aryl Piperidines. Journal of the American Chemical Society, 2020, 142, 726-732.	6.6	15
669	Transitionâ€Metalâ€Free Approaches to Arylsulfones using Benzylic Ammonium Salts through Câ^'N Bond Cleavage. Asian Journal of Organic Chemistry, 2020, 9, 247-250.	1.3	9
670	Scandium(III) Triflate Catalyzed Direct Synthesis of <i>N</i> -Unprotected Ketimines. Organic Letters, 2020, 22, 120-125.	2.4	28
671	Efficient synthesis of dibenzazepine lactams via a sequential Pd-catalyzed amination and aldol condensation reaction. Tetrahedron Letters, 2020, 61, 151536.	0.7	4
672	Direct Catalytic Decarboxylative Amination of Aryl Acetic Acids. Angewandte Chemie, 2020, 132, 1329-1335.	1.6	8

#	Article	IF	CITATIONS
673	Palladium-catalyzed meta-C H bond iodination of arenes with I2. Chinese Chemical Letters, 2020, 31, 1301-1304.	4.8	15
674	A flexible strategy for the synthesis of bifunctional 6′-(thio)-urea containing Cinchona alkaloid ammonium salts. Tetrahedron, 2020, 76, 130816.	1.0	6
675	Dialkylterphenyl Phosphineâ€Based Palladium Precatalysts for Efficient Aryl Amination of <i>N</i> â€Nucleophiles. Chemistry - A European Journal, 2020, 26, 1064-1073.	1.7	10
676	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	3.1	30
677	Visible Light-Mediated (Hetero)aryl Amination Using Ni(II) Salts and Photoredox Catalysis in Flow: A Synthesis of Tetracaine. Journal of Organic Chemistry, 2020, 85, 3234-3244.	1.7	57
678	Scope, Kinetics, and Mechanism of "On Water―Cu Catalysis in the C–N Cross oupling Reactions of Indole Derivatives. European Journal of Organic Chemistry, 2020, 2020, 561-569.	1.2	11
679	Amidoxime modified PAN supported palladium complex: A greener and efficient heterogeneous catalyst for heck reaction. Inorganica Chimica Acta, 2020, 502, 119305.	1.2	14
680	Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with ^{Cy} JohnPhos and P <i>t</i> Bu ₃ . ACS Catalysis, 2020, 10, 999-1009.	5.5	40
681	2,3-Dicyano-5,6-dichlorobenzoquinone-Mediated and Selective C–O and C–C Cross-Couplings of Phenols and Porphyrins. Organic Letters, 2020, 22, 300-304.	2.4	7
682	Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 2020, 10, 1334-1343.	5.5	79
683	Design, synthesis and biological evaluation of 2-amino-4-(1,2,4-triazol)pyridine derivatives as potent EGFR inhibitors to overcome TKI-resistance. European Journal of Medicinal Chemistry, 2020, 187, 111966.	2.6	10
685	Cascade Oneâ€Pot Synthesis of Orangeâ€Redâ€Fluorescent Polycyclic Cinnolino[2,3â€ <i>f</i>]phenanthridinâ€9â€ium Salts by Palladium(II)â€Catalyzed Câ^'H Bond Activation of 2â€Azobiaryl Compounds and Alkenes. Angewandte Chemie, 2020, 132, 699-704.	1.6	4
686	A Retrosynthetic Approach for Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 1193-1244.	1.2	43
687	Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 2020, 10, 311-335.	5.5	96
688	Scaling Relations in Homogeneous Catalysis: Analyzing the Buchwald–Hartwig Amination Reaction. ACS Catalysis, 2020, 10, 336-345.	5.5	31
689	Palladiumâ€Catalyzed Ligandâ€Free Câ€N Coupling Reactions: Selective Diheteroarylation of Amines with 2â€Halobenzimidazoles. Chemistry - an Asian Journal, 2020, 15, 129-135.	1.7	8
690	Iridiumâ€Catalyzed Hydrochlorination and Hydrobromination of Alkynes by Shuttle Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2904-2910.	7.2	42
691	Ironâ€Catalyzed Chemoselective Câ^'N Coupling Reaction: A Protectingâ€Groupâ€Free Amination of Aryl Halides Bearing Amino or Hydroxy Groups. Asian Journal of Organic Chemistry, 2020, 9, 372-376.	1.3	9

#	Article	IF	CITATIONS
692	Iridiumâ€katalysierte Hydrochlorierung und Hydrobromierung von Alkinen durch Shuttlekatalyse. Angewandte Chemie, 2020, 132, 2926-2932.	1.6	13
693	A Glove-Box- and Schlenk-Line-Free Protocol for Solid-State C–N Cross-Coupling Reactions Using Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2020, 8, 16577-16582.	3.2	44
694	Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chemical Communications, 2020, 56, 14519-14540.	2.2	2
695	Siteâ€Selective C–H Amidation of 2â€Aryl Quinazolinones Using Nitrene Surrogates. European Journal of Organic Chemistry, 2020, 2020, 7134-7143.	1.2	7
696	Mechanochemical Cross-Coupling Reactions. Trends in Chemistry, 2020, 2, 1066-1081.	4.4	123
697	What can reaction databases teach us about Buchwald–Hartwig cross-couplings?. Chemical Science, 2020, 11, 13085-13093.	3.7	31
698	Synergistic photoredox and copper catalysis by diode-like coordination polymer with twisted and polar copper–dye conjugation. Nature Communications, 2020, 11, 5384.	5.8	34
699	Effect of Aryl Ligand Identity on Catalytic Performance of Trineopentylphosphine Arylpalladium Complexes in <i>N</i> -Arylation Reactions. Organometallics, 2020, 39, 3618-3627.	1.1	4
700	Exocyclic Coordination of Thiamacrocycles Leading to <i>cis</i> - and <i>trans</i> -Palladium(II) Complexes and a Tripalladium(II) Complex Incorporating Acetimidic Anhydride. Inorganic Chemistry, 2020, 59, 15807-15812.	1.9	4
701	Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines. Journal of the American Chemical Society, 2020, 142, 18310-18316.	6.6	61
702	Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond formation. Organic and Biomolecular Chemistry, 2020, 18, 8994-9017.	1.5	12
703	Construction of Binuclear Benzimidazole-Fused Quinazolinones and Pyrimidinones Using Aryl Isocyanates as Building Blocks by Transition-Metal-Free C(sp ²)–N Coupling. Journal of Organic Chemistry, 2020, 85, 13354-13362.	1.7	11
704	Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines. Nature Communications, 2020, 11, 5036.	5.8	55
705	<i>N</i> - and <i>O</i> -arylation of pyridin-2-ones with diaryliodonium salts: base-dependent orthogonal selectivity under metal-free conditions. Chemical Science, 2020, 11, 8295-8300.	3.7	28
706	Harder, better, faster. Nature Chemistry, 2020, 12, 661-664.	6.6	25
707	N-Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel(0) catalyst. New Journal of Chemistry, 2020, 44, 13266-13278.	1.4	21
708	Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chemical Science, 2020, 11, 12686-12694.	3.7	72
709	Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases. Applied and Environmental Microbiology, 2020, 86, .	1.4	8

#	Article	IF	CITATIONS
710	Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. Molecules, 2020, 25, 3147.	1.7	48
711	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2020, 59, 17903-17909.	7.2	45
712	Direct Carbon–Carbon σ Bond Amination of Unstrained Arylalkylketones. ACS Catalysis, 2020, 10, 8402-8408.	5.5	25
713	Radical-Mediated Strategies for the Functionalization of Alkenes with Diazo Compounds. Journal of the American Chemical Society, 2020, 142, 13846-13855.	6.6	88
714	<i>N</i> -Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science, 2020, 369, 310-315.	6.0	139
715	Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. ChemSusChem, 2020, 13, 4967-4973.	3.6	26
716	Bimetallic PdCu Nanoparticles for Electrocatalysis: Multiphase or Homogeneous Alloy?. Inorganic Chemistry, 2020, 59, 10611-10619.	1.9	9
717	Phenothiazine derivatives, diketopyrrolopyrrole-based conjugated polymers: synthesis, optical and organic field effect transistor properties. Journal of Polymer Research, 2020, 27, 1.	1.2	9
718	Recent advances in P ^{III} -assisted deoxygenative reactions under photochemical or electrochemical conditions. Organic and Biomolecular Chemistry, 2020, 18, 5994-6005.	1.5	40
720	NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. Journal of the American Chemical Society, 2020, 142, 20470-20480.	6.6	78
721	Iodination of Isoquinoline by Trifluoromethanesulfonic Acid. ChemistrySelect, 2020, 5, 13678-13680.	0.7	1
722	Expanding the Scope of Palladium-Catalyzed B–N Cross-Coupling Chemistry in Carboranes. Organometallics, 2020, 39, 4380-4386.	1.1	18
723	<i>>m-</i> C _{Ar} –H Bond Alkylations and Difluoromethylation of Tertiary Phosphines Using a Ruthenium Catalyst. Organic Letters, 2020, 22, 9450-9455.	2.4	26
724	Switching from Biaryl Formation to Amidation with Convoluted Polymeric Nickel Catalysis. ACS Catalysis, 2020, 10, 14410-14418.	5.5	17
725	NHC-Nickel Catalyzed C–N Bond Cleavage of Mono-protected Anilines for C–C Cross-Coupling. Organic Letters, 2020, 22, 9609-9613.	2.4	6
726	Aryl C(sp ²)–X Coupling (X = C, N, O, Cl) and Facile Control of N-Mono- and N,N-Diarylation of Primary Alkylamines at a Pt(IV) Center. Journal of the American Chemical Society, 2020, 142, 20725-20734.	6.6	6
727	Development of a New Arylamination Reaction Catalyzed by Polymer Bound 1,3-(Bisbenzimidazolyl) Benzene Co(II) Complex and Generation of Bioactive Adamanate Amines. Catalysts, 2020, 10, 1315.	1.6	3
728	Pd-Catalyzed Cross-Coupling of Hindered, Electron-Deficient Anilines with Bulky (Hetero)aryl Halides Using Biaryl Phosphorinane Ligands. ACS Catalysis, 2020, 10, 15008-15018.	5.5	13

#	Article	IF	CITATIONS
729	Electrochemical Iodoamination of Indoles Using Unactivated Amines. Organic Letters, 2020, 22, 9184-9189.	2.4	15
730	Aryl Amination Using Soluble Weak Base Enabled by a Water-Assisted Mechanism. Journal of the American Chemical Society, 2020, 142, 20030-20039.	6.6	16
731	Development of an Aryl Amination Catalyst with Broad Scope Guided by Consideration of Catalyst Stability. Journal of the American Chemical Society, 2020, 142, 15027-15037.	6.6	39
732	Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules, 2020, 25, 3493.	1.7	125
733	Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. IScience, 2020, 23, 101307.	1.9	6
734	Cobalt-Catalyzed Markovnikov Selective Sequential Hydrogenation/Hydrohydrazidation of Aliphatic Terminal Alkynes. Journal of the American Chemical Society, 2020, 142, 14455-14460.	6.6	48
735	Recent Advances in Radical Câ^'H Bond Functionalization of Imidazoheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 4226-4255.	2.1	44
736	Synthesis of 7-Amido Indolines by Cp*Co(III)-Catalyzed C–H Bond Amidation. Journal of Organic Chemistry, 2020, 85, 11190-11199.	1.7	18
737	One-Pot Synthesis of Indoles and Pyrazoles via Pd-Catalyzed Couplings/Cyclizations Enabled by Aqueous Micellar Catalysis. Organic Letters, 2020, 22, 6543-6546.	2.4	20
738	Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes. Journal of Organic Chemistry, 2020, 85, 10728-10739.	1.7	9
739	Phenazine-Based Donor Acceptor Systems as Organic Photocatalysts for "Metal-free―C–N/C–C Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 11080-11093.	1.7	16
740	Preparation of aromatic γ-hydroxyketones by means of Heck coupling of aryl halides and 2,3-dihydrofuran, catalyzed by a palladium(<scp>ii</scp>) glycine complex under microwave irradiation. New Journal of Chemistry, 2020, 44, 13382-13392.	1.4	2
741	Efficient Pdâ€Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angewandte Chemie - International Edition, 2020, 59, 20596-20603.	7.2	39
742	Transition Metalâ€Free, Baseâ€Induced Arylation of Amino Acids: Synthesis of N â€(para â€Substituted) Tj ETQq1	l 1.0.7843 0.7	314 rgBT /Ov
743	An <i>ab initio</i> multireference study of reductive eliminations from organoferrates(<scp>iii</scp>) in the gas-phase: it is all about the spin state. Physical Chemistry Chemical Physics, 2020, 22, 17677-17686.	1.3	2
744	Iron atalyzed Cross oupling Reactions for the Construction of Carbonâ€Heteroatom Bonds. Asian Journal of Organic Chemistry, 2020, 9, 1519-1531.	1.3	23
745	Efficient Pdâ€Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angewandte Chemie, 2020, 132, 20777-20784.	1.6	19
746	Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angewandte Chemie - International Edition, 2020, 59, 21088-21095.	7.2	25

#	Article	IF	CITATIONS
747	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie, 2020, 132, 18059-18065.	1.6	9
748	ANT2681: SAR Studies Leading to the Identification of a Metallo-Î ² -lactamase Inhibitor with Potential for Clinical Use in Combination with Meropenem for the Treatment of Infections Caused by NDM-Producing <i>Enterobacteriaceae</i> . ACS Infectious Diseases, 2020, 6, 2419-2430.	1.8	31
749	Synthesis of Clausenal, 1,5â€Dimethoxycarbazoleâ€3â€carbaldehyde and 2,5â€Dimethoxycarbazoleâ€3â€carbaldehyde. European Journal of Organic Chemistry, 2020, 2020, 5572-5579.	1.2	4
750	Design, synthesis and in silico evaluation of benzoxazepino(7,6-b)quinolines as potential antidiabetic agents. Medicinal Chemistry Research, 2020, 29, 1882-1901.	1.1	4
751	A photochemical dehydrogenative strategy for aniline synthesis. Nature, 2020, 584, 75-81.	13.7	124
752	<scp>Metalâ€Free</scp> Decarboxylation of α, <scp>βâ€Unsaturated</scp> Carboxylic Acids for Carbon–Carbon and Carbon–Heteroatom Coupling Reactions. Chinese Journal of Chemistry, 2020, 38, 1780-1792.	2.6	30
753	Structure controlled solvatochromism and halochromic fluorescence switching of 2,2′-bipyridine based donor–acceptor derivatives. New Journal of Chemistry, 2020, 44, 14421-14428.	1.4	5
754	A practical catalytic reductive amination of carboxylic acids. Chemical Science, 2020, 11, 9494-9500.	3.7	25
755	Nb(i PrNPMe 2) 3 Fe–PMe 3 : A potential high reactivity heterobimetallic catalyst for acetylene cycloadditions. Applied Organometallic Chemistry, 2020, 34, e5966.	1.7	4
756	Comparison of the effect of N-methyl and N-aryl groups on the hydrolytic stability and electronic properties of betalain dyes. Dyes and Pigments, 2020, 183, 108609.	2.0	12
757	HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21058-21064.	3.3	36
758	Advances in Cross-Coupling Reactions. Molecules, 2020, 25, 4500.	1.7	16
759	A Boron Dipyrrometheneâ€Based Fluorescence â€~OFFâ€ON' Probe for Sensitive and Selective Detection of Palladium(II) Ions and Its Application in Live Cell Imaging. Chemistry - an Asian Journal, 2020, 15, 4104-4112.	1.7	14
760	Reductive activation of Pd ^{II} -precatalysts <i>via</i> decarboxylation of pivalate in direct C–H arylation reactions. Chemical Communications, 2020, 56, 13868-13871.	2.2	5
761	Photoinduced Deaminative Coupling of Alkylpyridium Salts with Terminal Arylalkynes. Journal of Organic Chemistry, 2020, 85, 15638-15644.	1.7	9
762	Online High-Performance Liquid Chromatography Analysis of Buchwald–Hartwig Aminations from within an Inert Environment. ACS Catalysis, 2020, 10, 13236-13244.	5.5	10
763	Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 2020, 25, 3981.	1.7	246
764	lodoferrocene as a partner inN-arylation of amides. New Journal of Chemistry, 2020, 44, 15928-15941.	1.4	7

#	Article	IF	CITATIONS
765	Pd-Catalyzed Functionalization of Aryl Amines on a Soluble Polymer Support. Synlett, 2020, 31, 2027-2034.	1.0	0
766	Chan–Evans–Lam <i>N</i> 1-(het)arylation and <i>N</i> 1-alkеnylation of 4-fluoroalkylpyrimidin-2(1 <i>H</i>)-ones. Beilstein Journal of Organic Chemistry, 2020, 16, 2304-2313.	1.3	4
767	Recent Advancements on Transitionâ€Metalâ€Catalyzed, Chelationâ€Induced <i>ortho</i> â€Hydroxylation of Arenes. Advanced Synthesis and Catalysis, 2020, 362, 5301-5351.	2.1	27
768	Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packedâ€Bed Flow Systems. Angewandte Chemie, 2020, 132, 16025-16030.	1.6	5
769	Flow chemistry as a tool to access novel chemical space for drug discovery. Future Medicinal Chemistry, 2020, 12, 1547-1563.	1.1	7
770	<i>N</i> -(Hetero)arylations with Metalated (Hetero)aryls: Recent Advances in First-Row Transition-Metal-Mediated Cross-Couplings. ACS Catalysis, 2020, 10, 10127-10148.	5.5	17
771	Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis. Journal of Chemical Education, 2020, 97, 3816-3821.	1.1	4
772	Differences in the Performance of Allyl Based Palladium Precatalysts for Suzukiâ€Miyaura Reactions. Advanced Synthesis and Catalysis, 2020, 362, 5062-5078.	2.1	15
773	Palladium-Catalyzed Monoarylation of Arylhydrazines with Aryl Tosylates. Journal of Organic Chemistry, 2020, 85, 14664-14673.	1.7	7
774	Regioselective Formation of Substituted Indoles: Formal Synthesis of Lysergic Acid. Chemistry - A European Journal, 2020, 26, 16655-16658.	1.7	8
775	Triarylborane catalysed <i>N</i> -alkylation of amines with aryl esters. Catalysis Science and Technology, 2020, 10, 7523-7530.	2.1	8
776	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization–Rearomatization Processes. Accounts of Chemical Research, 2020, 53, 2395-2413.	7.6	53
777	Ligand Effects of BrettPhos and RuPhos on Rate-Limiting Steps in Buchwald–Hartwig Amination Reaction Due to the Modulation of Steric Hindrance and Electronic Structure. ACS Omega, 2020, 5, 21385-21391.	1.6	11
778	Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angewandte Chemie, 2020, 132, 21274-21281.	1.6	4
779	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	6.6	84
780	Bonding Energetics of Palladium Amido/Aryloxide Complexes in DMSO: Implications for Palladiumâ€Mediated Aniline Activation. Angewandte Chemie - International Edition, 2020, 59, 23782-23790.	7.2	8
781	Cul/2-Aminopyridine 1-Oxide Catalyzed Amination of Aryl Chlorides with Aliphatic Amines. Organic Letters, 2020, 22, 7486-7490.	2.4	18
782	Nickel-Catalyzed Mizoroki–Heck/Amination Cascade Reactions of <i>o</i> -Dihaloarenes with Allylamines: Synthesis of Indoles. Organic Letters, 2020, 22, 7704-7708.	2.4	12

#	Article	IF	CITATIONS
783	Photocatalytic Generation of Aminium Radical Cations for C–N Bond Formation. ACS Catalysis, 2020, 10, 11712-11738.	5.5	93
784	Selective Pd-Catalyzed Monoarylation of Small Primary Alkyl Amines through Backbone-Modification in Ylide-Functionalized Phosphines (YPhos). Journal of Organic Chemistry, 2020, 85, 14674-14683.	1.7	21
785	Concatenating Suzuki Arylation and Buchwald–Hartwig Amination by A Sequentially Pd atalyzed Oneâ€Pot Process—Consecutive Threeâ€Component Synthesis of <i>C</i> , <i>N</i> â€Diarylated Heterocycles. Chemistry - A European Journal, 2020, 26, 15130-15134.	1.7	10
786	Network-supported, metal-mediated catalysis: progress and perspective. Reaction Chemistry and Engineering, 2020, 5, 1892-1902.	1.9	6
787	Copperâ€NHC Based Ullmann Catalysis in Water for Selective Nâ€Arylation of 3â€Aminophenols. ChemistrySelect, 2020, 5, 15004-15009.	0.7	4
788	Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. Journal of the American Chemical Society, 2020, 142, 21891-21898.	6.6	30
789	Formal α-Allylation of Primary Amines by a Dearomative, Palladium-Catalyzed Umpolung Allylation of <i>N</i> -(Aryloxy)imines. Journal of Organic Chemistry, 2020, 85, 14827-14846.	1.7	4
790	Continuous flow synthesis of arylhydrazines <i>via</i> nickel/photoredox coupling of <i>tert</i> -butyl carbazate with aryl halides. Chemical Communications, 2020, 56, 14621-14624.	2.2	9
791	Bidentate geometry-constrained iminopyridyl nickel-catalyzed synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation. Tetrahedron Letters, 2020, 61, 152604.	0.7	7
792	Diversity-Oriented Synthesis toward Aryl- and Phosphoryl-Functionalized Imidazo[1,2- <i>a</i>]pyridines. Journal of Organic Chemistry, 2020, 85, 14730-14743.	1.7	19
793	α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catalysis, 2020, 10, 13682-13687.	5.5	59
794	Reactivity of Substituted Benzenes toward Oxidative Addition Relates to NMR Chemical Shift of the Ipso-Carbon. Organic Letters, 2020, 22, 8910-8915.	2.4	5
795	Bonding Energetics of Palladium Amido/Aryloxide Complexes in DMSO: Implications for Palladiumâ€Mediated Aniline Activation. Angewandte Chemie, 2020, 132, 23990-23998.	1.6	3
796	LiCl-promoted amination of \hat{l}^2 -methoxy amides (\hat{l}^3 -lactones). RSC Advances, 2020, 10, 34938-34942.	1.7	3
797	An overview of DNA-encoded libraries: A versatile tool for drug discovery. Progress in Medicinal Chemistry, 2020, 59, 181-249.	4.1	53
798	Synthesis, photoinduced amination and topological indices of novel porphyrin dyads. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1054-1065.	0.4	1
799	Recent Progress on Reductive Coupling of Nitroarenes by Using Organosilanes as Convenient Reductants. Advanced Synthesis and Catalysis, 2020, 362, 3971-3986.	2.1	35
800	Porphyrin–Amino Acid Conjugates. Journal of Organic Chemistry, 2020, 85, 8196-8202.	1.7	7

#	Article	IF	CITATIONS
801	Cross-Coupling of Amide and Amide Derivatives to Umbelliferone Nonaflates: Synthesis of Coumarin Derivatives and Fluorescent Materials. Journal of Organic Chemistry, 2020, 85, 7986-7999.	1.7	12
802	Hydroarylation of Arenes via Reductive Radical-Polar Crossover. Journal of the American Chemical Society, 2020, 142, 9163-9168.	6.6	79
803	Palladium-Catalyzed Synthesis of <i>N</i> , <i>N-</i> Dimethylanilines via Buchwald–Hartwig Amination of (Hetero)aryl Triflates. Journal of Organic Chemistry, 2020, 85, 7097-7111.	1.7	14
804	<scp><i>N</i>â€Heterocyclic</scp> Carbene Copper(I) Complex Catalyzed Coupling of (Hetero)aryl Chlorides and Nitrogen Heterocycles: Highly Efficient Catalytic System. Chinese Journal of Chemistry, 2020, 38, 1252-1256.	2.6	5
805	CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Accounts of Chemical Research, 2020, 53, 1229-1243.	7.6	233
806	Preparation of Oxindoles via Visible‣ightâ€Induced Amination/Cyclization of Arylacrylamides with Alkyl Amines. Advanced Synthesis and Catalysis, 2020, 362, 3116-3120.	2.1	22
807	Copper atalyzed Electrophilic Amination of Alkoxyarylsilanes. European Journal of Organic Chemistry, 2020, 2020, 4018-4021.	1.2	7
808	Cation Radical-Accelerated Nucleophilic Aromatic Substitution for Amination of Alkoxyarenes. Organic Letters, 2020, 22, 4817-4822.	2.4	33
809	Recent Advances in Nonprecious Metal Catalysis. Organic Process Research and Development, 2020, 24, 909-915.	1.3	21
810	Mechanism of Palladiumâ€Catalyzed Spiroannulation of Naphthols with Alkynes: A Density Functional Theory Study. ChemCatChem, 2020, 12, 3863-3869.	1.8	9
811	Thiophenes and Their Benzo Derivatives: Reactivity. , 2022, , 460-518.		3
812	Visible Lightâ€Enabled sp ³ â€Câ^'H Functionalization with Chloro―and Bromoalkynes: Chemoselective Route to Vinylchlorides or Alkynes. Chemistry - A European Journal, 2020, 26, 15573-15580.	1.7	22
813	The Dimeric Form of 1,3â€Ðiaminoisoquinoline Derivative Rescued the Misâ€splicing of <i>Atp2a1</i> and <i>Clcn1</i> Genes in Myotonic Dystrophy Typeâ€1 Mouse Model. Chemistry - A European Journal, 2020, 26, 14305-14309.	1.7	10
814	Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. Journal of Flow Chemistry, 2020, 10, 369-376.	1.2	9
815	Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. Journal of Colloid and Interface Science, 2020, 577, 101-108.	5.0	27
816	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
817	^{<i>t</i>} BuOK-Promoted Cyclization of Imines with Aryl Halides. Organic Letters, 2020, 22, 4553-4556.	2.4	10
818	Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chemistry, 2020, 22, 3668-3692.	4.6	124

#	Article	IF	CITATIONS
819	Transformations of Aryl Ketones via Ligandâ€Promoted Câ^'C Bond Activation. Angewandte Chemie, 2020, 132, 14494-14499.	1.6	1
820	Transformations of Aryl Ketones via Ligandâ€Promoted Câ^'C Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 14388-14393.	7.2	37
821	Bifunctional phosphine ligand-enabled gold-catalyzed direct cycloisomerization of alkynyl ketones to 2,5-disubstituted furans. Chemical Communications, 2020, 56, 7297-7300.	2.2	13
822	Ligand-controlled palladium catalysis enables switch between mono- and di-arylation of primary aromatic amines with 2-halobenzothiazoles. Organic Chemistry Frontiers, 2020, 7, 1981-1990.	2.3	15
823	1,6-Aza-Michael addition of para-quinone methides with N-heterocycles catalyzed by Zn(OTf)2: A regioselective approach to N-diarylmethyl-substituted heterocycles. Tetrahedron, 2020, 76, 131338.	1.0	15
824	Synthesis, characterization, crystal structure and catalytic activity of amido azo palladium(II) complex. Transition Metal Chemistry, 2020, 45, 553-559.	0.7	5
825	Selective mono-N-methylation of nitroarenes with methanol catalyzed by atomically dispersed NHC-Ir solid assemblies. Journal of Catalysis, 2020, 389, 337-344.	3.1	36
826	Lignocellulosic Biomass Upgrading into Valuable Nitrogen-Containing Compounds by Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 17008-17025.	1.8	31
827	Novel pyrene–pyridine oligomer nanorods for super-sensitive fluorescent detection of Pd ²⁺ . Analyst, The, 2020, 145, 5631-5637.	1.7	6
828	Ligandâ€Enabled Palladiumâ€Catalyzed Throughâ€Space Câ`'H Bond Activation via a Carbopalladation/1,4â€Pd Migration/Câ^'H Functionalization Sequence. Chemistry - A European Journal, 2020, 26, 14075-14079.	1.7	8
829	Nucleophilic Aromatic Substitution of Unactivated Aryl Fluorides with Primary Aliphatic Amines by Organic Photoredox Catalysis. Chemistry - A European Journal, 2020, 26, 14823-14827.	1.7	16
830	N-heterocyclic carbene-palladium-imine complex catalyzed α-arylation of ketones with aryl and heteroaryl chlorides under air atmosphere. Tetrahedron Letters, 2020, 61, 152124.	0.7	5
831	Transition metal-catalyzed C–N cross-coupling reaction of bromine-substituted pyranilidene derivatives: synthesis, characterization, and optical properties study of pyran-based chromophores. Journal of the Iranian Chemical Society, 2020, 17, 2627-2636.	1.2	1
832	Cu(II)-catalyzed sulfonylation of 7-azaindoles using DABSO as SO2-Source and its mechanistic study. Tetrahedron, 2020, 76, 131337.	1.0	8
833	An Improved P ^{III} /P ^V â•O-Catalyzed Reductive C–N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. Journal of the American Chemical Society, 2020, 142, 6786-6799.	6.6	68
834	Energetics of Dynamic Kinetic Asymmetric Transformation in Suzuki–Miyaura Coupling. ACS Catalysis, 2020, 10, 4349-4360.	5.5	6
835	Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. Journal of the American Chemical Society, 2020, 142, 6698-6707.	6.6	63
836	General Paradigm in Photoredox Nickel atalyzed Crossâ€Coupling Allows for Lightâ€Free Access to Reactivity. Angewandte Chemie - International Edition, 2020, 59, 9527-9533.	7.2	84

#	Article	IF	CITATIONS
837	Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using â€~Ene'â€Reductases with Photoredox Catalysts. Angewandte Chemie - International Edition, 2020, 59, 10484-10488.	7.2	67
838	Convergent access to bis-1,2,4-triazinyl-2,2′-bipyridines (BTBPs) and 2,2′-bipyridines <i>via</i> a Pd-catalyzed Ullman-type reaction. RSC Advances, 2020, 10, 10807-10815.	1.7	9
839	Visible-light promoted regioselective amination and alkylation of remote C(sp3)-H bonds. Nature Communications, 2020, 11, 1463.	5.8	50
840	A Path to More Sustainable Catalysis: The Critical Role of LiBr in Avoiding Catalyst Death and its Impact on Cross oupling. Chemistry - A European Journal, 2020, 26, 4861-4865.	1.7	9
841	Recent Progress in the Construction of Câ^'N Bonds <i>via</i> Metalâ€Free Radical C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 2120-2134.	2.1	49
842	Pyrrole Functionalization by Copper atalyzed Nitrene Transfer Reactions. Israel Journal of Chemistry, 2020, 60, 485-489.	1.0	4
843	Cu(II)â€Catalyzed <i>Ortho</i> â€Selective Amination of Simple Phenols with <i>O</i> â€Benzoylhydroxylamines. Israel Journal of Chemistry, 2020, 60, 429-432.	1.0	5
844	Nickel-Catalyzed Amination of Aryl Thioethers: A Combined Synthetic and Mechanistic Study. ACS Catalysis, 2020, 10, 4630-4639.	5.5	40
845	Tunable Electrochemical Câ^'N versus Nâ^'N Bond Formation of Nitrogen entered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angewandte Chemie - International Edition, 2020, 59, 11583-11590.	7.2	71
846	A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry. ChemSusChem, 2020, 13, 2859-2875.	3.6	69
847	Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters. Journal of the American Chemical Society, 2020, 142, 5918-5923.	6.6	50
848	Oxidative Ringâ€Opening of 1 <i>H</i> â€Pyrazolâ€5â€amines and Its Application in Constructing Pyrazolo–Pyrrolo–Pyrazine Scaffolds by Domino Cyclization. European Journal of Organic Chemistry, 2020, 2020, 2956-2961.	1.2	7
849	BippyPhos: A Highly Versatile Ligand for Pd atalyzed Câ^'N, Câ^'O and Câ^'C Couplings. Israel Journal of Chemistry, 2020, 60, 294-302.	1.0	7
850	Nickel-Catalyzed Cross-Coupling of Alkyl Carboxylic Acid Derivatives with Pyridinium Salts via C–N Bond Cleavage. Organic Letters, 2020, 22, 2902-2907.	2.4	31
851	C–H Amination of Arenes with Hydroxylamine. Organic Letters, 2020, 22, 2931-2934.	2.4	32
852	Process Development Overcomes a Challenging Pd-Catalyzed C–N Coupling for the Synthesis of RORc Inhibitor GDC-0022 . Organic Process Research and Development, 2020, 24, 567-578.	1.3	6
853	General Paradigm in Photoredox Nickelâ€Catalyzed Crossâ€Coupling Allows for Lightâ€Free Access to Reactivity. Angewandte Chemie, 2020, 132, 9614-9620.	1.6	31
854	Tunable Electrochemical Câ^'N versus Nâ^'N Bond Formation of Nitrogen entered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angewandte Chemie, 2020, 132, 11680-11687.	1.6	14

		EPORT	
#	Article	IF	Citations
855	Direct Amination of Aromatic C–H Bonds with Free Amines. Topics in Current Chemistry, 2020, 378, 37.	3.0	32
856	Computational Clarification of Synergetic Rull/Cul-Metallaphotoredox Catalysis in C(sp3)–N Cross-Coupling Reactions of Alkyl Redox-Active Esters with Anilines. ACS Catalysis, 2020, 10, 5030-5041.	5.5	26
857	Suzukiâ€Miyaura Crossâ€Coupling of Amides using Wellâ€Defined, Airâ€Stable [(PR ₃) ₂ Pd(II)X ₂] Precatalysts. Advanced Synthesis and Catalysis, 2020, 362, 1887-1892.	2.1	14
858	Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols. Molecules, 2020, 25, 852.	1.7	9
859	Cu(I)- and Pd(0)-Catalyzed Arylation of Oxadiamines with Fluorinated Halogenobenzenes: Comparison of Efficiency. Molecules, 2020, 25, 1084.	1.7	6
860	A Selfâ€Assembled Smallâ€Moleculeâ€Based Holeâ€Transporting Material for Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 10276-10282.	1.7	19
861	Aromatic C–H Amination Using Alkyl Amines. Trends in Chemistry, 2020, 2, 480-481.	4.4	0
862	A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2020, 142, 6588-6599.	6.6	189
863	Transitionâ€Metalâ€Mediated Modification of Biomolecules. Chemistry - A European Journal, 2020, 26, 9792-9813.	1.7	25
864	Nickelâ€Catalyzed Amination of (Hetero)aryl Halides Facilitated by a Catalytic Pyridinium Additive. Chemistry - A European Journal, 2020, 26, 12349-12354.	1.7	10
865	Tandem Photoredox and Copper-Catalyzed Decarboxylative C(sp ³)–N Coupling of Anilines and Imines Using an Organic Photocatalyst. Organic Letters, 2020, 22, 5412-5416.	2.4	32
866	Evaluation of Nitrogen-Based Polymeric Heterogeneous Catalysts for the Suzuki–Miyaura Cross-Coupling Reaction in Water. ACS Applied Polymer Materials, 2020, 2, 3122-3134.	2.0	5
867	Synthesis and Evaluation of the (S)-BINAM Derivatives as Fluorescent Enantioselective Detectors. Sensors, 2020, 20, 3234.	2.1	2
868	Oxidant-Induced Azolation of Electron-Rich Phenol Derivatives. Organic Letters, 2020, 22, 5429-5433.	2.4	13
869	Theoretical mechanistic study of metallaphotoredox catalysis: C–N cross-coupling <i>via</i> Ni(<scp>ii</scp>)-mediated ̃-bond metathesis. Organic Chemistry Frontiers, 2020, 7, 2168-2178.	2.3	17
870	Copper-Catalyzed Electrophilic Amination of Arylboronic Acids with Anthranils: An Access to <i>N</i> -Aryl-2-aminophenones. Journal of Organic Chemistry, 2020, 85, 10222-10231.	1.7	22
871	Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chemical Communications, 2020, 56, 9182-9185.	2.2	21
872	Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packedâ€Bed Flow Systems. Angewandte Chemie - International Edition, 2020, 59, 15891-15896.	7.2	16

#	Article	IF	CITATIONS
873	Synthesis of Conformationally Constrained Dipeptide Mimetics with Azabicyclo[4,3,0]nonanone and Azabicyclo[5,3,0]decanone Scaffolds. Journal of Organic Chemistry, 2020, 85, 10182-10188.	1.7	2
874	Late-Stage Diversification of Biarylphosphines through Rhodium(I)-Catalyzed C–H Bond Alkenylation with Internal Alkynes. Organic Letters, 2020, 22, 5936-5940.	2.4	32
875	Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. International Journal of Molecular Sciences, 2020, 21, 4868.	1.8	6
876	Oneâ€Pot Synthesis of Chiral <i>N</i> â€Arylamines by Combining Biocatalytic Aminations with Buchwald–Hartwig <i>N</i> â€Arylation. Angewandte Chemie - International Edition, 2020, 59, 18156-18160.	7.2	51
877	Oneâ€Pot Synthesis of Chiral N â€Arylamines by Combining Biocatalytic Aminations with Buchwald–Hartwig N â€Arylation. Angewandte Chemie, 2020, 132, 18313-18317.	1.6	6
878	Integrating CuOâ^'Fe 2 O 3 Nanocomposites and Supramolecular Assemblies of Phenazine for Visibleâ€Light Photoredox Catalysis. Chemistry - an Asian Journal, 2020, 15, 892-898.	1.7	3
879	Intercalation of copper salt to montmorillonite Kâ€10 and its application as a reusable catalyst for Chan–Lam crossâ€coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5554.	1.7	14
880	Aspects of Phosphaallene Chemistry: Heat-Induced Formation of 1,2-Dihydrophosphetes by Intramolecular Nucleophilic Aromatic Substitution and Photochemical Generation of Tricyclic Phosphiranes. Journal of Organic Chemistry, 2020, 85, 14315-14332.	1.7	10
881	The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling. Journal of the American Chemical Society, 2020, 142, 4500-4507.	6.6	77
882	Ester Transfer Reaction of Aromatic Esters with Haloarenes and Arenols by a Nickel Catalyst. ACS Catalysis, 2020, 10, 3490-3494.	5.5	22
883	Cs ₂ CO ₃ -Mediated Rapid Room-Temperature Synthesis of 3-Amino-2-aroyl Benzofurans and Their Copper-Catalyzed <i>N</i> -Arylation Reactions. ACS Omega, 2020, 5, 3646-3660.	1.6	9
884	A Unified and Practical Method for Carbon–Heteroatom Crossâ€Coupling using Nickel/Photo Dual Catalysis. Chemistry - A European Journal, 2020, 26, 5168-5173.	1.7	49
886	Visibleâ€Lightâ€Enabled Direct Decarboxylative Nâ€Alkylation. Angewandte Chemie, 2020, 132, 7995-8001.	1.6	10
887	Gold compounds for catalysis and metal-mediated transformations in biological systems. Current Opinion in Chemical Biology, 2020, 55, 103-110.	2.8	41
888	Photoactivated silicon–oxygen and silicon–nitrogen heterodehydrocoupling with a commercially available iron compound. Dalton Transactions, 2020, 49, 2972-2978.	1.6	15
889	Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. Accounts of Chemical Research, 2020, 53, 547-560.	7.6	460
890	Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nature Catalysis, 2020, 3, 358-367.	16.1	108
892	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie, 2020, 132, 6841-6845.	1.6	39

#	Article	IF	CITATIONS
893	Formal Transition-Metal-Catalyzed Phosphole C–H Activation for the Synthesis of Pentasubstituted Phospholes. Organic Letters, 2020, 22, 2187-2190.	2.4	10
894	Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. Journal of Organometallic Chemistry, 2020, 912, 121174.	0.8	27
895	Visibleâ€Lightâ€Enabled Direct Decarboxylative Nâ€Alkylation. Angewandte Chemie - International Edition, 2020, 59, 7921-7927.	7.2	72
896	Zn-Catalyzed Nicotinate-Directed Transamidations in Peptide Synthesis. ACS Catalysis, 2020, 10, 4280-4289.	5.5	25
897	Preparation of Tertiary Amines from Tris(2-cyanoethyl)amine Using Three Successive Cobalt-Catalyzed Electrophilic Aminations with Organozinc Halides. Organic Letters, 2020, 22, 1947-1950.	2.4	9
898	Correlation between the C–C Cross-Coupling Activity and C-to-Ni Charge Transfer Transition of High-Valent Ni Complexes. Journal of the American Chemical Society, 2020, 142, 4173-4183.	6.6	10
899	Exploring Homogeneous Conditions for Mild Buchwald–Hartwig Amination in Batch and Flow. Organic Process Research and Development, 2020, 24, 1948-1954.	1.3	30
900	An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604.	1.9	68
901	Synthesis of 2-Amino-1,3-dienes from Propargyl Carbonates via Palladium-Catalyzed Carbon–Nitrogen Bond Formation. Organic Letters, 2020, 22, 879-883.	2.4	21
	bond Formation. Organic Letters, 2020, 22, 07 9-003.		
	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia	aryl-9,14-d	ihydrodibenzc
902	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications. 2020. 56.	aryl-9,14-d 2.2	ihydrodiben <mark>zo</mark> 7
902 903	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia		
	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal	2.2	7
903	 Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. Journal of the American Chemical Society, 2020, 	2.2	7 25
903 904	 Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. Journal of the American Chemical Society, 2020, 142, 2549-2561. <scp>Niâ€Catalyzed Chelationâ€Assisted</scp> Direct Functionalization of Inert C—H Bonds. 	2.2 1.7 6.6	7 25 37
903 904 905	 Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. Journal of the American Chemical Society, 2020, 142, 2549-2561. <scp>Niâ€Catalyzed Chelationâ€Assisted</scp> Direct Functionalization of Inert C—H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662. 	2.2 1.7 6.6 2.6	7 25 37 59
903 904 905 906	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. Journal of the American Chemical Society, 2020, 142, 2549-2561. <scp>Niâ€Catalyzed Chelationâ€Assisted </scp> Direct Functionalization of Inert C—H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662. Rapid Access to Hindered α-Amino Acid Derivatives and Benzodiazepin-3-ones from Aza-Oxyallyl Cations. Organic Letters, 2020, 22, 1420-1425. Rhodium(<scp>iii</scp>)-catalyzed <i>ortho</i> orthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoortho Rhodium(<scp>iii</scp>)-catalyzed <i>orthoorthoorthoorthoorthoorthoorthoorthoorthoortho Rhodium(<scp>iiiorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoorthoortho<td>2.2 1.7 6.6 2.6 2.4</td><td>7 25 37 59 29</td></scp></i>	2.2 1.7 6.6 2.6 2.4	7 25 37 59 29
903 904 905 906 907	Modular synthesis of (C-10 to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 392 Td (C-13)-substituted-9,14-dia Buchwaldâć ^{ce} Hartwig amination and Câć ^{er} H amination strategy. Chemical Communications, 2020, 56, 2260-2263. Donorâ€ ^{er} Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwaldã€ ^{er} Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Dielsã€ ^{er} Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. Journal of the American Chemical Society, 2020, 142, 2549-2561. <sccp>Niã€Catalyzed Chelationã€Assisted Direct Functionalization of Inert Câ€^{er}H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662. Rapid Access to Hindered α-Amino Acid Derivatives and Benzodiazepin-3-ones from Aza-Oxyallyl Cations. Organic Letters, 2020, 22, 1420-1425. Rhodium(<scp>iii</scp>)-catalyzed <i>ortho</i>ordino Rhodium(<scp>iii</scp>)-catalyzed <i>ortho</i>organic Chemistry, 2020, 18, 1728-1732. Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive</sccp>	2.2 1.7 6.6 2.6 2.4 1.5	7 25 37 59 29 27

#	Article	IF	CITATIONS
911	Palladium Complexes Based on Ylideâ€Functionalized Phosphines (YPhos): Broadly Applicable Highâ€Performance Precatalysts for the Amination of Aryl Halides at Room Temperature. Chemistry - A European Journal, 2020, 26, 4281-4288.	1.7	46
912	C–N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis. Bioconjugate Chemistry, 2020, 31, 770-780.	1.8	39
913	Catalyst- and solvent-free efficient access to <i>N</i> -alkylated amines <i>via</i> reductive amination using HBpin. Organic and Biomolecular Chemistry, 2020, 18, 3853-3857.	1.5	6
914	Biaryl Crossâ€Coupling Enabled by Photoâ€Induced Electron Transfer. Advanced Synthesis and Catalysis, 2020, 362, 2223-2231.	2.1	14
915	Synthesis of Wellâ€Defined Highâ€Valent Palladium Complexes by Oxidation of Their Palladium(II) Precursors. Chemistry - A European Journal, 2020, 26, 9430-9444.	1.7	14
916	Ruthenium-catalyzed Suzuki coupling of anilines with alkenyl borates via selective aryl C N bond cleavage. Catalysis Communications, 2020, 140, 106009.	1.6	9
917	An efficient and heterogeneous Pd-containing modified graphene oxide catalyst for preparation of biaryl compounds. Heliyon, 2020, 6, e03741.	1.4	9
918	Electrochemical HI-mediated Intermolecular C–N Bond Formation to Synthesize Imidazoles from Aryl Ketones and Benzylamines. Journal of Organic Chemistry, 2020, 85, 5952-5958.	1.7	18
919	Lewis Acid Catalyzed Atom-Economic Synthesis of C2-Substituted Indoles from <i>o</i> -Amido Alkynols. Organic Letters, 2020, 22, 3531-3536.	2.4	5
920	Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1111-1117.	1.3	4
921	Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catalysis, 2020, 10, 5454-5461.	5.5	16
922	Bifunctional Phosphine Ligand-Enabled Gold(I)-Catalyzed O-Nucleophilic Addition of <i>N</i> -Hydroxybenzo[1,2,3]-triazin-4(3 <i>H</i>)-ones to Alkynes Followed by [3,3]-Rearrangement: Simultaneous Formation of C–O and C–N Bonds. Journal of Organic Chemistry, 2020, 85, 6519-6527.	1.7	5
923	Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using â€~Ene'â€Reductases with Photoredox Catalysts. Angewandte Chemie, 2020, 132, 10570-10574.	1.6	13
924	N â€Trifluoromethyl Hydrazines, Indoles and Their Derivatives. Angewandte Chemie, 2020, 132, 12006-12010.	1.6	9
925	<i>N</i> â€∓rifluoromethyl Hydrazines, Indoles and Their Derivatives. Angewandte Chemie - International Edition, 2020, 59, 11908-11912.	7.2	39
926	Photochemically Mediated Nickel-Catalyzed Synthesis of <i>N</i> -(Hetero)aryl Sulfamides. Journal of Organic Chemistry, 2020, 85, 6380-6391.	1.7	23
927	Atomic Pt-Catalyzed Heterogeneous Anti-Markovnikov C–N Formation: Pt ₁ ⁰ Activating N–H for Pt ₁ ^{δ+} -Activated C╀ Attack. Journal of the American Chemical Society, 2020, 142, 9017-9027.	6.6	18
928	Understanding existing and designing novel synthetic routes to Pd-PEPPSI-NHC and Pd-PEPPSI-PR ₃ pre-catalysts. Chemical Communications, 2020, 56, 5953-5956.	2.2	38

#	Article	IF	CITATIONS
929	<i>O</i> -Cyclopropyl hydroxylamines: gram-scale synthesis and utility as precursors for N-heterocycles. Organic and Biomolecular Chemistry, 2020, 18, 3281-3287.	1.5	11
930	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chemical Science, 2020, 11, 4251-4262.	3.7	23
931	Copper in Cross-Coupling Reactions: III. Arylation of Azoles. Russian Journal of Organic Chemistry, 2020, 56, 361-377.	0.3	0
932	Discovery, Synthesis, and Scale-up of Efficient Palladium Catalysts Useful for the Modification of Nucleosides and Heteroarenes. Molecules, 2020, 25, 1645.	1.7	15
933	Metal-free green synthesis of aryl amines in magnetized distilled water: experimental aspects and molecular dynamics simulation. Green Chemistry, 2021, , .	4.6	2
934	Chiral phosphoric acid catalyzed atroposelective C–H amination of arenes: mechanisms, origin and influencing factors of enantioselectivity. Organic Chemistry Frontiers, 2021, 8, 61-76.	2.3	3
935	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie - International Edition, 2021, 60, 1845-1852.	7.2	21
936	Benzyl Palladium Intermediates: Unique and Versatile Reactive Intermediates for Aromatic Functionalization. Advanced Synthesis and Catalysis, 2021, 363, 587-601.	2.1	22
937	Cobaltâ~`NHC Catalyzed C(sp ²)â^`C(sp ³) and C(sp ²)â~`C(sp ²) Kumada Crossâ€Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents. ChemCatChem, 2021, 13, 202-206.	1.8	9
938	Symmetrical Tertiary Amines: Applications and Synthetic Approaches. European Journal of Organic Chemistry, 2021, 2021, 543-586.	1.2	18
939	Electrochemical Câ^'H Amidation of Heteroarenes with <i>N</i> â€Alkyl Sulfonamides in Aqueous Medium. Chemistry - A European Journal, 2021, 27, 242-246.	1.7	32
940	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie, 2021, 133, 1873-1880.	1.6	3
941	Crossâ€Coupling between Hydrazine and Aryl Halides with Hydroxide Base at Low Loadings of Palladium by Rateâ€Determining Deprotonation of Bound Hydrazine. Angewandte Chemie, 2021, 133, 403-412.	1.6	5
942	Nickel atalyzed Nâ€Arylation of Fluoroalkylamines. Angewandte Chemie, 2021, 133, 4126-4130.	1.6	5
943	Synthesis of Indolo[2,3- <i>c</i>]quinolin-6(7 <i>H</i>)-ones and Antimalarial Isoneocryptolepine. Computational Study on the Pd-Catalyzed Intramolecular C–H Arylation. Journal of Organic Chemistry, 2021, 86, 128-145.	1.7	7
944	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
945	Surface Modification of Parylene C Film via Buchwald–Hartwig Amination for Organic Solvent ompatible and Flexible Microfluidic Channel Bonding. Macromolecular Rapid Communications, 2021, 42, 2000520.	2.0	2
946	Lightâ€Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angewandte Chemie - International Edition, 2021, 60, 5230-5234.	7.2	75

#	Article	IF	CITATIONS
947	Lightâ€Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angewandte Chemie, 2021, 133, 5290-5294.	1.6	13
948	Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. Inorganic Chemistry Frontiers, 2021, 8, 620-635.	3.0	25
949	Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers. Synthesis, 2021, 53, 879-888.	1.2	9
950	Nickelâ€Catalyzed Nâ€Arylation of Fluoroalkylamines. Angewandte Chemie - International Edition, 2021, 60, 4080-4084.	7.2	24
951	Chemodivergence between Electrophiles in Crossâ€Coupling Reactions. Chemistry - A European Journal, 2021, 27, 6161-6177.	1.7	44
952	Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Organic Chemistry Frontiers, 2021, 8, 384-414.	2.3	97
953	Microwave-assisted C N formation reactions. , 2021, , 51-203.		0
954	Cu(I)–N-heterocyclic carbene-catalyzed base free C–N bond formation of arylboronic acids with amines and azoles. Tetrahedron, 2021, 79, 131861.	1.0	5
955	Pd/NHC-catalyzed arylsulfonylation of boronic acids: A general and direct protocol to access diarylsulfones. Tetrahedron Letters, 2021, 63, 152708.	0.7	5
956	Transfer hydrogenation catalysis in cells. RSC Chemical Biology, 2021, 2, 12-29.	2.0	50
957	Palladium-catalyzed cross-coupling reactions on a bromo-naphthalene scaffold in the search for novel human CC chemokine receptor 8 (CCR8) antagonists. Bioorganic Chemistry, 2021, 107, 104560.	2.0	2
958	Construction of isoxazolone-fused phenanthridines via Rh-catalyzed cascade C–H activation/cyclization of 3-arylisoxazolones with cyclic 2-diazo-1,3-diketones. Organic and Biomolecular Chemistry, 2021, 19, 552-556.	1.5	9
959	Recent Developments in Deaminative Functionalization of Alkyl Amines. European Journal of Organic Chemistry, 2021, 2021, 1215-1228.	1.2	43
960	Tungstenâ€Catalyzed Direct <i>N</i> â€Alkylation of Anilines with Alcohols. ChemSusChem, 2021, 14, 860-865.	3.6	19
961	Photocatalysis in Dual Catalysis Systems for Carbonâ€Nitrogen Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 937-979.	2.1	48
962	Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catalysis Science and Technology, 2021, 11, 742-767.	2.1	30
963	Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation. Science China Chemistry, 2021, 64, 17-21.	4.2	9
964	Cross oupling between Hydrazine and Aryl Halides with Hydroxide Base at Low Loadings of Palladium by Rateâ€Determining Deprotonation of Bound Hydrazine. Angewandte Chemie - International Edition, 2021, 60, 399-408.	7.2	15

#	Article	IF	CITATIONS
965	Organic Superbases in Recent Synthetic Methodology Research. Chemistry - A European Journal, 2021, 27, 4216-4229.	1.7	65
966	Deaminative carbonylative thioesterification of activated alkylamines with thiophenols under transition-metal-free conditions. Organic Chemistry Frontiers, 2021, 8, 670-675.	2.3	3
967	Stabilization of the Pd–NHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3382-3401.	3.0	15
968	Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Materials Advances, 2021, 2, 2153-2187.	2.6	42
969	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
970	Transition-metal free synthesis of <i>N</i> -aryl carbazoles and their extended analogs. Organic and Biomolecular Chemistry, 2021, 19, 7172-7175.	1.5	2
971	Palladium-Catalyzed C–N Coupling of Pyrazole Amides with Triazolo- and Imidazopyridine Bromides in Ethanol. Organic Process Research and Development, 2021, 25, 457-468.	1.3	1
972	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64
973	Chiral Pd-Catalyzed Enantioselective Syntheses of Various N–C Axially Chiral Compounds and Their Synthetic Applications. Accounts of Chemical Research, 2021, 54, 719-730.	7.6	126
974	Homogeneous catalytic C(sp ³)–H functionalization of gaseous alkanes. Chemical Communications, 2021, 57, 9956-9967.	2.2	21
975	An aggregation-induced phosphorescent emission-active iridium(III) complex for fluoride anion imaging in living cells. Journal of Organometallic Chemistry, 2021, 932, 121644.	0.8	6
976	Reaction screening in multiwell plates: high-throughput optimization of a Buchwald–Hartwig amination. Nature Protocols, 2021, 16, 1152-1169.	5.5	19
977	Heterogeneous Ru/TiO ₂ for hydroaminomethylation of olefins: multicomponent synthesis of amines. Green Chemistry, 2021, 23, 2722-2728.	4.6	6
978	Cul-mediated benzannulation of (<i>ortho</i> -arylethynyl)phenylenaminones to assemble α-aminonaphthalene derivatives. Organic Chemistry Frontiers, 2021, 8, 3250-3254.	2.3	8
979	Reductive Csp2–N Coupling by PIII/PV=O–Catalysis. Trends in Chemistry, 2021, 3, 72-73.	4.4	13
980	BIANâ€NHC Ligands in Transitionâ€Metalâ€Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable Nâ€Heterocyclic Carbenes?. Chemistry - A European Journal, 2021, 27, 4478-4499.	1.7	57
981	Organic reactions in aqueous media catalyzed by nickel. Green Chemistry, 2021, 23, 6273-6300.	4.6	24
982	An organophotoredox-catalyzed C(sp ²)–N cross coupling reaction of cyclic aldimines with cyclic aliphatic amines. Organic and Biomolecular Chemistry, 2021, 19, 3595-3600.	1.5	9

#	Article	IF	CITATIONS
983	The emergence of the C–H functionalization strategy in medicinal chemistry and drug discovery. Chemical Communications, 2021, 57, 10842-10866.	2.2	52
984	Metal-catalyzed reactions for the C(sp ²)–N bond formation: achievements of recent years. Russian Chemical Reviews, 2021, 90, 1359-1396.	2.5	20
985	High-yield and sustainable synthesis of quinoidal compounds assisted by keto–enol tautomerism. Chemical Science, 2021, 12, 9366-9371.	3.7	10
986	Photoinduced Palladium atalyzed Dicarbofunctionalization of Terminal Alkynes. Chemistry - A European Journal, 2021, 27, 3694-3699.	1.7	27
987	Multifunctional Bipolar Materials Serving as Emitters for Efficient Deepâ€Blue Fluorescent OLEDs and as Hosts for Phosphorescent and White OLEDs. Advanced Optical Materials, 2021, 9, 2001840.	3.6	34
988	Benzyloxycalix[8]arene supported Pd–NHC cinnamyl complexes for Buchwald–Hartwig C–N cross-couplings. Catalysis Science and Technology, 0, , .	2.1	10
989	Keep glowing and going: recent progress in diketopyrrolopyrrole synthesis towards organic optoelectronic materials. Organic Chemistry Frontiers, 2021, 8, 4560-4581.	2.3	31
990	Suzuki–Miyaura cross-coupling of esters by selective O–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl] ₂ precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2021, 11, 3189-3197.	2.1	34
991	Access to diverse primary, secondary, and tertiary amines via the merger of controllable cleavage of triazines and site-selective functionalization. Organic Chemistry Frontiers, 2021, 8, 4706-4714.	2.3	17
992	Convergent Synthesis of Fluoroalkenes Using a Dual-Reactive Unit. Journal of Organic Chemistry, 2021, 86, 1622-1632.	1.7	7
993	Recent developments in selective <i>N</i> -arylation of azoles. Chemical Communications, 2021, 57, 5235-5249.	2.2	12
994	Reductive cross-coupling to access C–N bonds from aryl halides and diazoesters under dual nickel/photoredox-catalyzed conditions. Organic Chemistry Frontiers, 2021, 8, 4118-4123.	2.3	11
995	Nano-rod like morphology of Ni@Fe3O4-NDCs on interaction of NDC-supported Fe3O4 with nickel NPs: An efficient catalyst for ligand free Chan-Lam coupling reaction in aqueous medium. Current Research in Green and Sustainable Chemistry, 2021, 4, 100133.	2.9	9
996	Ligand-Free Iron-Catalyzed Intramolecular Amination of C(sp ³)—H Bond for the Synthesis of Imidazolinones. Chinese Journal of Organic Chemistry, 2021, 41, 4083.	0.6	3
997	Evidence for "cocktail―type catalysis in Buchwald–Hartwig reaction. A mechanistic study. Catalysis Science and Technology, 2021, 11, 7171-7188.	2.1	15
998	C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Organic Chemistry Frontiers, 2021, 8, 3883-3914.	2.3	24
999	Palladium(<scp>ii</scp>) <i>N</i> , <i>N</i> , <i>O</i> -pincer type complex-mediated dehydrogenative coupling of alcohols to quinazolines. New Journal of Chemistry, 2021, 45, 16572-16580.	1.4	10
1000	Iron-catalyzed cross-dehydrogenative C–H amidation of benzofurans and benzothiophenes with anilines. Organic Chemistry Frontiers, 2021, 8, 1490-1495.	2.3	3

#	Article	IF	CITATIONS
1001	Glycosamine Derivatives through Metal atalyzed Câ^'N Bond Formation on Protected and Unprotected 2â€lodoglycals. European Journal of Organic Chemistry, 2021, 2021, 1521-1524.	1.2	5
1002	Photoinduced Cross-Coupling of Aryl lodides with Alkenes. Organic Letters, 2021, 23, 427-432.	2.4	13
1003	Perovskite materials as photocatalysts: Current status and future perspectives. , 2021, , 169-216.		11
1004	Iron(<scp>iii</scp>)-catalyzed direct C–H radical amination of (hetero)arenes. Organic Chemistry Frontiers, 2021, 8, 5440-5445.	2.3	8
1006	Metal-free regioselective C–H amination for the synthesis of pyrazole-containing 2 <i>H</i> -indazoles. Organic and Biomolecular Chemistry, 2021, 19, 1787-1794.	1.5	14
1007	A noncovalent hybrid of [Pd(phen)(OAc) ₂] and st-DNA for the enantioselective hydroamination of β-nitrostyrene with methoxyamine. Organic and Biomolecular Chemistry, 2021, 19, 5072-5076.	1.5	4
1008	Recent advances in pincer–nickel catalyzed reactions. Dalton Transactions, 2021, 50, 3394-3428.	1.6	32
1009	Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chemical Science, 2021, 12, 14050-14058.	3.7	14
1010	A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Organic Chemistry Frontiers, 2021, 8, 1599-1656.	2.3	29
1011	Recent developments in decarboxylative C(aryl)–X bond formation from (hetero)aryl carboxylic acids. Organic and Biomolecular Chemistry, 2021, 19, 5476-5500.	1.5	8
1012	Recent advances in the transition metal catalyzed synthesis of quinoxalines: a review. New Journal of Chemistry, 2021, 45, 13214-13246.	1.4	36
1013	Pyrimidines and Their Benzo Derivatives. , 2022, , 86-228.		2
1014	Ruthenium-Catalyzed PIII-Directed Remote ε-C–H Alkylation of Phosphines. Organic Letters, 2021, 23, 2052-2056.	2.4	21
1015	Nickel-Catalyzed Regioselective Hydroamination of Ynamides with Secondary Amines. Journal of Organic Chemistry, 2021, 86, 3433-3443.	1.7	9
1016	Synthesis, characterization, and coordination chemistry of a phenanthridine-containing <i>N</i> -heterocyclic carbene ligand. Canadian Journal of Chemistry, 2021, 99, 245-252.	0.6	2
1017	Iron atalyzed Electrophilic Amination of Sodium Sulfinates with Anthranils. European Journal of Organic Chemistry, 2021, 2021, 1466-1473.	1.2	3
1018	Iron-catalyzed <i>N</i> -alkylation of aromatic amines via borrowing hydrogen strategy. Journal of Coordination Chemistry, 2021, 74, 877-884.	0.8	6
1019	Three-component radical homo Mannich reaction. Nature Communications, 2021, 12, 1006.	5.8	30

#	Article	IF	CITATIONS
1020	Controlled Relay Process to Access N-Centered Radicals for Catalyst-free Amidation of Aldehydes under Visible Light. CheM, 2021, 7, 495-508.	5.8	26
1021	Cu(OTf) ₂ â€Mediated Crossâ€Coupling of Nitriles and Nâ€Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products**. Angewandte Chemie - International Edition, 2021, 60, 7935-7940.	7.2	11
1022	Cu(OAc) ₂ â€porphyrins as an efficient catalytic system for baseâ€free, nature mimicking Chan–Lam coupling in water. Applied Organometallic Chemistry, 2021, 35, e6223.	1.7	11
1023	Co(III), Rh(III) & Ir(III) atalyzed Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	1.7	62
1024	Cu(OTf) 2 â€Mediated Cross oupling of Nitriles and Nâ€Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products**. Angewandte Chemie, 2021, 133, 8014-8019.	1.6	0
1026	Copper-Catalyzed Aerobic Oxidative Cyclization of 2-Alkynylanilines with Nitrosoarenes: Synthesis of Organic Solid Mechanoluminescence Compounds of 4-Oxo-4 <i>H</i> -cinnolin-2-ium-1-ide. Organic Letters, 2021, 23, 1228-1233.	2.4	5
1027	Computational Analysis on the Pd-Catalyzed C–N Coupling of Ammonia with Aryl Bromides Using a Chelate Phosphine Ligand. Journal of Organic Chemistry, 2021, 86, 4007-4017.	1.7	10
1028	Cyclizations and fragmentations in the alkylation of 6â€chloroâ€5â€hydroxyâ€4â€aminopyrimidines with aminoalkyl chlorides. Journal of Heterocyclic Chemistry, 2021, 58, 947-951.	1.4	0
1029	Recent Progress in Palladium atalyzed Radical Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1527-1558.	2.1	30
1030	Buchwald–Hartwig Amination, High-Throughput Experimentation, and Process Chemistry: An Introduction via Undergraduate Laboratory Experimentation. Journal of Chemical Education, 2021, 98, 996-1000.	1.1	4
1031	<scp>Pdâ€Catalyzed</scp> Asymmetric Synthesis of 3, <scp>4â€Dihydroisoquinolinones</scp> From <scp><i>N</i>â€Tsâ€Benzamides</scp> and 1, <scp>3â€Dienes</scp> . Bulletin of the Korean Chemical Society, 2021, 42, 521-524.	1.0	10
1032	Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011–2020). Molecules, 2021, 26, 1202.	1.7	35
1033	A Tutorial on Selectivity Determination in C(sp ²)–H Oxidative Addition of Arenes by Transition Metal Complexes. Organometallics, 2021, 40, 813-831.	1.1	23
1034	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie - International Edition, 2021, 60, 9875-9880.	7.2	33
1035	Silver Benzoate Facilitates the Copper-Catalyzed C–N Coupling of Iodoazoles with Aromatic Nitrogen Heterocycles. ACS Omega, 2021, 6, 9804-9812.	1.6	0
1036	Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives. Molecules, 2021, 26, 1365.	1.7	6
1037	Synthesis and structure-activity relationships of pyrimidine derivatives as potent and orally active FGFR3 inhibitors with both increased systemic exposure and enhanced in vitro potency. Bioorganic and Medicinal Chemistry, 2021, 33, 116019.	1.4	6
1038	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie, 2021, 133, 9963-9968.	1.6	5

#	Article	IF	CITATIONS
1039	Synthesis of Computationally Designed 2,5(6)-Benzimidazole Derivatives via Pd-Catalyzed Reactions for Potential E. coli DNA Gyrase B Inhibition. Molecules, 2021, 26, 1326.	1.7	4
1040	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie, 2021, 133, 9513-9518.	1.6	2
1041	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie - International Edition, 2021, 60, 9427-9432.	7.2	15
1042	Palladium(II) N^O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3 <i>H</i>)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide. Organometallics, 2021, 40, 725-734.	1.1	21
1043	Controlling Pd-Catalyzed N-Arylation and Dimroth Rearrangement in the Synthesis of <i>N</i> ,1-Diaryl-1 <i>H</i> -tetrazol-5-amines. Journal of Organic Chemistry, 2021, 86, 4794-4803.	1.7	6
1044	^{DMP} DAB–Pd–MAH: A Versatile Pd(0) Source for Precatalyst Formation, Reaction Screening, and Preparative-Scale Synthesis. ACS Catalysis, 2021, 11, 5636-5646.	5.5	21
1045	Bifunctional reagents in organic synthesis. Nature Reviews Chemistry, 2021, 5, 301-321.	13.8	119
1046	Solventâ€Free Ruthenium atalyzed Direct Coupling of Phosphines and Aryl Chlorides via Câ^'H Activation: An Efficient and Straight Access to Aryl‧ubstituted Biarylphosphines. Asian Journal of Organic Chemistry, 2021, 10, 1113-1116.	1.3	9
1047	Copper-catalyzed regioselective 2-amination of o-haloanilides with aqueous ammonia. Tetrahedron Letters, 2021, 69, 153001.	0.7	1
1048	Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European Journal of Organic Chemistry, 2021, 2021, 4566-4602.	1.2	15
1049	Pdâ€Catalyzed N â€Arylations of 3â€Arylâ€1â€tosylâ€1 H â€pyrazolâ€5â€amines with Arylbromides and the Mig Group. ChemCatChem, 2021, 13, 2641-2652.	gration of ⁻	۲s 6
1051	Nickel-Fe3O4 Magnetic Nanoparticles Supported on Multiwalled Carbon Nanotubes: Effective Catalyst in Suzuki Cross Coupling Reactions. Catalysts, 2021, 11, 495.	1.6	12
1053	Kilogram-Scale Preparation of an Aminopyrazole Building Block via Copper-Catalyzed Aryl Amidation. Organic Process Research and Development, 2021, 25, 1065-1073.	1.3	9
1054	Double Ligands Enabled Ruthenium Catalyzed ortho â€Câ^'H Arylation of Dialkyl Biarylphosphines: Straight and Economic Synthesis of Highly Steric and Electronâ€Rich Arylâ€Substituted Buchwaldâ€Type Phosphines. Advanced Synthesis and Catalysis, 2021, 363, 2843-2849.	2.1	11
1055	A Metalâ€Free Direct Arene Câ^'H Amination. Advanced Synthesis and Catalysis, 2021, 363, 2783-2795.	2.1	22
1056	N-substituted aminobiphenyl palladacycles stabilized by dialkylterphenyl phosphanes: Preparation and applications in C N cross-coupling reactions. Inorganica Chimica Acta, 2021, 518, 120214.	1.2	6
1057	Structurally-Responsive Ligands for High-Performance Catalysts. ACS Catalysis, 2021, 11, 5416-5437.	5.5	17
1058	<i>N</i> â€Nitroso As A Novel Directing Group in Transitionâ€Metalâ€Catalyzed C(<i>sp</i> ^{<i>2</i>})â^'H Bond Functionalizations of <i>N</i> â€Nitrosoanilines. Asian Journal of Organic Chemistry, 2021, 10, 980-1011.	1.3	6

#	Article	IF	CITATIONS
1059	llluminating a Path4914. Copyright 2016 Wiley for Organic Synthesis Towards Sustainability. No One Said It Would Be Easy…. Synlett, 2021, 32, 1588-1605.	1.0	15
1060	Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coordination Chemistry Reviews, 2021, 432, 213712.	9.5	46
1061	Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction via Benzylpalladium Intermediate. Chemical Record, 2021, , .	2.9	4
1062	Development of Selective Reactions Using Ball Milling. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 492-502.	0.0	1
1063	Practical bromination of arylhydroxylamines with SOBr2 towards ortho-bromo-anilides. Tetrahedron Letters, 2021, 72, 153074.	0.7	4
1064	Utilization of C(<i>sp</i> ³) arboxylic Acids and Their Redoxâ€Active Esters in Decarboxylative Carbonâ^'Carbon Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 3693-3736.	2.1	64
1066	Stereoretentive N â€Arylation of Amino Acid Esters with Cyclohexanones Utilizing a Continuousâ€Flow System. Chemistry - A European Journal, 2021, 27, 10844-10848.	1.7	5
1067	Amination of Aryl Halides Mediated by Electrogenerated Nickel from Sacrificial Anode. European Journal of Organic Chemistry, 2021, 2021, 2462-2469.	1.2	4
1068	Hypothesisâ€Driven Palladium atalyzed Transformations for the Construction of New Molecular Architectures. Chemical Record, 2021, 21, 3470-3482.	2.9	3
1069	Catalytic Enantioselective Strecker Reaction of Isatin-Derived N-Unsubstituted Ketimines. Organic Letters, 2021, 23, 4553-4558.	2.4	16
1070	Ligand-free copper-catalyzed direct amidation of diaryliodonium salts using nitriles as amidation reagents. Tetrahedron Letters, 2021, 71, 153048.	0.7	7
1071	Cobalt-Catalyzed Divergent Aminofluorination and Diamination of Styrenes with <i>N</i> -Fluorosulfonamides. Organic Letters, 2021, 23, 4067-4071.	2.4	30
1072	Rhodiumâ€ŧerpyridine Catalyzed Transfer Hydrogenation of Aromatic Nitro Compounds in Water. Chemistry - an Asian Journal, 2021, 16, 1725-1729.	1.7	5
1073	Photocatalytic C(sp ³)–O/N Cross-Couplings by Nal–PPh ₃ /CuBr Cooperative Catalysis: Computational Design and Experimental Verification. ACS Catalysis, 2021, 11, 6633-6642.	5.5	24
1074	Regioselective Radical Arene Amination for the Concise Synthesis of <i>ortho</i> -Phenylenediamines. Journal of the American Chemical Society, 2021, 143, 9355-9360.	6.6	21
1075	Recent Advances in Visibleâ€Lightâ€Driven Photocatalyzed γ yanoalkylation Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1595-1618.	1.3	14
1076	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	9.5	36
1077	Synthesis and Structureâ€Photophysics Evaluation of 2â€ <i>N</i> â€Aminoâ€quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chemistry - an Asian Journal, 2021, 16, 2087-2099.	1.7	8

#	Article	IF	CITATIONS
1078	Dissection of Alkylpyridinium Structures to Understand Deamination Reactions. ACS Catalysis, 2021, 11, 8456-8466.	5.5	24
1079	Regio―and Stereoselective Functionalization Enabled by Bidentate Directing Groups. Chemical Record, 2021, 21, 3613-3627.	2.9	25
1080	Synthesis of Trinuclear Benzimidazoleâ€Fused Hybrid Scaffolds by Transition Metalâ€Free Tandem C(sp ²)â"N Bond Formation under Microwave Irradiation. European Journal of Organic Chemistry, 2021, 2021, 4088-4098.	1.2	9
1081	Synthesis of Long-Chain Alkanoyl Benzenes by an Aluminum(III) Chloride-Catalyzed Destannylative Acylation Reaction. Journal of Organic Chemistry, 2021, 86, 9007-9022.	1.7	7
1082	Lowâ€Temperature Nickelâ€Catalyzed Câ^'N Crossâ€Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral <i>N</i> â€Heterocyclic Carbene Ligand. Angewandte Chemie - International Edition, 2021, 60, 16077-16084.	7.2	30
1083	Chan–Lam Amination of Secondary and Tertiary Benzylic Boronic Esters. Journal of Organic Chemistry, 2021, 86, 9883-9897.	1.7	14
1084	Metalâ€Based Catalytic Drug Development for Nextâ€Generation Cancer Therapy. ChemMedChem, 2021, 16, 2480-2486.	1.6	15
1085	Room-Temperature Amination of Chloroheteroarenes in Water by a Recyclable Copper(II)-Phosphaadamantanium Sulfonate System. Journal of Organic Chemistry, 2021, 86, 8900-8925.	1.7	14
1086	NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catalysis, 2021, 11, 7772-7779.	5.5	37
1087	Visible-Light-Driven C–N Bond Formation by a Hexanickel Cluster Substituted Polyoxometalate-Based Photocatalyst. Inorganic Chemistry, 2021, 60, 10022-10029.	1.9	11
1088	Redox-Neutral Cross-Coupling Amination with Weak <i>N-</i> Nucleophiles: Arylation of Anilines, Sulfonamides, Sulfoximines, Carbamates, and Imines via Nickelaelectrocatalysis. Jacs Au, 2021, 1, 1057-1065.	3.6	46
1089	Optimization of ether and aniline based inhibitors of lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127974.	1.0	2
1090	Fundamental Basis for Implementing Oxidantâ€Free Au(I)/Au(III) Catalysis. European Journal of Inorganic Chemistry, 2021, 2021, 2556-2569.	1.0	47
1091	ZnBr ₂ Mediated Câ^'N Bond Formation using Cinnamyl Alcohol and 2â€Amino Pyridines. European Journal of Organic Chemistry, 2021, 2021, 3054-3058.	1.2	3
1092	Palladium-catalyzed amino group arylation of 1,3-disubstituted 1H-pyrazol-5-amine based on Buchwald–Hartwig reaction. Chemistry of Heterocyclic Compounds, 2021, 57, 633-639.	0.6	5
1093	Lowâ€Temperature Nickelâ€Catalyzed Câ^'N Crossâ€Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral N â€Heterocyclic Carbene Ligand. Angewandte Chemie, 2021, 133, 16213-16220.	1.6	3
1094	Aryl C-H iodination: are there actual flavin-dependent iodinases in nature?. Science China Chemistry, 2021, 64, 1730-1735.	4.2	9
1095	Palladium and Copper: Advantageous Nanocatalysts for Multi-Step Transformations. Nanomaterials, 2021, 11, 1891.	1.9	6

#	Article	IF	CITATIONS
1096	Switchable and Scalable Heteroarylation of Primary Amines with 2-Chlorobenzothiazoles under Transition-Metal-Free and Solvent-Free Conditions. Journal of Organic Chemistry, 2021, 86, 10288-10302.	1.7	12
1097	Shielding Effect of Nanomicelles: Stable and Catalytically Active Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of Water-Sensitive Acid Chlorides in Water. Jacs Au, 2021, 1, 1506-1513.	3.6	24
1098	ChemBead Enabled Highâ€Throughput Crossâ€Electrophile Coupling Reveals a New Complementary Ligand. Chemistry - A European Journal, 2021, 27, 12981-12986.	1.7	26
1099	Synthesis, Structures, and Electronic Properties of 2,7-Anthrylene-Based Azacyclophanes Bearing <i>o</i> -, <i>m</i> -, and <i>p</i> -Phenylenediamine Linkers. Journal of Organic Chemistry, 2021, 86, 11370-11377.	1.7	4
1100	(DiMelHeptCl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. Journal of Organic Chemistry, 2021, 86, 10343-10359.	1.7	3
1101	On the influence of carbon nanoparticles as additives in the electrosynthesis of bromoarenes. Carbon Trends, 2021, 4, 100075.	1.4	2
1102	Synthesis of Biaryl Phosphine Palladium(0) Precatalysts. Organometallics, 2021, 40, 2384-2388.	1.1	3
1103	P–C Bond Activation and Transfer of a Diphenylphosphino Unit from 1,1′-Bis(diphenylphosphino)ferrocene: Unexpected Templated Synthesis of an N ^{â^§} N ^{–â^§} P Pincer Ligand Palladium Complex. Organometallics, 2021, 40, 2538-2545	1.1	3
1104	Chasing <i>C</i> , <i>C</i> â€Palladacycles. European Journal of Inorganic Chemistry, 2021, 2021, 3655-3683.	1.0	9
1105	Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Ecoâ€Friendly Base for Solventâ€Free, Pdâ€Catalysed Amination. Chemistry - A European Journal, 2021, 27, 12535-12539.	1.7	7
1106	Nickel-Catalyzed Deaminative Cyanation: Nitriles and One-Carbon Homologation from Alkyl Amines. Organic Letters, 2021, 23, 6242-6245.	2.4	15
1107	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	2.4	7
1108	Pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines as Potential Cytotoxic Agents against Human Neuroblastoma. Pharmaceuticals, 2021, 14, 750.	1.7	0
1109	A Ligand Exchange Process for the Diversification of Palladium Oxidative Addition Complexes. Organic Letters, 2021, 23, 6030-6034.	2.4	4
1110	A Bulky and Electron-Rich <i>N</i> -Heterocyclic Carbene–Palladium Complex (SIPr) ^{Ph₂} Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catalysis, 2021, 11, 9252-9261.	5.5	23
1111	Reimagining C(sp3)–N bond formation via a HARC strategy. CheM, 2021, 7, 1688-1691.	5.8	0
1112	Thiocarbamoyl Fluoride Synthesis by Deconstructive Diversification of Arylated Tetrahydroisoquinolines. Journal of Organic Chemistry, 2021, 86, 12443-12451.	1.7	10
1113	A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides. CheM, 2021, 7, 1827-1842.	5.8	57

#	Article	IF	Citations
1114	Ultrafast-response, highly-sensitive and recyclable colorimetric/fluorometric dual-channel chemical warfare agent probes. Journal of Hazardous Materials, 2021, 415, 125619.	6.5	33
1115	Palladium adsorption on natural polymeric sericin-alginate particles crosslinked by polyethylene glycol diglycidyl ether. Journal of Environmental Chemical Engineering, 2021, 9, 105617.	3.3	20
1116	Mechanistic Aspects of the Palladium atalyzed Suzukiâ€Miyaura Cross oupling Reaction. Chemistry - A European Journal, 2021, 27, 13481-13493.	1.7	97
1117	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie - International Edition, 2021, 60, 20666-20671.	7.2	66
1118	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie, 2021, 133, 20834-20839.	1.6	4
1119	Alkyl Radical-Free Cu(I) Photocatalytic Cross-Coupling: A Theoretical Study of Anomerically Specific Photocatalyzed Glycosylation of Pyranosyl Bromide. Inorganic Chemistry, 2021, 60, 12801-12812.	1.9	2
1120	Copper-Catalyzed Cross-Coupling of Benzylic C–H Bonds and Azoles with Controlled <i>N</i> -Site Selectivity. Journal of the American Chemical Society, 2021, 143, 14438-14444.	6.6	44
1121	Enantioselective Synthesis of Atropisomeric Biaryls by Pdâ€Catalyzed Asymmetric Buchwald–Hartwig Amination. Angewandte Chemie, 2021, 133, 21886-21890.	1.6	14
1122	Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. Chemical Reviews, 2022, 122, 10126-10169.	23.0	62
1123	Chemoselective, Scalable Nickelâ€Electrocatalytic O â€Arylation of Alcohols. Angewandte Chemie, 2021, 133, 20868-20873.	1.6	7
1124	A new silver coordination polymer based on 4,6-diamino-2-pyrimidinethiol: synthesis, characterization and catalytic application in asymmetric Hantzsch synthesis of polyhydroquinolines. Scientific Reports, 2021, 11, 15657.	1.6	39
1125	Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines. Science China Chemistry, 2021, 64, 1756-1762.	4.2	12
1126	Teflon Magnetic Stirring Capsules (TMSC) as a Practical and Reusable Delivery System for Sensitive Reagents and Catalysts. Helvetica Chimica Acta, 2021, 104, e2100110.	1.0	2
1127	Myxadazoles, Myxobacteriumâ€Derived Isoxazole–Benzimidazole Hybrids with Cardiovascular Activities. Angewandte Chemie, 2021, 133, 21847-21852.	1.6	0
1128	Electrophilic Aminating Agents in Total Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25640-25666.	7.2	41
1129	Electrophilic Aminating Agents in Total Synthesis. Angewandte Chemie, 0, , .	1.6	4
1130	A new palladium(II) phosphino complex with ONS donor Schiff base ligand: Synthesis, characterization and catalytic activity towards Suzuki-Miyaura cross-coupling reaction. Journal of Molecular Structure, 2021, 1237, 130322.	1.8	17
1131	Structural and Reactivity Comparisons of JosiPhos CyPF-Cy and a Simplified Variant ("CyPBn-Cyâ€) in Nickel-Catalyzed C(sp ²)-N Cross-Couplings. Organometallics, 2021, 40, 2915-2922.	1.1	2

		CITATION REPORT		
#	Article		IF	Citations
1132	Buchwald–Hartwig reaction: an update. Monatshefte Für Chemie, 2021, 152, 1127	·1171.	0.9	9
1133	Chiral Arylated Amines via Câ^'N Coupling of Chiral Amines with Aryl Bromides Promotec Angewandte Chemie - International Edition, 2021, 60, 21536-21542.	l by Light.	7.2	41
1134	Access to (<i>Z</i>)-β-Substituted Enamides from <i>N</i> 1-H-1,2,3-Triazoles. Organic 6293-6298.	Letters, 2021, 23,	2.4	26
1135	Boron Trifluoride-Mediated Cycloaddition of 3-Bromotetrazine and Silyl Enol Ethers: Synt 3-Bromo-pyridazines. Journal of Organic Chemistry, 2021, 86, 12008-12023.	chesis of	1.7	10
1136	Nickel atalyzed Amination of Aryl Nitriles for Accessing Diarylamines through Câ^'CN Advanced Synthesis and Catalysis, 2021, 363, 4708.	Bond Activation.	2.1	5
1137	Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates ar Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis in Non-Tumor Cells. Molecules, 2021, 26, 4823.	id Antitumor and Toxicity	1.7	2
1138	Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein Journal of Org Chemistry, 2021, 17, 2209-2259.	ganic	1.3	23
1139	Synthesis of New Highly Functionalized 1H-Indole-2-carbonitriles via Cross-Coupling Rea Molecules, 2021, 26, 5287.	ctions.	1.7	1
1140	Chiral Arylated Amines via Câ^'N Coupling of Chiral Amines with Aryl Bromides Promotec Angewandte Chemie, 2021, 133, 21706-21712.	l by Light.	1.6	4
1141	Enantioselective Synthesis of Atropisomeric Biaryls by Pdâ€Catalyzed Asymmetric Buch Amination. Angewandte Chemie - International Edition, 2021, 60, 21718-21722.	vald–Hartwig	7.2	51
1142	Myxadazoles, Myxobacteriumâ€Derived Isoxazole–Benzimidazole Hybrids with Cardio Angewandte Chemie - International Edition, 2021, 60, 21679-21684.	vascular Activities.	7.2	15
1143	Exploring the Effect of Phosphine Ligand Architecture on a Buchwald–Hartwig Reactio Synthesis and Screening of Reaction Conditions. Journal of Chemical Education, 2021, 9	n: Ligand 8, 2990-2996.	1.1	4
1144	Effect of Precatalyst Oxidation State in C–N Cross-Couplings with 2-Phosphinoimidazo Bimetallic Pd(I) and Pd(II) Complexes. Organometallics, 2021, 40, 2763-2767.	ole-Derived	1.1	7
1145	Copper atalysed Electrophilic Amination of Aryl(alkenyl) Boronic Acids with Nitrogena Hypervalent Iodine (III) Reagent. Advanced Synthesis and Catalysis, 2021, 363, 4701.	à€Containing	2.1	6
1146	Transient Directing Groups in Metalâ^'Organic Cooperative Catalysis. Chemistry - A Euro 2021, 27, 13899-13952.	pean Journal,	1.7	34
1147	Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by N ligand. Nature Communications, 2021, 12, 4904.	N2 pincer	5.8	38
1148	Discovery of VU6028418: A Highly Selective and Orally Bioavailable M4 Muscarinic Acet Receptor Antagonist. ACS Medicinal Chemistry Letters, 2021, 12, 1342-1349.	ylcholine	1.3	6
1149	Ylide-Substituted Phosphines with a Cyclic Ylide-Backbone: Angle Dependence of the Do Organometallics, 2021, 40, 2888-2900.	nor Strength.	1.1	11

#	Article	IF	CITATIONS
1150	Synthesis of Nâ€Aryl―and Nâ€Alkenylhydrazides through C(sp ²)â^'N Bond Construction. European Journal of Organic Chemistry, 2021, 2021, 4364-4387.	1.2	4
1151	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
1152	Chemoselective, Scalable Nickelâ€Electrocatalytic <i>O</i> â€Arylation of Alcohols. Angewandte Chemie - International Edition, 2021, 60, 20700-20705.	7.2	39
1153	Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature, 2021, 598, 451-456.	13.7	159
1154	Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles. Synthesis, 2022, 54, 281-294.	1.2	6
1155	Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coordination Chemistry Reviews, 2021, 442, 213923.	9.5	37
1156	Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with <i>N</i> -Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. Journal of Organic Chemistry, 2021, 86, 12908-12921.	1.7	26
1157	A Tetraarylpyrroleâ€Based Phosphine Ligand for the Palladiumâ€Catalyzed Amination of Aryl Chlorides. Advanced Synthesis and Catalysis, 2021, 363, 5422-5428.	2.1	2
1158	Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. ChemSusChem, 2021, 14, 5399-5404.	3.6	17
1159	Sustainable strategies of C–N bond formation via Ullmann coupling employing earth abundant copper catalyst. Tetrahedron, 2021, 97, 132406.	1.0	16
1160	Nickelâ€Catalyzed Deaminative Crossâ€Coupling of Disulfides with Katritzky Pryidium Salts to Construct Sulfides. Asian Journal of Organic Chemistry, 0, , .	1.3	3
1161	Organocatalytic Asymmetric Arylation of <i>p</i> -Quinone Phosphonates: A Green Access to Biaryl Monophosphorus Ligands. Organic Letters, 2021, 23, 7630-7634.	2.4	6
1162	Selective Carbon arbon Bond Amination with Redoxâ€Active Aminating Reagents: A Direct Approach to Anilines â€. Chinese Journal of Chemistry, 2021, 39, 3011.	2.6	8
1163	Cleavageâ^•cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage. Chinese Chemical Letters, 2022, 33, 1519-1523.	4.8	15
1164	Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with Alkenes/Alkynes Using Molecular Oxygen as the Sole Oxidant Enabled by Quaternary Ammonium Salt. Molecules, 2021, 26, 5329.	1.7	3
1165	A novel strategy for stabilization of sub-nanometric Pd colloids on kryptofix functionalized MCM-41: nanoengineered material for Stille coupling transformation. Scientific Reports, 2021, 11, 18417.	1.6	19
1166	Nitrene transfers mediated by natural and artificial iron enzymes. Journal of Inorganic Biochemistry, 2021, 225, 111613.	1.5	5
1167	Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry - A European Journal, 2021, 27, 15277-15326.	1.7	45

#	Article	IF	CITATIONS
1168	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
1169	Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. Journal of Medicinal Chemistry, 2021, 64, 14046-14128.	2.9	171
1170	Cu-Catalyzed Cross-Coupling of Nitroarenes with Aryl Boronic Acids to Construct Diarylamines. ACS Catalysis, 2021, 11, 12417-12422.	5.5	29
1171	Enantioconvergent Cu-Catalyzed Radical C–N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. Journal of the American Chemical Society, 2021, 143, 15413-15419.	6.6	57
1172	[4Â+Â1] Annulation of in situ generated azoalkenes with amines: A powerful approach to access 1-substituted 1,2,3-triazoles. Chinese Chemical Letters, 2022, 33, 1550-1554.	4.8	8
1173	Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds. Beilstein Journal of Organic Chemistry, 2021, 17, 2348-2376.	1.3	2
1174	Cu(II)-N-benzyl-amino-1H-tetrazole complex immobilized on magnetic chitosan as a highly effective nanocatalyst for C-N coupling reactions. Journal of Organometallic Chemistry, 2021, 950, 121959.	0.8	10
1175	A terphenyl phosphine as a highly efficient ligand for palladium-catalysed amination of aryl halides with 1° anilines. Journal of Catalysis, 2021, 402, 238-243.	3.1	5
1176	Sustainable routes to amines in recyclable water using ppm Pd catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100493.	3.2	6
1177	C(sp2)-C(sp2) Suzuki cross-coupling of arylammonium salts catalyzed by a stable Pd–NHC complex. Tetrahedron, 2021, 98, 132431.	1.0	3
1178	Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. Journal of Colloid and Interface Science, 2022, 606, 1340-1351.	5.0	7
1179	Trimerization and cyclization of reactive P-functionalities confined within OCO pincers. RSC Advances, 2021, 11, 28602-28613.	1.7	1
1180	Electron attachment to microhydrated 4-nitro- and 4-bromo-thiophenol. Physical Chemistry Chemical Physics, 2021, 23, 18173-18181.	1.3	5
1181	Oxidative cross-dehydrogenative coupling between iodoarenes and acylanilides for C–N bond formation under metal-free conditions. Organic Chemistry Frontiers, 2021, 8, 2556-2562.	2.3	8
1182	A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling reactions: synthesis of abemaciclib and fedratinib. Green Chemistry, 2021, 23, 5222-5229.	4.6	24
1183	BF ₃ ·Et ₂ O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant. Green Chemistry, 2021, 23, 5205-5211.	4.6	16
1184	Porous Polyisothiocyanurates for Selective Palladium Recovery and Heterogeneous Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
1185	Recent advances in catalytic synthesis of medium-ring lactones and their derivatives. Catalysis Science and Technology, 2021, 11, 6931-6946.	2.1	11

#	Article	IF	CITATIONS
1186	Asymmetric copper-catalyzed propargylic amination with amine hydrochloride salts. Chemical Communications, 2021, 57, 4674-4677.	2.2	10
1187	Selective primary aniline synthesis through supported Pd-catalyzed acceptorless dehydrogenative aromatization by utilizing hydrazine. Chemical Communications, 2021, 57, 6530-6533.	2.2	7
1188	Ligand-free copper-catalyzed C(sp ³)–H imidation of aromatic and aliphatic methyl sulfides with <i>N</i> -fluorobenzenesulfonimide. RSC Advances, 2021, 11, 12136-12140.	1.7	5
1189	Transitionâ€Metalâ€Free Baseâ€Controlled Câ^N Coupling Reactions: Selective MonoVersusDiarylation of Primary Amines with 2â€Chlorobenzimidazoles. Advanced Synthesis and Catalysis, 2021, 363, 1408-1416.	2.1	7
1190	Oxidative cross-coupling processes inspired by the Chan–Lam reaction. Chemical Communications, 2021, 57, 2724-2731.	2.2	10
1191	Palladium atalyzed Hydroarylation of Homopropargyl Iodoindoles with Concurrent Alkyl and Iodonium Migrations. Advanced Synthesis and Catalysis, 2021, 363, 1449-1456.	2.1	2
1192	Two- and three-dimensional β,β′-N-heterocycle fused porphyrins: concise construction, singlet oxygen production and electro-catalytic hydrogen evolution reaction. Organic Chemistry Frontiers, 0, , .	2.3	5
1193	Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.	1.5	30
1194	Solid, Noncovalent Formulation of Biocatalysts for Rapid and Accurate Submilligram Dosing to Microtiter Plates. Organic Process Research and Development, 2021, 25, 337-341.	1.3	3
1195	Easily accessible non-aromatic heterocycles with handles: 4-bromo-2,3-dihydrofurans from 1,2-dibromohomoallylic alcohols. Chemical Science, 2021, 12, 10347-10353.	3.7	2
1196	Triskelion-shaped iridium-helicene NHC complex. Inorganic Chemistry Frontiers, 2021, 8, 3916-3925.	3.0	13
1197	Skeletal Reconstruction of 3-Alkylidenepyrrolidines to Azepines Enabled by Pd-Catalyzed C–N Bond Cleavage. ACS Catalysis, 2021, 11, 1774-1779.	5.5	16
1198	Computational insights into Ir(<scp>iii</scp>)-catalyzed allylic C–H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity. RSC Advances, 2021, 11, 19113-19120.	1.7	2
1199	Recent Advances in the Electrochemical Formation of Carbon-Nitrogen Bonds. Chinese Journal of Organic Chemistry, 2021, 41, 2535.	0.6	23
1200	Electrochemically facilitated oxidative C–H amination enables access to fluorescent N9-fused tricyclic xanthines. Organic Chemistry Frontiers, 2021, 8, 5410-5417.	2.3	8
1201	Understanding the planar conformations in diarylsubstituted heteroarenes: structural and theoretical insights. CrystEngComm, 2021, 23, 3144-3151.	1.3	7
1202	Leucomethylene blue probe detects a broad spectrum of reactive oxygen and nitrogen species. RSC Advances, 2021, 11, 32295-32299.	1.7	0
1203	Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews, 2021, 50, 243-472.	18.7	175

#	Article	IF	CITATIONS
1204	Visible-light-mediated multicomponent reaction for secondary amine synthesis. Chemical Communications, 2021, 57, 5028-5031.	2.2	31
1205	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2020, 59, 6775-6779.	7.2	139
1206	Imideâ€Fused Diazatetracenes: Synthesis, Characterization, and Application in Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 4220-4225.	1.7	4
1207	Copperâ€Mediated Direct Cyanatation of Benzamides: A New Approach to the Synthesis of Quinazolinediones. European Journal of Organic Chemistry, 2020, 2020, 708-713.	1.2	3
1208	Nucleophilic Aromatic Substitution (S _N Ar) and Related Reactions of Porphyrinoids: Mechanistic and Regiochemical Aspects. European Journal of Organic Chemistry, 2021, 2021, 7-42.	1.2	24
1209	Palladium-Catalyzed Amination/Dearomatization Reaction of Indoles and Benzofurans. Journal of Organic Chemistry, 2020, 85, 7817-7839.	1.7	25
1210	Late-Stage Modification of Tertiary Phosphines via Ruthenium(II)-Catalyzed C–H Alkylation. Organic Letters, 2020, 22, 1331-1335.	2.4	28
1211	The combination of asymmetric hydrogenation of olefins and direct reductive amination. Nature Communications, 2020, 11, 621.	5.8	27
1212	Efficient synthetic route to aromatic secondary amines via Pd/RuPhos/TBAB-catalyzed cross coupling. New Journal of Chemistry, 2017, 41, 6523-6529.	1.4	6
1213	Trihaloisocyanuric acids in ethanol: an eco-friendly system for the regioselective halogenation of imidazo-heteroarenes. Green Chemistry, 2020, 22, 3410-3415.	4.6	49
1214	Rhodium-Catalyzed, Phosphorus(III)-Directed Hydroarylation of Internal Alkynes: Facile and Efficient Access to New Phosphine Ligands. Synlett, 2022, 33, 351-356.	1.0	4
1215	Recent Progress towards the Use of Benzophenone Imines as an Ammonia Equivalent. Chemistry Letters, 2020, 49, 497-504.	0.7	11
1216	anti-1,2,2,3,4,4-Hexamethylphosphetane 1-Oxide. Organic Syntheses, 2019, 96, 418-435.	1.0	11
1217	Construction of Carbon-Carbon and Carbon-Heteroatom Bonds: Enabled by Visible Light. Current Organic Chemistry, 2020, 24, 44-73.	0.9	6
1218	Palladium-Catalyzed Cascade Reactions for Annulative π -Extension of Indoles to Carbazoles through C–H Bond Activation. Current Organic Chemistry, 2020, 24, 2612-2633.	0.9	8
1219	Synthesis of Drugs and Biorelevant N-heterocycles Employing Recent Advances in C-N Bond Formation. Current Organic Chemistry, 2020, 24, 2293-2340.	0.9	1
1220	Microwave-assisted Amination Reactions: An Overview. Current Organic Chemistry, 2020, 24, 2235-2255.	0.9	7
1221	Advancements in C–PR ₂ (R = Alkyl or Aryl) Bond Formation Reactions Involving Palladium. Mini-Reviews in Organic Chemistry, 2019, 16, 323-334.	0.6	2

#	Article	IF	Citations
1222	Recent Advances in Microwave-Assisted Copper-Catalyzed Cross-Coupling Reactions. Catalysts, 2021, 11, 46.	1.6	20
1223	Mechanochemical synthesis of small organic molecules. Beilstein Journal of Organic Chemistry, 2017, 13, 1907-1931.	1.3	199
1224	Arylation of Aniline and Amines by Pd-(N-Heterocyclic Carbene) Complexes. Heterocycles, 2017, 94, 1506.	0.4	2
1225	Recent Advances in Transition-Metal-Catalyzed Synthesis of 3- and/or 4-Aryl-2(1H)-Quinolones. Heterocycles, 2019, 98, 1309.	0.4	4
1226	Metal-free electrochemical [3 + 2] heteroannulation of anilines with pyridines enabled by dual C–H radical aminations. Green Chemistry, 2021, 23, 9024-9029.	4.6	10
1227	Strain-release enabled [3 + 2] annulation of 3-aminooxetanes with simple Cî€N bonds: facile synthesis of imidazolidines. Organic Chemistry Frontiers, 2021, 8, 6616-6621.	2.3	6
1228	Electro-oxidative C–H amination of heteroarenes with aniline derivatives <i>via</i> radical–radical cross coupling. Green Chemistry, 2021, 23, 8853-8858.	4.6	21
1229	Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Organic Chemistry Frontiers, 2021, 8, 6710-6719.	2.3	8
1230	High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Organic Letters, 2021, 23, 8114-8118.	2.4	20
1231	A Neophyl Palladacycle as an Air- and Thermally Stable Precursor to Oxidative Addition Complexes. Organic Letters, 2021, 23, 7927-7932.	2.4	6
1232	Switching Chemoselectivity Based on the Ring Size: How to Make Ring-Fused Indoles Using Transition-Metal-Mediated Cross-Coupling. ACS Catalysis, 2021, 11, 12821-12832.	5.5	7
1233	Nickel-Catalyzed Etherification of Phenols and Aryl Halides through Visible-Light-Induced Energy Transfer. Organic Letters, 2021, 23, 8327-8332.	2.4	25
1234	Improved Buchwald–Hartwig Amination by the Use of Lipids and Lipid Impurities. Organometallics, 0, , .	1.1	2
1235	Kernel Methods for Predicting Yields of Chemical Reactions. Journal of Chemical Information and Modeling, 2022, 62, 2077-2092.	2.5	27
1236	An Overview of Iridium atalyzed Allylic Amination Reactions. ChemistrySelect, 2021, 6, 10127-10140.	0.7	5
1237	An Alkoxy Modified <i>N</i> â€Heterocyclic Carbeneâ€Palladacycle: Synthesis, Characterization and Application towards Buchwaldâ€Hartwig and Suzukiâ€Miyaura Coupling Reactions. ChemistrySelect, 2021, 6, 10121-10126.	0.7	4
1238	Visible-Light- and PPh ₃ -Mediated Direct C–N Coupling of Nitroarenes and Boronic Acids at Ambient Temperature. Organic Letters, 2021, 23, 8634-8639.	2.4	19
1239	Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 5682-5841.	23.0	237

#	Article	IF	CITATIONS
1240	Sterically enhanced 2â€iminopyridylpalladium chlorides as recyclable ppmâ€palladium catalyst for Suzuki–Miyaura coupling in aqueous solution. Applied Organometallic Chemistry, 0, , e6474.	1.7	3
1241	Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C–N Coupling Protocol. Journal of Organic Chemistry, 2021, 86, 14627-14639.	1.7	5
1242	[(NHC)PdCl ₂ (Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 15648-15657.	1.7	35
1245	Bimetallic Catalyzed N-arylation Used in Synthesis of Novel β-carbolines Derivatives. Letters in Drug Design and Discovery, 2020, 17, 520-525.	0.4	Ο
1246	N, O-polydentate ligands for palladium-catalyzed cross-coupling reactions (Part III). Journal of Organometallic Chemistry, 2022, 957, 122147.	0.8	9
1247	Recent Developments in Hydrodecyanation and Decyanative Functionalization Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
1248	Visible-Light-Promoted Cross-Coupling of <i>N</i> -Alkylpyridinium Salts and Nitrostyrenes. Organic Letters, 2021, 23, 8705-8710.	2.4	12
1249	Synthl: A New Open-Source Tool for Synthon-Based Library Design. Journal of Chemical Information and Modeling, 2022, 62, 2151-2163.	2.5	18
1250	Copper pyrithione (CuPT)-catalyzed/mediated amination and thioarylation of (hetero)aryl halides: A competition. Molecular Catalysis, 2021, 516, 111981.	1.0	5
1251	Synthesis and Evaluation of Diaminopyrimidine Derivatives as Dual Inhibitors of EGFR and SRC for Antitumor Treatment. Heterocycles, 2020, 100, 418.	0.4	6
1252	Reaction Parameterization as a Tool for Development in Organometallic Catalysis. , 2021, , .		2
1253	Visible-Light-Promoted Iron-Catalyzed <i>N</i> -Arylation of Dioxazolones with Arylboronic Acids. ACS Catalysis, 2021, 11, 13955-13961.	5.5	27
1254	Phosphination of Phenol Derivatives and Applications to Divergent Synthesis of Phosphine Ligands. Organic Letters, 2021, 23, 8766-8771.	2.4	3
1255	First-Generation Asymmetric Synthesis of the Selective Estrogen Receptor Degrader GDC-9545 (Giredestrant) Featuring a Highly Efficient Pictet–Spengler Reaction and a C–N Coupling Reaction. Organic Process Research and Development, 2022, 26, 560-567.	1.3	4
1256	Iron-catalyzed synthesis of benzimidazoles: An overview. Journal of Organometallic Chemistry, 2022, 958, 122174.	0.8	7
1257	Synthesis and characterization of chiral 6-azaspiro[2.5]octanes as potent and selective antagonists of the M4 muscarinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters, 2022, 56, 128479.	1.0	1
1258	Blue light enhanced Heck arylation at room temperature applied to allenes. Organic Chemistry Frontiers, 2022, 9, 906-916.	2.3	6
1259	Efficient Manufacturing Process for the Selective Estrogen Receptor Degrader GDC-9545 (Giredestrant) via a Crystallization-Driven Diastereoselective Pictet–Spengler Condensation. Organic Process Research and Development, 2022, 26, 568-582.	1.3	5

#	Article	IF	CITATIONS
1260	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1485-1542.	23.0	660
1261	Micellar Buchwald–Hartwig Coupling of Aryl and Heteroarylamines for the Synthesis of DNA-Encoded Libraries. Journal of Organic Chemistry, 2021, 86, 17257-17264.	1.7	15
1262	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	23.0	173
1263	Total Synthesis of Entrectinib with Key Photoâ€Redox Mediated Crossâ€Coupling in Flow. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
1264	Tandem Amination/Oxetane Ring Opening toward Benzomorpholines. Journal of Organic Chemistry, 2021, 86, 17482-17486.	1.7	7
1265	An attractive avenue to Chan-Lam cross-coupling: Scope and developments under Ni-catalysis. Tetrahedron, 2021, , 132567.	1.0	4
1266	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
1267	Solidâ€State Câ^'N Crossâ€Coupling Reactions with Carbazoles as Nitrogen Nucleophiles Using Mechanochemistry. ChemSusChem, 2022, 15, .	3.6	27
1268	Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib via C-N cross coupling reactions using Pd/Cu-free Co-catalyst. Molecular Catalysis, 2022, 517, 112011.	1.0	5
1269	Cobalt-Catalyzed Kumada Coupling Forming Sterically Encumbered C–C Bonds. Organometallics, 2022, 41, 1769-1776.	1.1	9
1270	<scp>XGBoostâ€based</scp> intelligence yield prediction and reaction factors analysis of amination reaction. Journal of Computational Chemistry, 2022, 43, 289-302.	1.5	7
1271	Palladium-catalyzed borylation of aryl bromides and chlorides using phosphatrioxa-adamantane ligands. Tetrahedron Letters, 2022, 88, 153572.	0.7	5
1272	Hydroxylamine-mediated C–C amination via an aza-hock rearrangement. Nature Communications, 2021, 12, 7029.	5.8	10
1273	Buchwaldâ€Hartwig Amination of Coordinating Heterocycles Enabled by Largeâ€butâ€Flexible Pdâ€BIANâ€NHC Catalysts**. Chemistry - A European Journal, 2022, 28, .	1.7	16
1274	Buchwald–Hartwig Amination of Aryl Halides with Heterocyclic Amines in the Synthesis of Highly Fluorescent Benzodifuran-Based Star-Shaped Organic Semiconductors. Journal of Organic Chemistry, 2021, , .	1.7	2
1275	Copper nanocatalysts applied in coupling reactions: a mechanistic insight. Nanoscale, 2021, 13, 18817-18838.	2.8	8
1276	O-Protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis. Chemical Communications, 2021, 57, 13495-13505.	2.2	8
1277	Base-promoted thioannulation of <i>o</i> -alkynyl oxime ethers with sodium sulfide for the general synthesis of isothiocoumarins. Organic and Biomolecular Chemistry, 2021, 19, 10174-10180.	1.5	3

#	Article	IF	CITATIONS
1278	C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catalysis Science and Technology, 0, , .	2.1	12
1279	Polysubstituted Indole Synthesis via Palladium/Norbornene Cooperative Catalysis of Oxime Esters. Organic Letters, 2022, 24, 484-489.	2.4	10
1280	How Rhodium(I)-Catalyzed Phosphorus(III)-Directed C–H Bond Functionalizations Can Improve the Catalytic Activities of Phosphines. Synlett, 0, , .	1.0	4
1281	Copperâ€catalyzed direct synthesis of arylated 8â€aminoquinolines through chelation assistance. Applied Organometallic Chemistry, 0, , .	1.7	4
1282	Synthesis and characterization of an isopropylBippyPhos precatalyst. Tetrahedron, 2022, 104, 132597.	1.0	1
1283	Identification of a Nitrenoid Reductive Elimination Pathway in Nickel-Catalyzed C–N Cross-Coupling. ACS Catalysis, 2022, 12, 1475-1480.	5.5	10
1284	Catalytic Amination of Phenols with Amines. Journal of the American Chemical Society, 2022, 144, 1144-1151.	6.6	32
1285	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18
1286	Exploitation the unique acidity of novel cerium-tungstate catalysts in the preparation of indole derivatives under eco-friendly acid catalyzed Fischer indole reaction protocol. Arabian Journal of Chemistry, 2022, 15, 103670.	2.3	9
1287	Pilot Study to Quantify Palladium Impurities in Lead-like Compounds Following Commonly Used Purification Techniques. ACS Medicinal Chemistry Letters, 2022, 13, 262-270.	1.3	15
1288	Catalyst-free reductions of nitriles to amino-boranes using sodium amidoborane and lithium borohydride. Organic Chemistry Frontiers, 2022, 9, 1536-1540.	2.3	3
1289	Mechanism of Ligand ontrolled Chemoselectivityâ€&witchable Niâ€Catalyzed Câ^'N Cross oupling of Amine. ChemistrySelect, 2022, 7, .	0.7	0
1290	Enantioselective Deaminative Alkylation of Amino Acid Derivatives with Unactivated Olefins. Journal of the American Chemical Society, 2022, 144, 1130-1137.	6.6	52
1291	<scp>Copperâ€Mediated</scp> and Catalyzed C—H Bond Amination via Chelation Assistance: Scope, Mechanism and Synthetic Applications. Chinese Journal of Chemistry, 2022, 40, 1204-1223.	2.6	14
1292	Synthetic Applications of C–O and C–E Bond Activation Reactions. , 2022, , 347-420.		4
1293	Metalâ€Free Reductive Amination of Ketones with Amines Using Formic Acid as the Reductant under BF ₃ â< Et ₂ O Catalysis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
1294	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	5.5	77
1295	Microenvironment modulation of cuprous cluster enables inert aryl chlorides activation in single-molecule metallaphotoredox amination. Journal of Catalysis, 2022, 405, 313-321.	3.1	3

#	Article	IF	CITATIONS
1296	27 Years of Catalytic Carbonylative Coupling Reactions in Hungary (1994–2021). Molecules, 2022, 27, 460.	1.7	9
1297	Synthesis of functionized N-arylbenzotriazoles via palladium catalyzed intramolecular amination. Tetrahedron Letters, 2022, 88, 153587.	0.7	4
1298	Cu/Fe-mediated N(sp2)-arylation/alkenylation of pyridines with aryl-/alkenylboronic acids to yield versatile cationic materials. New Journal of Chemistry, 2022, 46, 2320-2325.	1.4	1
1299	Four- and five-coordinate nickel(<scp>ii</scp>) complexes bearing new diphosphine–phosphonite and triphosphine–phosphite ligands: catalysts for <i>N</i> alkylation of amines. RSC Advances, 2022, 12, 4510-4520.	1.7	6
1300	One-pot synthesis of a highly disperse core–shell CuO–alginate nanocomposite and the investigation of its antibacterial and catalytic properties. New Journal of Chemistry, 2021, 46, 199-211.	1.4	3
1301	Nickel atalyzed Thioesterification Enabled by a Visible‣ight Organophotoredox Catalyst under Mild Conditions. ChemPhotoChem, 0, , .	1.5	2
1302	Transition metal complexes with functionalized indenyl phosphine ligands: structures and catalytic properties. Organic and Biomolecular Chemistry, 2022, 20, 485-497.	1.5	4
1303	Palladium oxidative addition complex-enabled synthesis of amino-substituted indolyl-4(3 <i>H</i>)-quinazolinones and their antitumor activity evaluation. Organic and Biomolecular Chemistry, 2022, 20, 553-557.	1.5	0
1304	Insight into the Reactivity Profile of Solid-State Aryl Bromides in Suzuki–Miyaura Cross-Coupling Reactions Using Ball Milling. Synlett, 2022, 33, 898-902.	1.0	9
1305	Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry. Catalysts, 2022, 12, 164.	1.6	8
1306	N-Doped Graphene Supported Cu Single Atoms: Highly Efficient Recyclable Catalyst for Enhanced C–N Coupling Reactions. ACS Nano, 2022, 16, 1142-1149.	7.3	36
1307	Springboard Role for Iridium Photocatalyst: Theoretical Insight of C(sp ³)â^'N Crossâ€Coupling by Photoredoxâ€Mediated Iridium/Copper Dual Catalysis versus Singleâ€Copper Catalysis. ChemCatChem, 2022, 14, .	1.8	7
1308	Strain-release arylations for the bis-functionalization of azetidines. Chemical Communications, 2022, ,	2.2	4
1309	Development of a Rapid Scale-Up Synthesis of (S)-N-(8-((2-Amino-2,4-dimethylpentyl)oxy)-5H-chromeno[3,4-c]pyridin-2-yl)acetamide, a Potent Adaptor-Associated Kinase 1 Inhibitor. Organic Process Research and Development, 0, , .	1.3	4
1310	Reusable Co-nanoparticles for general and selective <i>N</i> -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	3.7	35
1311	Synthesis and modification of polymers by thiol-phenylsulfone substitution reaction. Chemical Communications, 2022, 58, 2148-2151.	2.2	3
1312	Electrochemical Cross-Dehydrogenative Aromatization Protocol for the Synthesis of Aromatic Amines. Organic Letters, 2022, 24, 1011-1016.	2.4	7
1313	Polyrhodamine: a redox stable conducting polyelectrolyte. Polymer Chemistry, 2022, 13, 759-767.	1.9	0

#	Article	IF	CITATIONS
1314	Unraveling the Mechanism of Palladium-Catalyzed Base-Free Cross-Coupling of Vinyl Carboxylates: Dual Role of Arylboronic Acids as a Reducing Agent and a Coupling Partner. ACS Catalysis, 2022, 12, 1809-1817.	5.5	3
1315	Transition metal-free cross-coupling reactions to form carbon–heteroatom bonds. Russian Chemical Reviews, 2022, 91, .	2.5	6
1316	Routescore: Punching the Ticket to More Efficient Materials Development. ACS Central Science, 2022, 8, 122-131.	5.3	8
1317	Symmetrically Tetraâ€functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angewandte Chemie, 0, , .	1.6	2
1318	Bond energy enabled amine distinguishing strategy: chemo-, regioselective 1,3-diamination of (trifluoromethyl)alkenes with different amines by two C(sp ³)–F bond cleavages. Organic Chemistry Frontiers, 2022, 9, 1383-1388.	2.3	13
1319	Diarylamine Synthesis via Desulfinylative Smiles Rearrangement. Organic Letters, 2022, 24, 1132-1135.	2.4	13
1320	Symmetrically Tetraâ€functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angewandte Chemie - International Edition, 2021, , .	7.2	12
1321	Copperâ€Catalyzed N â€Arylation of Indoles and Anilines with Aryltrialkoxysilanes. Asian Journal of Organic Chemistry, 0, , .	1.3	2
1322	Palladium-catalyzed stereospecific C–P coupling toward diverse PN-heterocycles. CheM, 2022, 8, 569-579.	5.8	10
1323	Transition Metalâ€Free Synthesis of <i>meta</i> â€Bromo―and <i>meta</i> â€Trifluoromethylanilines from Cyclopentanones by a Cascade Reaction. Chemistry - A European Journal, 2022, 28, .	1.7	3
1324	Goldberg Coupling of Thiazole Substituted Aryl Bromide Demands Stoichiometric Copper Compared to Oxazole. ChemistrySelect, 2022, 7, .	0.7	1
1325	Suzukiâ^'Miyaura coupling and Oâ^'arylation reactions catalysed by palladium(II) complexes of bulky ligands bearing naphthalene core, Schiff base functionality and biarylphosphine moiety. Journal of Molecular Structure, 2022, 1253, 132099.	1.8	11
1326	Development of anthrazoline photocatalysts for promoting amination and amidation reactions. Chemical Communications, 2022, 58, 3529-3532.	2.2	7
1327	Diindolylamine Preparation and Stability Investigations. ACS Omega, 2022, 7, 5197-5205.	1.6	1
1328	C2-Selective, Functional-Group-Divergent Amination of Pyrimidines by Enthalpy-Controlled Nucleophilic Functionalization. Journal of the American Chemical Society, 2022, 144, 2885-2892.	6.6	14
1329	Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. Trends in Chemistry, 2022, 4, 318-330.	4.4	21
1330	6-lodopurine as a Versatile Building Block for RNA Purine Architecture Modifications. Bioconjugate Chemistry, 2022, 33, 353-362.	1.8	6
1331	Discovery of ASP5878: Synthesis and structure–activity relationships of pyrimidine derivatives as pan-FGFRs inhibitors with improved metabolic stability and suppressed hERG channel inhibitory activity. Bioorganic and Medicinal Chemistry, 2022, 59, 116657.	1.4	4

# 1332	ARTICLE Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chemical Reviews, 2022, 122, 2292-2352.	IF 23.0	CITATIONS
1333	<i>>o</i> -Acetoxylation of oxo-benzoxazines <i>via</i> C–H activation by palladium(<scp>ii</scp>)/aluminium oxide. New Journal of Chemistry, 2022, 46, 5719-5724.	1.4	2
1334	Hydrothermal water enabling one-pot transformation of amines to alcohols <i>via</i> supported Pd catalysts. Reaction Chemistry and Engineering, 2022, 7, 839-843.	1.9	0
1335	Synthesis, structure, and properties of palladium(<scp>ii</scp>) complex of α-formyl pyrrolyl dipyrromethene. Dalton Transactions, 2022, 51, 5587-5595.	1.6	4
1336	Rh(<scp>iii</scp>)-Catalysed cascade C–H imidization/cyclization of <i>N</i> -methoxybenzamides with isoxazolones for the assembly of dihydroquinazolin-4(1 <i>H</i>)-one derivatives. Organic Chemistry Frontiers, 2022, 9, 1904-1910.	2.3	4
1337	DABCO as a practical catalyst for aromatic halogenation with <i>N</i> -halosuccinimides. RSC Advances, 2022, 12, 7115-7119.	1.7	10
1338	Theoretical study of Ni ^I –Ni ^{III} cycle mediated by heterogeneous zinc in C–N cross-coupling reaction. Physical Chemistry Chemical Physics, 2022, 24, 7617-7623.	1.3	2
1339	Palladium-catalyzed denitrative <i>N</i> -arylation of nitroarenes with pyrroles, indoles, and carbazoles. Organic Chemistry Frontiers, 2022, 9, 2351-2356.	2.3	6
1340	Synthesis of sterically encumbered di- and triarylamines by palladium-catalysed C–N coupling reactions under mild reaction conditions. Catalysis Science and Technology, 2022, 12, 3447-3453.	2.1	4
1341	Nickel-Catalyzed <i>N</i> -Arylation of Diarylamines for Triarylamine Synthesis. Organometallics, 2022, 41, 509-513.	1.1	4
1342	Survey of New, Small-Molecule Isatin-Based Oxindole Hybrids as Multi-Targeted Drugs for the Treatment of Alzheimer's Disease. Synthesis, 0, , .	1.2	4
1343	Development of a Commercial Process for Deucravacitinib, a Deuterated API for TYK2 Inhibition. Organic Process Research and Development, 2022, 26, 1202-1222.	1.3	14
1344	Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions. Accounts of Chemical Research, 2022, 55, 770-782.	7.6	26
1345	lridium-Catalyzed Hydroiodination and Formal Hydroamination of Olefins with <i>N-</i> Iodo Reagents and Molecular Hydrogen: An Umpolung Strategy. Organic Letters, 2022, 24, 1842-1847.	2.4	3
1346	Ruthenium(II) Complexes with (3-Polyamino)phenanthrolines: Synthesis and Application in Sensing of Cu(II) Ions. Chemosensors, 2022, 10, 79.	1.8	4
1347	Tandem Fe/Zn or Fe/In Catalysis for the Selective Synthesis of Primary and Secondary AminesÂvia Selective Reduction of Primary Amides. ChemCatChem, 2022, 14, .	1.8	8
1348	Direct Synthesis of Paracetamol via Site-Selective Electrochemical Ritter-type C–H Amination of Phenol. Organic Letters, 2022, 24, 2310-2314.	2.4	20
1349	Nickel-Catalyzed Reductive Cascade Arylalkylation of Alkenes with Alkylpyridinium Salts. Organic Letters, 2022, 24, 2376-2380.	2.4	6

#	Article	lF	CITATIONS
1350	Iron atalyzed Oxidative Câ^'O and Câ^'N Coupling Reactions Using Air as Sole Oxidant**. Chemistry - A European Journal, 2022, 28, .	1.7	13
1351	Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasmaâ€Liquid Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1352	Diarylation of N- and O-nucleophiles through a metal-free cascade reaction. CheM, 2022, 8, 850-865.	5.8	28
1353	Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catalysis, 2022, 12, 3890-3896.	5.5	23
1354	Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‣iquid Interactions. Angewandte Chemie, 0, , .	1.6	0
1355	Nucleophilic substitution reactions of unbranched alkyl amines using triazine reagents. Tetrahedron Letters, 2022, 93, 153692.	0.7	2
1356	A "Pool and Split―Approach to the Optimization of Challenging Pd-Catalyzed C–N Cross-Coupling Reactions. Journal of Organic Chemistry, 2022, 87, 4400-4414.	1.7	3
1357	Recent advances on copper-catalyzed carbon chalcogenides cross-coupling reactions. Current Organic Synthesis, 2022, 19, .	0.7	1
1358	A new approach to isoindolinones via rhodium(III)â€catalyzed [3+2] annulation reactions of Nâ€methoxybenzamides with bis(tosylamido)methane. European Journal of Organic Chemistry, 0, , .	1.2	1
1359	An Integrated Carbon Nitrideâ€Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide. Angewandte Chemie, 2022, 134, .	1.6	3
1360	1,10â€Phenanthroline Copper(I) Complexes with A3 Coupling to Access Allenes for Cycloaddition Reactions. Asian Journal of Organic Chemistry, 0, , .	1.3	1
1361	An Integrated Carbon Nitrideâ€Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
1362	A Chemo- and Regioselective Tandem [3 + 2]Heteroannulation Strategy for Carbazole Synthesis: Combining Two Mechanistically Distinct Bond-Forming Processes. Journal of Organic Chemistry, 2022, 87, 4603-4616.	1.7	4
1363	Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study. Beilstein Journal of Organic Chemistry, 2022, 18, 251-261.	1.3	2
1364	Recent Progress in Transition Metalâ€Catalyzed Hydrosilaneâ€Mediated Câ^'H Silylation. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
1365	Palladiumâ€Catalyzed Intramolecular Câ^'H Heteroarylation to Access Fused Tricyclic Oxazolo[4,5â€c]Quinolines. Asian Journal of Organic Chemistry, 0, , .	1.3	0
1366	Fine-tuning hydroxylamines as single-nitrogen sources for Pd(0)-catalyzed diamination of o-bromo(or) Tj ETQq0	0 0 rgBT /0	Dverlock 10 T

1367	Alternating Current Electrolysis Enabled Formal Câ^'O/Oâ^'H Crossâ€Metathesis of 4â€Alkoxy Anilines with Alcohols. Angewandte Chemie, 0, , .	1.6	2	
------	--	-----	---	--

#	Article	IF	CITATIONS
1368	Alternating Current Electrolysis Enabled Formal Câ^'O/Oâ^'H Crossâ€Metathesis of 4â€Alkoxy Anilines with Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1369	Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catalysis, 2022, 12, 3752-3766.	5.5	8
1370	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	5.5	72
1371	Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). European Journal of Medicinal Chemistry, 2022, 232, 114201.	2.6	4
1372	Cul Immobilized on Tricationic Ionic Liquid Anchored on Functionalized Magnetic Hydrotalcite (Fe3O4/HT-TIL-Cul) as a Novel, Magnetic and Efficient Nanocatalyst for Ullmann-Type C–N Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2696-2711.	1.9	6
1373	Light-Promoted Low-Valent-Tungsten-Catalyzed Ambient Temperature Amination of Boronic Acids with Nitroaromatics. Journal of Organic Chemistry, 2022, 87, 5303-5314.	1.7	6
1374	Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. Journal of the American Chemical Society, 2022, 144, 6123-6135.	6.6	25
1375	Development of a Commercial Process for Odalasvir. Organic Process Research and Development, 2022, 26, 832-848.	1.3	8
1376	2,2,5,5-Tetramethyloxolane (TMO) as a Solvent for Buchwald–Hartwig Aminations. ACS Sustainable Chemistry and Engineering, 2021, 9, 17330-17337.	3.2	8
1377	Accelerated and Scalable C(sp ³)–H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs. ACS Central Science, 2022, 8, 51-56.	5.3	35
1378	A Simple and Efficient Ligand-Free Copper-Catalyzed C-N Bond Formation of Aryl (Hetero) Halides and <i>N</i> -Heteroaryl Amines. Polycyclic Aromatic Compounds, 2023, 43, 665-673.	1.4	1
1379	Synthesis of Azacarbolines via PhIO ₂ -Promoted Intramolecular Oxidative Cyclization of α-Indolylhydrazones. Journal of Organic Chemistry, 2021, 86, 17918-17929.	1.7	9
1380	The Direct Decarboxylative <i>N</i> -Alkylation of Azoles, Sulfonamides, Ureas, and Carbamates with Carboxylic Acids via Photoredox Catalysis. Organic Letters, 2021, 23, 9563-9568.	2.4	16
1381	Dynamic Control of Photocatalytic Proton Reduction through the Mechanical Actuation of a Hydrogel Host Matrix. Journal of Physical Chemistry Letters, 2021, 12, 12135-12141.	2.1	1
1382	<i>In Situ</i> Formation of Cationic π-Allylpalladium Precatalysts in Alcoholic Solvents: Application to C–N Bond Formation. ACS Catalysis, 2022, 12, 560-567.	5.5	3
1383	Recent Advances in Nonprecious Metal Catalysis. Organic Process Research and Development, 2022, 26, 14-42.	1.3	14
1384	Cobalt-catalyzed Divergent Markovnikov and Anti-Markovnikov Hydroamination. Organic Letters, 2022, 24, 22-26.	2.4	18
1385	A transfer learning protocol for chemical catalysis using a recurrent neural network adapted from natural language processing. , 2022, 1, 303-312.		12

#	Article	IF	CITATIONS
1386	Facile titanium(<scp>IV</scp>) chloride and <scp>TBDâ€mediated</scp> synthesis of <scp> <i>N</i> â€arylâ€substituted </scp> azacycles from arylhydrazines. Bulletin of the Korean Chemical Society, 0, , .	1.0	2
1387	Discovery of Tenapanor: A First-in-Class Minimally Systemic Inhibitor of Intestinal Na ⁺ /H ⁺ Exchanger Isoform 3. ACS Medicinal Chemistry Letters, 2022, 13, 1043-1051.	1.3	6
1388	Preparation of Chiral <scp>DMAP</scp> Derivatives and Investigation on Their Enantioselective Catalytic Activity in Benzazetidine Synthesis and Kinetic Resolutions of Alcohols. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
1389	Nitrogen-bonded ultrasmall palladium clusters over the nitrogen-doped carbon for promoting Suzuki cross-coupling reactions. Advanced Composites and Hybrid Materials, 2022, 5, 1396-1403.	9.9	5
1390	Modern Palladium-Catalyzed Transformations Involving C–H Activation and Subsequent Annulation. ACS Catalysis, 2022, 12, 5217-5230.	5.5	27
1391	Nickel-Catalyzed C–N Cross-Coupling of 4-Chloro-1,8-naphthalimides and Bulky, Primary Alkylamines at Room Temperature. Journal of Organic Chemistry, 2022, 87, 6492-6498.	1.7	8
1392	Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. Journal of the American Chemical Society, 2022, 144, 7852-7860.	6.6	10
1394	Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833.	6.6	102
1395	Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Natural Product Reports, 2022, 39, 1172-1225.	5.2	8
1396	Synthesis of triarylphosphines from arylammonium salts <i>via</i> one-pot transition-metal-free C–P coupling. Organic and Biomolecular Chemistry, 2022, 20, 3897-3901.	1.5	1
1397	Decarboxylative amination of benzoic acids bearing electron-donating substituents and nonactivated amines. Organic Chemistry Frontiers, 2022, 9, 3281-3292.	2.3	3
1398	Enabling room-temperature reductive C–N coupling of nitroarenes: combining homogeneous and heterogeneous synergetic catalyses mediated by light. Green Chemistry, 2022, 24, 4012-4025.	4.6	12
1399	Predicting reaction conditions from limited data through active transfer learning. Chemical Science, 2022, 13, 6655-6668.	3.7	21
1400	Synergistic Approach for Decarboxylative <i>Ortho</i> Câ^'H Aroylation of 2â€Arylâ€pyrido[1,2â€a]pyrimidinâ€4â€ones and Thiazolopyrimidinones by Merging Palladium Catalysis with Photocatalysis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
1401	Metal–Organic Framework Surface Functionalization Enhancing the Activity and Stability of Palladium Nanoparticles for Carbon–Halogen Bond Activation. Inorganic Chemistry, 2022, 61, 6995-7004.	1.9	11
1402	N-Arylation Reaction of 2-Amino-N-phenylbenzamide with Phenyl Boronic Acid via Chan–Evans–Lam (CEL) Type Reaction Using Cu@Phen@MGO Catalyst. Catalysis Letters, 2023, 153, 805-813.	1.4	4
1403	Accelerating reaction generality and mechanistic insight through additive mapping. Science, 2022, 376, 532-539.	6.0	61
1404	Non-innocent electrophiles unlock exogenous base-free coupling reactions. Nature Catalysis, 2022, 5, 324-331.	16.1	6

#	Article	IF	CITATIONS
1405	Free Metallophosphines: Extremely Electronâ€Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angewandte Chemie, 2022, 134, .	1.6	2
1406	Synthesis and anticancer screening of some novel Pd-catalysed 3-methyl indole based analogues on Mia PaCa-2 cell line. Journal of Molecular Structure, 2022, 1264, 133211.	1.8	6
1407	HFIP-promoted intramolecular dearomative annulation of pyridylacetate derivatives to access functionalized 3,4-dihydroquinolizin-2-ones. Tetrahedron, 2022, 116, 132810.	1.0	2
1408	Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism. Nature Communications, 2022, 13, 2432.	5.8	32
1409	Free Metallophosphines: Extremely Electronâ€Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
1410	Chemoselective Primary Amination of Aryl Boronic Acids by P ^{III} /P ^V â•O-Catalysis: Synthetic Capture of the Transient Nef Intermediate HNO. Journal of the American Chemical Society, 2022, 144, 8902-8907.	6.6	20
1411	Supported Palladium Nanoparticles Catalyzed Intermolecular Carbopalladation of Nitriles and Organoboron Compounds. Frontiers in Chemistry, 2022, 10, .	1.8	0
1412	Palladium-Mediated C–N Coupling of DNA-Conjugated (Hetero)aryl Halides with Aliphatic and (Hetero)aromatic Amines. Organic Letters, 2022, 24, 3401-3406.	2.4	10
1413	Illuminating aryl cross-coupling with copper. , 2022, 1, 339-340.		0
1414	Photoinduced Transition-Metal-Free Chan–Evans–Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. Journal of the American Chemical Society, 2022, 144, 9161-9171.	6.6	17
1415	Palladium atalyzed Synthesis of Alkylcarbazoles and Their Identification in Petroleum and Source Rocks**. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
1416	DFT studies on the mechanisms of nickel-catalyzed reductive-coupling cyanation of aryl bromide. Journal of Organometallic Chemistry, 2022, 970-971, 122368.	0.8	2
1417	Design and synthesis of new polyamine quinoline antibiotic enhancers to fight resistant gram-negative P.Âaeruginosa bacteria. European Journal of Medicinal Chemistry Reports, 2022, 5, 100054.	0.6	0
1418	Nickel atalysed Amination of Arenes and Heteroarenes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1419	Liquid-Phase Amination of Phenol to Aniline over the Pd/MgO Catalyst without External Hydrogen Addition. ACS Sustainable Chemistry and Engineering, 2022, 10, 6988-6998.	3.2	8
1420	A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. Journal of the American Chemical Society, 2022, 144, 9149-9160.	6.6	11
1421	Water-soluble diphosphine ligands for rhodium-catalyzed branch-selective hydroaminomethylation of vinyl arenes with anilines in water. Green Chemistry, 2022, 24, 4420-4424.	4.6	9
1422	Copper Nanoclusters for Catalytic Carbon–Carbon and Carbon–Nitrogen Bond Formations. ACS Applied Nano Materials, 0, , .	2.4	3

#	Article	IF	CITATIONS
1423	Synthetic routes to bicyclo[1.1.1]pentylamines: booming toolkits for drug design. Organic Chemistry Frontiers, 2022, 9, 3591-3597.	2.3	10
1424	An air-stable, well-defined palladium–BIAN–NHC chloro dimer: a fast-activating, highly efficient catalyst for cross-coupling. Chemical Communications, 2022, 58, 7404-7407.	2.2	4
1425	Scandium-Catalyzed Benzylic C(sp ³)–H Alkenylation of Tertiary Anilines with Alkynes. Organic Letters, 2022, 24, 3970-3975.	2.4	7
1426	NNO Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics, 2022, 41, 1314-1324.	1.1	11
1427	Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides. Nature Communications, 2022, 13, .	5.8	22
1428	Ring walking as a regioselectivity control element in Pd-catalyzed C-N cross-coupling. Nature Communications, 2022, 13, .	5.8	11
1429	DDQ in mechanochemical C–N coupling reactions. Beilstein Journal of Organic Chemistry, 0, 18, 639-646.	1.3	6
1430	Reusing meta-terphenyl ligands: synthesis, metalation and recycling of 5-pyrrolidino-m-terphenyl. Polyhedron, 2022, , 115947.	1.0	1
1431	Parallel mechanochemical optimization – Buchwald–Hartwig C–N coupling as a test case. Green Chemistry, 2022, 24, 5502-5507.	4.6	3
1432	Ni single atoms on carbon nitride for visible-light-promoted full heterogeneous dual catalysis. Chemical Science, 2022, 13, 8536-8542.	3.7	26
1433	Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. Reaction Chemistry and Engineering, 2022, 7, 1891-1920.	1.9	2
1434	Copper-promoted cross-coupling of nitroarenes with 4-alkyl-1,4-dihydropyridines using a peroxide-driven radical reductive strategy. Organic Chemistry Frontiers, 2022, 9, 4070-4077.	2.3	6
1436	Electronâ€rich silicon containing phosphinanes for rapid Pdâ€catalyzed Câ€X coupling reactions. ChemCatChem, 0, , .	1.8	0
1437	Orthogonal Access to αâ€Îl²â€Branched/Linear Aliphatic Amines by Catalystâ€Tuned Regiodivergent Hydroalkylations. Angewandte Chemie, 2022, 134, .	1.6	4
1438	Aufgabenspezifische Janusâ€Materialien in der heterogenen Katalyse. Angewandte Chemie, 2022, 134, .	1.6	2
1439	Discovery of the N–NHC Coupling Process under the Conditions of Pd/NHC- and Ni/NHC-Catalyzed Buchwald–Hartwig Amination. Organometallics, 2022, 41, 1519-1531.	1.1	8
1440	Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis. CheM, 2022, 8, 2043-2059.	5.8	28
1441	Taskâ€Specific Janus Materials in Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27

#	Article	IF	CITATIONS
1442	Enhanced Reactivity for Aromatic Bromination via Halogen Bonding with Lactic Acid Derivatives. Journal of Organic Chemistry, 2022, 87, 8492-8502.	1.7	7
1443	Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science, 2022, 376, 1433-1441.	6.0	46
1444	Orthogonal Access to αâ€Î²â€Branched/Linear Aliphatic Amines by Catalystâ€Tuned Regiodivergent Hydroalkylations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
1445	Solid-state cross-coupling reactions of insoluble aryl halides under polymer-assisted grinding conditions. Faraday Discussions, 0, , .	1.6	8
1446	Recent Advances Review on Iron Complexes as Catalyst in Oxidation Reactions of Organic Compounds. Asian Journal of Chemistry, 2022, 34, 1921-1938.	0.1	1
1447	Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room Temperature. Journal of the American Chemical Society, 2022, 144, 12052-12061.	6.6	37
1448	Vinylogous Nitro-Haloform Reaction Enables Aromatic Amination. Organic Letters, 2022, 24, 4729-4733.	2.4	1
1449	The Impact of Age on Percutaneous Thrombectomy Outcomes in the Management of Lower Extremity Deep Vein Thrombosis. Haseki Tip Bulteni, 2022, 60, 248-253.	0.2	0
1450	Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen ontaining Molecules. Angewandte Chemie, 2022, 134, .	1.6	6
1451	Underlying Mechanisms of Reductive Amination on Pd-Catalysts: The Unique Role of Hydroxyl Group in Generating Sterically Hindered Amine. International Journal of Molecular Sciences, 2022, 23, 7621.	1.8	4
1453	Development of Environmentally Friendly Dehydrogenative Oxidation Reactions Using Multifunctional Heterogeneous Catalysts. Bulletin of the Chemical Society of Japan, 2022, 95, 1332-1352.	2.0	0
1454	Palladiumâ€Catalyzed Domino Cyclization/Direct Aminosulfonylation Between Aryl lodides and Amines via the Insertion of Sulfur Dioxide. Advanced Synthesis and Catalysis, 2022, 364, 2729-2734.	2.1	3
1455	Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen ontaining Molecules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1456	Nickel-Catalyzed Deaminative Allenylation of Amino Acid Derivatives: Catalytic Activity Enhanced by an Amide-Type NN ₂ Pincer Ligand. Organic Letters, 2022, 24, 5361-5365.	2.4	7
1457	Phenylboronic Ester-Activated Aryl Iodide-Selective Buchwald–Hartwig-Type Amination toward Bioactivity Assay. ACS Omega, 2022, 7, 24184-24189.	1.6	1
1458	Recent advances in visible light-induced C(sp3)–N bond formation. Nature Reviews Chemistry, 2022, 6, 544-561.	13.8	27
1459	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	9.5	23
1460	A facile synthesis of benzimidazole-fused oxazepinoquinolines via Pd-catalysed C N cross-coupling. Tetrahedron Letters, 2022, , 154028.	0.7	1

#	Article	IF	CITATIONS
1461	Discovery of an Orally Bioavailable and Selective PKMYT1 Inhibitor, RP-6306. Journal of Medicinal Chemistry, 2022, 65, 10251-10284.	2.9	10
1462	Recent advances in the application of nanocatalysts in Câ€N coupling reactions. Applied Organometallic Chemistry, 2023, 37, .	1.7	4
1463	General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis. Journal of Organic Chemistry, 2022, 87, 10285-10297.	1.7	25
1464	Preparation of N-Aryl Anthranilic Acid Drugs by Modified Ullmann Coupling Reaction in Ionic Liquids. Russian Journal of Organic Chemistry, 2022, 58, 837-843.	0.3	0
1465	Synthesis of Diarylmethanes via Pd-Catalyzed Coupling of Aryltosylates with Benzyltitanium Reagents. Russian Journal of General Chemistry, 2022, 92, 1340-1347.	0.3	1
1466	Transition Metal-Catalyzed Regioselective Direct C–H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions. Accounts of Chemical Research, 2022, 55, 2123-2137.	7.6	19
1467	Rh(III)â€Catalyzed Nâ€Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of Nâ€Aryl Amides. European Journal of Organic Chemistry, 0, , .	1.2	1
1468	Titanium-Mediated <i>aza</i> -Nazarov Annulation for the Synthesis of N-Fused Tricycles: A General Method to Access Lamellarin Analogues. Journal of Organic Chemistry, 2022, 87, 10319-10332.	1.7	11
1469	Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C–N Cross-Coupling for Triarylamine Synthesis. Organic Letters, 2022, 24, 5817-5824.	2.4	8
1470	Encapsulation Enhances the Catalytic Activity of Câ€N Coupling: Reaction Mechanism of a Cu(I)/Calix[8]arene Supramolecular Catalyst. ChemCatChem, 2022, 14, .	1.8	4
1471	Oxidative Cyclodehydrogenation of Trinaphthylamine: Selective Formation of a Nitrogenâ€Centered Polycyclic l€â€System Comprising 5―and 7â€Membered Rings. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1472	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466.	7.6	52
1473	Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C ₁₆ H ₁₆ INO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, 237, 969-970.	0.1	0
1474	Light-Promoted Nickel-Catalyzed Aromatic Halogen Exchange. ACS Catalysis, 2022, 12, 11089-11096.	5.5	19
1475	Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media. Chemosensors, 2022, 10, 342.	1.8	5
1476	N-Heterocyclic carbene copper complex catalyzed Chan-Evans-Lam reactions of arylboronic acids with azoles and amines. Tetrahedron Letters, 2022, 107, 154074.	0.7	4
1477	Titanium atalyzed Intermolecular Hydroaminoalkylation of Allenes and Methylenecyclopropanes. European Journal of Organic Chemistry, 0, , .	1.2	6
1478	Synthesis of Novel <scp>9â€Amino</scp> /aryl/oxoâ€2â€(het)arylthiazolo[4,5― <i>b</i>]quinolines via Palladium Catalyzed <scp> <i>N</i> â€Arylation </scp> â€cyclization Protocol. Journal of Heterocyclic Chemistry, 0, , .	1.4	1

#	Article	IF	CITATIONS
1479	Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using <i>N</i> -halosuccinimides. Beilstein Journal of Organic Chemistry, 0, 18, 999-1008.	1.3	4
1480	Copper-Catalyzed Reactions of Aryl Halides with N-Nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts, 2022, 12, 911.	1.6	7
1481	Cross oupling of Câ^'H and Nâ^'H Bonds: A Hydrogen Evolution Strategy for the Construction of Câ^'N Bonds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	12
1482	Recent advances in metal catalyst- and oxidant-free electrochemical C-H bond functionalization of nitrogen-containing heterocycles. Frontiers in Chemistry, 0, 10, .	1.8	3
1483	Sonogashira Cross-Coupling of Aryl Ammonium Salts by Selective C–N Activation Catalyzed by Air- and Moisture-Stable, Highly Active [Pd(NHC)(3-CF ₃ -An)Cl ₂] (An = Aniline) Precatalysts. Organic Letters, 2022, 24, 6310-6315.	2.4	14
1484	Multifunctional Catalysis by a One-Dimensional Copper(II) Metal Organic Framework Containing Pre-existing Coordinatively Unsaturated Sites: Intermolecular C–N, C–O, and C–S Cross-Coupling; Stereoselective Intramolecular C–N Coupling; and Aziridination Reactions. Inorganic Chemistry, 2022, 61, 13685-13699.	1.9	15
1485	Synthesis of Nonâ€Symmetric Azoarenes by Palladiumâ€Catalyzed Crossâ€Coupling of Siliconâ€Masked Diazenyl Anions and (Hetero)Aryl Halides. Angewandte Chemie, 0, , .	1.6	2
1486	Synthesis of Nonâ€Symmetric Azoarenes by Palladiumâ€Catalyzed Crossâ€Coupling of Siliconâ€Masked Diazenyl Anions and (Hetero)Aryl Halides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1487	Oxidative Cyclodehydrogenation of Trinaphthylamine: Selective Formation of a Nitrogenâ€Centered Polycyclic Ï€â€System Comprising 5―and 7â€Membered Rings. Angewandte Chemie, 0, , .	1.6	0
1488	Extraction and Complexation Investigation of Palladium(II) by a Nitrilotriacetate-Derived Triamide Ligand. Inorganic Chemistry, 2022, 61, 13293-13305.	1.9	1
1489	Caffeine and theophylline as sustainable, biosourced NHC ligand precursors for efficient palladium-catalyzed Suzuki–Miyaura cross-coupling reactions. Journal of Organometallic Chemistry, 2022, 978, 122489.	0.8	8
1490	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickelâ€Catalyzed Crossâ€Coupling Reactions**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1491	Robustness under parameter and problem domain alterations of Bayesian optimization methods for chemical reactions. Journal of Cheminformatics, 2022, 14, .	2.8	0
1492	Recent Advances in Nâ€Hyrdoxypthalimide: As a Free Radical Initiator and its Applications. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
1493	Direct amidation of ferrocenyl/ phenyl β-chlorocinnamaldehyde assisted by chalcogenide metal carbonyl cluster. Tetrahedron, 2022, 124, 133014.	1.0	10
1494	Explorations into the meso-substituted BODIPY-based fluorescent probes for biomedical sensing and imaging. TrAC - Trends in Analytical Chemistry, 2022, 157, 116771.	5.8	11
1495	A one-pot cascade protocol for diarylation of amines and water. STAR Protocols, 2022, 3, 101700.	0.5	1
1496	N-doped nonalternant aromatic belt <i>via</i> a six-fold annulative double N-arylation. Chemical Science, 2022, 13, 9947-9951.	3.7	11

#	Article	IF	Citations
1497	Cu2o-Catalyzed Ullmann-Type C-N Cross-Coupling Reaction of Carbazole and Aryl Chlorides. SSRN Electronic Journal, 0, , .	0.4	0
1498	Photo-driven metal-free multicomponent reaction between aldehydes, anilines and 4-substituted-DHPs for the synthesis of secondary amines. Green Chemistry, 2022, 24, 7968-7973.	4.6	6
1499	Electrochemically driven oxidative C–H/N–H cross-coupling reactions of cyclic sulfamidate imines with primary anilines and secondary amines. Green Chemistry, 2022, 24, 8377-8385.	4.6	11
1500	Well-defined, air- and moisture-stable palladium–imidazo[1,5- <i>a</i>]pyridin-3-ylidene complexes: a versatile catalyst platform for cross-coupling reactions by L-shaped NHC ligands. Catalysis Science and Technology, 2022, 12, 6581-6589.	2.1	8
1501	Simple arylation. , 2022, , 15-56.		0
1502	Covalent organic framework supported palladium catalysts. Journal of Materials Chemistry A, 2022, 10, 20707-20729.	5.2	16
1503	On-DNA Pd and Cu-Promoted C-N Cross-Coupling Reactions. Methods in Molecular Biology, 2022, , 49-54.	0.4	0
1504	Oxidatively induced reactivity in Rh(<scp>iii</scp>)-catalyzed 7-azaindole synthesis: insights into the role of the silver additive. Chemical Science, 2022, 13, 10707-10714.	3.7	3
1505	Stable and reusable Ni-based nanoparticles for general and selective hydrogenation of nitriles to amines. Chemical Science, 2022, 13, 10914-10922.	3.7	10
1506	LPdCl ₂ (amine) complexes supported by terphenyl phosphanes: applications in aryl amination reactions. Dalton Transactions, 2022, 51, 15734-15740.	1.6	2
1507	Ruthenium-catalyzed reaction of diazoquinones with arylamines to synthesize diarylamines. Organic Chemistry Frontiers, 0, , .	2.3	0
1508	Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 2275.	0.6	3
1509	Highly selective electrophilic B(9)-amination of <i>o</i> -carborane driven by HOTf and HFIP. Organic Chemistry Frontiers, 2022, 9, 4975-4980.	2.3	11
1510	Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 <i>H</i>)-quinazolinones 3 <i>N</i> -substituted. RSC Advances, 2022, 12, 21340-21352.	1.7	1
1511	Directing group strategies in rhodium-catalyzed C–H amination. Organic and Biomolecular Chemistry, 2022, 20, 7554-7576.	1.5	4
1513	Catalytic Access to 4-(sec-Alkyl)Anilines via 1,6-Conjugate Addition of Grignard Reagents to <i>in Situ</i> Generated aza- <i>p</i> -Quinone Methides. Organic Letters, 2022, 24, 6686-6691.	2.4	4
1514	Rh(III)â€Catalyzed Câ^'H Functionalization of <i>Nâ€</i> Nitrosoanilines with <i>α</i> â€&ulfonylcarbenes. Advanced Synthesis and Catalysis, 2022, 364, 3567-3572.	2.1	6
1515	Cu2O-Catalyzed Ullmann-type C N cross-coupling reaction of carbazole and aryl chlorides. Tetrahedron Letters, 2022, , 154140.	0.7	1

#	Article	IF	CITATIONS
1516	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickelâ€Catalyzed Crossâ€Coupling Reactions**. Angewandte Chemie, 2022, 134, .	1.6	5
1517	Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand. Crystals, 2022, 12, 1335.	1.0	0
1518	Palladiumâ€catalyzed Synthesis of Fused Carbo―and Heterocycles. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
1519	Bottom-Up De Novo Synthesis of Porous Organic Polymers with Enone Functionalities as Supports for Pd and Cu Nanoparticles for Catalytic Tandem Synthesis. ACS Applied Nano Materials, 2022, 5, 14296-14310.	2.4	5
1520	Applications of quinoxalineâ€bridged bis(benzimidazolium) salts as ligand sources for the palladiumâ€catalyzed Suzuki and Heck crossâ€coupling reactions in an aqueous medium. Journal of the Chinese Chemical Society, 0, , .	0.8	0
1521	Fe3O4@SiO2Supported Pd (II)-selenoether N-heterocyclic carbene: A highly active and reusable heterogeneous catalyst for C O cross-coupling of alcohols and chloroarenes. Tetrahedron Letters, 2022, 111, 154163.	0.7	5
1522	Catalyst-Tuned Electrophilic Chlorination of Diverse Aromatic Compounds with Sulfuryl Chloride and Regioselective Chlorination of Phenols with Organocatalysts. Journal of Organic Chemistry, 2022, 87, 12558-12573.	1.7	2
1523	Mild Amide <i>N</i> -Arylation Enabled by Nickel-Photoredox Catalysis. Organic Letters, 2022, 24, 7134-7139.	2.4	8
1524	New Route to Glycosylated Porphyrins via Aromatic Nucleophilic Substitution (SNAr)—Synthesis and Cellular Uptake Studies. International Journal of Molecular Sciences, 2022, 23, 11321.	1.8	3
1525	An Unexpended Stereocontrolled Rearrangement of Ethyl 4â€Hydroxyâ€4â€(substituted phenyl)â€2â€butynoate to Tetrasubstituted Alkenes with MeSOCl ₂ . ChemistrySelect, 2022, 7, .	0.7	0
1526	Copper atalyzed C(sp ³)â^'H/Nâ^'H Cross Dehydrogenative Coupling Between Toluene Derivatives and Picolinamides. Asian Journal of Organic Chemistry, 0, , .	1.3	1
1527	Engineering single–atom active sites anchored covalent organic frameworks for efficient metallaphotoredox C N cross–coupling reactions. Science Bulletin, 2022, 67, 1971-1981.	4.3	25
1528	I2-DMSO mediated N1/C5 difunctionalization of anthranils with aryl methyl ketones: A facile access to multicarbonyl compounds. Tetrahedron, 2022, 126, 133057.	1.0	2
1529	Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides. Journal of the American Chemical Society, 2022, 144, 17319-17329.	6.6	48
1530	Enantioselective Synthesis of Nâ^'N Bisindole Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
1531	Copper-catalyzed benzylic C–H amidation of toluene derivatives with N-(8-quinolyl)amides through C(sp [3])–H/N–H cross dehydrogenative coupling. Tetrahedron, 2022, , 133066.	1.0	0
1532	Chemistry of azo-imine based palladium complexes: a brief review. Reviews in Inorganic Chemistry, 2022, .	1.8	0
1533	Postâ€Modification of Amino Acids and Peptides for the Rapid Synthesis of <i>C</i> â€Glycoamino Acids and <i>C</i> â€Glycopeptides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4

#	Article	IF	CITATIONS
1534	Emerging Trends in Cross-Coupling: Twelve-Electron-Based L ₁ Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chemical Reviews, 2022, 122, 16983-17027.	23.0	50
1537	Enantioselective Synthesis of Nâ^'N Bisindole Atropisomers. Angewandte Chemie, 2022, 134, .	1.6	5
1539	Regioselective C(sp ³)–H amidation of 8-methylquinolines with <i>N</i> -hydroxyphthalimides. Chemical Communications, 2022, 58, 13151-13154.	2.2	8
1540	Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment. Nanomaterials, 2022, 12, 3593.	1.9	3
1541	Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C–N Axis via Enantioselective Catalysis. Molecules, 2022, 27, 6583.	1.7	13
1542	Photoinduced Nickel atalyzed Carbon–Heteroatom Coupling**. Chemistry - A European Journal, 2023, 29, .	1.7	13
1543	Atroposelective Synthesis of 2,2′â€Bis(arylamino)â€1,1′â€biaryls by Oxidative Iron(III)―and Phosphoric Acidâ€Catalyzed Câ^'C Coupling of Diarylamines**. Chemistry - A European Journal, 2023, 29, .	1.7	7
1544	Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. Journal of Organic Chemistry, 2022, 87, 13965-13979.	1.7	3
1545	A Novel Palladium-Based Heterogeneous Catalyst for Tandem Annulation: A Strategy for Direct Synthesis of Acridones. Synthesis, 2023, 55, 692-706.	1.2	1
1546	Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. Journal of Organic Chemistry, 2022, 87, 14384-14393.	1.7	1
1547	Synthesis of π-Extended Carbazole Dimers Via Oxidative Cyclization Using DDQ and Sulfonic Acid and Elucidation of the Reaction Mechanism. Journal of Organic Chemistry, 2022, 87, 14855-14860.	1.7	1
1548	Photocatalytic C–H Activation and Amination of Arenes with Nonactivated <i>N</i> -Hydroxyphthalimides Involving Phosphine-Mediated N–O Bond Scission. Journal of Organic Chemistry, 2022, 87, 14588-14595.	1.7	6
1549	Structure–Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings. Journal of the American Chemical Society, 2022, 144, 19635-19648.	6.6	26
1550	Ruthenium-Catalyzed Regioselective Hydrohalogenation of Alkynes Mediated by Trimethylsilyl Triflate. Organic Letters, 2022, 24, 7988-7992.	2.4	6
1552	Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. Molecular Catalysis, 2022, 532, 112699.	1.0	2
1553	A Mechanistic Study of the Cobalt(I)-Catalyzed Amination of Aryl Halides: Effects of Metal and Ligand. Inorganic Chemistry, 2022, 61, 18019-18032.	1.9	4
1554	Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized <i>via</i> Buchwald–Hartwig amination. RSC Advances, 2022, 12, 31976-31984.	1.7	2
1555	Functionalized imidazolium salt: an efficient catalyst for Buchwald–Hartwig type C–N cross-coupling of (hetero)aryl chlorides/bromides with amines under solvent-, inert gas-, and base-free ambience. New Journal of Chemistry, 2022, 46, 22841-22848.	1.4	3

#	Article	IF	CITATIONS
1556	Facile Cî€,O bond cleavage on polynuclear vanadium nitride clusters V ₄ N ₅ ^{â^'} . Physical Chemistry Chemical Physics, 2022, 24, 29765-29771.	1.3	1
1557	Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coordination Chemistry Reviews, 2023, 476, 214928.	9.5	28
1558	Comparative Screening of DalPhos/Ni Catalysts in Câ€N Cross ouplings of (Hetero)aryl Chlorides Enables Development of Aminopyrazole Cross ouplings with Amine Base. Chemistry - A European Journal, 2023, 29, .	1.7	9
1559	A Photoinduced, Nickelâ€Catalyzed Reaction for the Stereoselective Assembly of <i>Câ€</i> Linked Glycosides and Glycopeptides. Angewandte Chemie, 2023, 135, .	1.6	2
1560	A Photoinduced, Nickelâ€Catalyzed Reaction for the Stereoselective Assembly of <i>Câ€</i> Linked Glycosides and Glycopeptides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1561	Structure–Activity Studies of 1 <i>H</i> -Imidazo[4,5- <i>c</i>]quinolin-4-amine Derivatives as A ₃ Adenosine Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2022, 65, 15238-15262.	2.9	6
1562	High-Throughput Synthetic Chemistry in Academia: Case Studies in Overcoming Barriers through Industrial Collaborations and Accessible Tools. ACS Symposium Series, 0, , 35-57.	0.5	0
1563	Roomâ€Temperature Dialkylamination of Chloroheteroarenes Using a Cu(II)/PTABS Catalytic System. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
1564	Ironâ€catalyzed construction of cyanomethylated thiohydantoins by crossâ€dehydrogenative C(sp ³)â€C(sp ³) coupling. Journal of Heterocyclic Chemistry, 2023, 60, 449-457.	1.4	2
1565	Asymmetric transformations enabled by synergistic dual transition-metal catalysis. Chem Catalysis, 2023, 3, 100455.	2.9	30
1566	Copper hydride catalysis enables facile access to fluorinated α-chiral tertiary trialkylamines. Chem Catalysis, 2022, 2, 2802-2804.	2.9	0
1567	Palladium catalyzed amidation of phenyl carboxylates and anilines using aqueous micellar catalysis. Tetrahedron Letters, 2023, 114, 154242.	0.7	4
1568	A General C–N Cross-Coupling to Synthesize Heteroaryl Amines Using a Palladacyclic N-Heterocyclic Carbene Precatalyst. Organic Letters, 2022, 24, 8688-8693.	2.4	5
1569	Substitution pattern in ruthenium octa-n-butoxyphthalocyanine complexes influence their reactivity in N–H carbene insertions. Organic and Biomolecular Chemistry, 2022, 21, 69-74.	1.5	3
1570	Exploring visible light for carbon–nitrogen and carbon–oxygen bond formation <i>via</i> nickel catalysis. Organic Chemistry Frontiers, 2023, 10, 548-569.	2.3	15
1571	Discovering the role of N-heterocyclic carbene as hydrogen borrowing organocatalyst: metal-free, direct <i>N</i> -alkylation of amines with benzyl alcohols. Organic Chemistry Frontiers, 2023, 10, 730-744.	2.3	7
1572	Selective Buchwald–Hartwig arylation of <i>C</i> -amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorganic Chemistry Frontiers, 2022, 10, 218-239.	3.0	4
1573	Ring-expansion from tellurophenes to telluropyrans: inhibition of C–Te bond cleavages in transition metal-catalyzed reactions. Organic Chemistry Frontiers, 2022, 10, 54-61.	2.3	5

#	Article	IF	CITATIONS
1574	Synthesis, characterization, catalytic reduction of Eosin B dye and C, N cross coupling reactions of sodiumalginate/V2O5 nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 2023, 142, 104613.	2.7	1
1575	High Regioselectivity Ferrocenyl Cyclohexene/Cyclopentene Ferrocene Isomerization through Benzynes Transfer Coupling. Organic Chemistry Frontiers, 0, , .	2.3	0
1576	C–N bond metathesis: mechanistic insight into palladium-catalyzed ring-closing using aminal species. Organic Chemistry Frontiers, 2022, 10, 181-188.	2.3	3
1577	Sustainable and practical formation of carbon–carbon and carbon–heteroatom bonds employing organo-alkali metal reagents. Chemical Science, 2023, 14, 1342-1362.	3.7	7
1578	Bimetal-containing covalent organic framework boosted photocatalytic amination. Science China Chemistry, 2023, 66, 299-300.	4.2	1
1579	PTABS: A Unique Water-Soluble π-Acceptor Caged Phosphine. Synlett, 0, , .	1.0	2
1580	Reduced-Phenalenyl-Based Molecule as a Super Electron Donor for Radical-Mediated C–N Coupling Catalysis at Room Temperature. Journal of the American Chemical Society, 2022, 144, 22611-22621.	6.6	13
1582	Intensified Hydrogenation in Flow Using a Poly(β-cyclodextrin) Network-Supported Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 15987-15998.	3.2	2
1583	Highly efficient synthesis of indoline via palladium catalyzed C–H amination of C(sp2)–H bond using tert-butyl peroxybenzoate as an oxidant. Tetrahedron, 2022, , 133206.	1.0	1
1584	The Asymmetric Buchwald–Hartwig Amination Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1585	Photocatalyst-engineering-promoted sulfonamidation of aryl halides via metallaphotoredox. Chem Catalysis, 2022, 2, 3280-3282.	2.9	1
1586	Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics, 2022, 41, 3861-3871.	1.1	2
1587	On the Edge of the Known: Extremely Electronâ€rich (Di)carboranyl Phosphines. Angewandte Chemie, 0, ,	1.6	0
1588	Discovery and Development of a Highly Potent, Orally Bioavailable Estrogen Receptor Full Antagonist and Degrader: Giredestrant (GDC-9545) for Estrogen Receptor-Positive Breast Cancer. ACS Symposium Series, 0, , 143-171.	0.5	0
1589	Organophotoredox-Catalyzed Cross-Dehydrogenative Sulfonamidation of Indoles and Other Heterocycles. Journal of Organic Chemistry, 2023, 88, 9599-9614.	1.7	2
1590	Development and Optimization of the Manufacturing Process for RNA-Splicing Modifier Risdiplam RG7916. ACS Symposium Series, 0, , 301-332.	0.5	1
1591	Buchwald–Hartwig Amination and C–S/S–H Metathesis of Aryl Sulfides by Selective C–S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] ₂ Precatalysts: Unified Mechanism for Activation of Inert C–S Bonds. Organic Letters, 2022, 24, 9210-9215.	2.4	7
1592	On the Edge of the Known: Extremely Electronâ€Rich (Di)Carboranyl Phosphines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7

#	Article	IF	CITATIONS
1593	Aerobic Electrochemical C _{sp³} –N Coupling between Aliphatic Carboxylic Acids and N-heterocycles. Organometallics, 0, , .	1.1	0
1594	Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catalysis, 2022, 12, 15590-15599.	5.5	23
1595	1,3â€Diynes: A Versatile Precursor in Transitionâ€Metal Catalyzed (Mediated) Câ^'H Functionalizations. Chemical Record, 2023, 23, .	2.9	4
1596	The Asymmetric Buchwald–Hartwig Amination Reaction. Angewandte Chemie, 0, , .	1.6	0
1597	Transitionâ€metalâ€free Synthesis of <i>tetra</i> â€substituted Vinyl Iodides by Cascade Sequential Reaction of αâ€Keto Acids, 1â€lodoalkynes, and Alkyl Halides. Chemistry - an Asian Journal, 2023, 18, .	1.7	0
1598	Synthetic Strategies for Versatile Thioester Building Blocks. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
1599	Design and application of a novel and effective ligand for the Cu-catalyzed amination of aryl halides in water. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	1
1600	Cu(BF ₄) ₂ /AC-Catalyzed Synthesis of <i>N</i> -Substituted Anilines, <i>N</i> -Substituted 1,6-Naphthyridin-5(6 <i>H</i>)-one, and Isoquinolin-1(2 <i>H</i>)-one. ACS Omega, 2022, 7, 46174-46182.	1.6	0
1601	Palladium-catalyzed cross-couplings in the synthesis of agrochemicals. , 2022, 1, 125-138.		11
1602	Catalyst-Free Decarboxylative Amination of Carboxylic Acids in Water Microdroplets. Journal of the American Chemical Society, 2023, 145, 32-36.	6.6	25
1603	Paired electrochemical C–H bromination of (hetero)arenes with 2-bromoethan-1-ol. Organic Chemistry Frontiers, 2023, 10, 990-995.	2.3	27
1604	Montmorillonite K10 catalyzed facile synthesis of N-substituted indoles from primary amine and Morita–Baylis–Hillman acetate of cyclohexenone. Green Chemistry, 0, , .	4.6	0
1605	Palladium-Catalyzed C-N Coupling in the Synthesis of Benzodiazepines. Current Organic Chemistry, 2023, 26, 1993-2004.	0.9	1
1606	Formal Alkenylation and Amination of 2â€Nitrobenzofurans with Fumaric Acid Amide Ester under Metalâ€Free Conditions. ChemistrySelect, 2023, 8, .	0.7	0
1607	Machine Learning C–N Couplings: Obstacles for a General-Purpose Reaction Yield Prediction. ACS Omega, 2023, 8, 3017-3025.	1.6	11
1608	Chemoenzymatic Synthesis of Phenol Diarylamine Using Non-Heme Diiron <i>N</i> -Oxygenase. ACS Catalysis, 2023, 13, 1412-1417.	5.5	2
1609	Noble-Free Nanophotocatalyst of Ti <i>_x</i> Fe <i>_y</i> La <i>_m</i> O <i>_z</i> for Efficient Photocatalytic C–N Cross-Coupling Reactions under Visible Light. ACS Applied Nano Materials, 2023, 6, 1106-1118.	2.4	2
1610	Addition of Alcohols onto Electron Deficient Heteroarenium Salts: A Reversible Covalent Bonding Process under Basic Condition. Synlett, 0, , .	1.0	0

#	Article	IF	CITATIONS
1611	VSe _{2–<i>x</i>} O _{<i>x</i>} @Pd Sensor for Operando Self-Monitoring of Palladium-Catalyzed Reactions. Jacs Au, 2023, 3, 468-475.	3.6	4
1612	Metal-free visible light mediated direct C–H amination of benzoxazole with secondary amines. Molecular Diversity, 2024, 28, 61-71.	2.1	7
1613	A Planarâ€Chiral Palladium Complex Derived from a Weak Oxygen Donor <i>N,N</i> â€Diisopropyl Ferrocenecarboxamide Ligand. ChemistrySelect, 2023, 8, .	0.7	1
1614	Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation. Molecules, 2023, 28, 356.	1.7	0
1616	Palladium-Catalyzed C-N Coupling in the Synthesis of 1,4-Benzodiazepines Fused with 5-Membered Carbo- and Heterocycles. Current Organic Chemistry, 2023, 26, 1827-1847.	0.9	2
1617	Zn(II)-Catalyzed Selective <i>N</i> -Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. Journal of Organic Chemistry, 2023, 88, 771-787.	1.7	11
1618	Efficient and Reusable Benzimidazole Based Sulphonic Acid Functionalized Porphyrin Photocatalyst for C–N Bond Formation Under Visible Light Irradiation. Catalysis Letters, 2023, 153, 3230-3255.	1.4	3
1619	Direct Activation of the C(sp ³)–NH ₂ Bond of Primary Aliphatic Alkylamines by a High-Valent Co ^{III,IV} ₂ (μ-O) ₂ Diamond Core Complex. Journal of the American Chemical Society, 2023, 145, 2690-2697.	6.6	0
1620	HFIP-assisted reductive C–S, C–N, and C–X coupling of carbonyl compounds: a combined computational and experimental mechanistic study. Organic Chemistry Frontiers, 2023, 10, 1275-1282.	2.3	4
1621	A Unified, Microwaveâ€Assisted, Palladiumâ€Catalyzed Regioselective Orthoâ€monohalogenation of 1â€Alkyl/benzylâ€3â€Phenylquinoxalinâ€2(1 <i>H</i>)â€ones. ChemistrySelect, 2023, 8, .	0.7	2
1622	Formal [4+1] heteroannulative coupling of Knoevenagel adducts derived from 2-heteroaryl acetonitriles with isocyanides: subsequent Pd-catalyzed intramolecular <i>N</i> -arylation to 6-5-5-5-6 pentacyclic cores. New Journal of Chemistry, 2023, 47, 4944-4948.	1.4	3
1623	Tandem electrocatalytic aziridination – ring expansion of simple aromatic olefins using ammonia and carbon dioxide. Green Chemistry, 2023, 25, 978-985.	4.6	6
1624	Steric and electronic effects of arsa-Buchwald ligands on Suzuki–Miyaura coupling reaction. Dalton Transactions, 2023, 52, 2838-2844.	1.6	2
1625	Pd-Catalyzed Amination of Base-Sensitive Five-Membered Heteroaryl Halides with Aliphatic Amines. Journal of the American Chemical Society, 2023, 145, 3323-3329.	6.6	17
1626	Sodium-iodide-promoted nickel-catalyzed C–N cross-coupling of aryl chlorides and <i>N</i> -nucleophiles under visible-light irradiation. Green Chemistry, 2023, 25, 2361-2367.	4.6	5
1627	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	23.0	112
1628	Cu-Catalyzed C-C Coupling Reactions. Topics in Organometallic Chemistry, 2023, , .	0.7	1
1629	HATâ€Promoted Electrochemical Amination: C(<i>sp</i> ²)â^'H/Nâ^'H Cross Dehydrogenative Coupling. Advanced Synthesis and Catalysis, 2023, 365, 747-752.	2.1	4

#	Article	IF	CITATIONS
1630	Synthesis of hybrid POSS based heterogeneous catalysts for N-alkylation of amines with alcohols. Journal of Molecular Structure, 2023, 1279, 134999.	1.8	1
1631	Cu(<scp>i</scp>)-catalysed cross-coupling reaction of <i>in situ</i> generated azomethine ylides towards easy construction of fused N-heterocycles. Chemical Communications, 2023, 59, 4664-4667.	2.2	2
1632	<i>N</i> , <i>N</i> ′-Dimethylurea as an efficient ligand for the synthesis of pharma-relevant motifs through Chan–Lam cross-coupling strategy. Organic and Biomolecular Chemistry, 2023, 21, 3143-3155.	1.5	0
1633	From a Fluorenyl Substituted Ylideâ€Functionalized Phosphine to a Neutral Phosphide via Pâ^'C Bond Cleavage. ChemPlusChem, 2023, 88, .	1.3	0
1634	In Situ Probing and Identification of Electrochemical Reaction Intermediates by Floating Electrolytic Electrospray Mass Spectrometry. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1635	In Situ Probing and Identification of Electrochemical Reaction Intermediates by Floating Electrolytic Electrospray Mass Spectrometry. Angewandte Chemie, 2023, 135, .	1.6	0
1636	Accelerated Synthesis of Bicyclo[1.1.1]pentylamines: A High-Throughput Approach. Organic Letters, 2023, 25, 771-776.	2.4	0
1637	Unsupported Copper Nanoparticles in the Arylation of Amines. Catalysts, 2023, 13, 331.	1.6	5
1638	V-shaped donor–acceptor organic emitters. A new approach towards efficient TADF OLED devices. Chemical Communications, 2023, 59, 2815-2818.	2.2	3
1639	Mechanistic Insight into Cu-Catalyzed C–N Coupling of Hindered Aryl Iodides and Anilines Using a Pyrrol-ol Ligand Enables Development of Mild and Homogeneous Reaction Conditions. ACS Catalysis, 2023, 13, 2904-2915.	5.5	9
1640	Nitroarenes and nitroalkenes as potential amino sources for the synthesis of N-heterocycles. Organic and Biomolecular Chemistry, 2023, 21, 2254-2271.	1.5	15
1641	Direct <i>N</i> â^'H Activation to Generate Nitrogen Radical for Arylamine Synthesis via Quantum Dots Photocatalysis. Angewandte Chemie, 2023, 135, .	1.6	1
1642	Direct <i>N</i> â^'H Activation to Generate Nitrogen Radical for Arylamine Synthesis via Quantum Dots Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1643	Organophotocatalytic Mechanisms: Simplicity or NaÃ ⁻ vety? Diverting Reactive Pathways by Modifications of Catalyst Structure, Redox States and Substrate Preassemblies. ChemCatChem, 2023, 15, .	1.8	15
1644	Electrochemical C–N coupling of CO ₂ and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chemical Society Reviews, 2023, 52, 2193-2237.	18.7	47
1645	Development of New Reactions Driven by N–O Bond Cleavage: from O-Acyl Hydroxylamines to Tetrodotoxin. Synlett, 0, , .	1.0	0
1646	Synthesis of mono-, di- and tripalladated 1,3,5-benzenetristyryl complexes. CO insertion to give a dipalladated indenone. Dalton Transactions, 2023, 52, 3786-3794.	1.6	0
1647	Utilization of Aryl(TMP)iodonium Salts for Copper-Catalyzed <i>N</i> -Arylation of Isatoic Anhydrides: An Avenue to Fenamic Acid Derivatives and <i>N,N</i> ′-Diarylindazol-3-ones. Journal of Organic Chemistry, 2023, 88, 3567-3581.	1.7	2

#	Article	IF	CITATIONS
1648	A Convergent Synthesis of HPK1 Inhibitor GNE-6893 via Palladium-Catalyzed Functionalization of a Tetrasubstituted Isoquinoline. Organic Process Research and Development, 2023, 27, 523-529.	1.3	2
1649	Important Role of NH-Carbazole in Aryl Amination Reactions Catalyzed by 2-Aminobiphenyl Palladacycles. ACS Catalysis, 2023, 13, 3934-3948.	5.5	2
1650	Transition Metal atalyzed Câ^'H Functionalization Through Electrocatalysis. ChemSusChem, 2023, 16, .	3.6	7
1651	Oxadiazolopyridine Derivatives as Efficacious Mitochondrial Uncouplers in the Prevention of Diet-Induced Obesity. Journal of Medicinal Chemistry, 2023, 66, 3876-3895.	2.9	5
1652	Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 6823-6837.	6.6	22
1653	From Dinitrogen to Nâ€Containing Organic Compounds: Using Li ₂ CN ₂ as a Synthon. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
1654	From Dinitrogen to Nâ€Containing Organic Compounds: Using Li ₂ CN ₂ as a Synthon. Angewandte Chemie, 2023, 135, .	1.6	0
1655	Synthesis, X-ray Structure, and Catalytic Activity in the Hydrosilylation Process of Platinum Complexes Bearing Buchwald Ligands. Organometallics, 2023, 42, 2447-2452.	1.1	4
1656	Photoinduced copper-catalyzed enantioselective coupling reactions. Chemical Society Reviews, 2023, 52, 2358-2376.	18.7	24
1657	Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts, 2023, 13, 581.	1.6	2
1658	A general catalyst for Buchwald-Hartwig amination to prepare secondary five-membered heteroaryl amines with breaking the base barrier. Journal of Catalysis, 2023, 422, 36-42.	3.1	1
1659	Room-Temperature Cu-Catalyzed Amination of Aryl Bromides Enabled by DFT-Guided Ligand Design. Journal of the American Chemical Society, 2023, 145, 6966-6975.	6.6	23
1660	Elucidating the reaction mechanism of a palladium-palladium dual catalytic process through kinetic studies of proposed elementary steps. Communications Chemistry, 2023, 6, .	2.0	3
1661	Polystyrene Supported Pyrazole-based Palladium Catalysts/Precatalysts for Acceptorless Dehydrogenative Coupling of Alcohols in Water. Catalysis Letters, 2024, 154, 737-748.	1.4	1
1662	Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening. Organic and Biomolecular Chemistry, 2023, 21, 3132-3142.	1.5	2
1663	An Intramolecular Radical C–N Coupling by N-Iodosuccinimide. Synthesis, 2024, 56, 585-596.	1.2	1
1664	Unsymmetric N-heterocyclic carbene ligand enabled nickel-catalysed arylation of bulky primary and secondary amines. Chemical Science, 0, , .	3.7	2
1665	The Merger of Aryl Radical-Mediated Halogen-Atom Transfer (XAT) and Copper Catalysis for the Modular Cross-Coupling-Type Functionalization of Alkyl Iodides. ACS Catalysis, 2023, 13, 4985-4991.	5.5	12

#	Article	IF	CITATIONS
1666	Nickel atalyzed Chemoselective Arylation of Amino Alcohols. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1667	Nickelâ€Catalyzed Chemoselective Arylation of Amino Alcohols. Angewandte Chemie, 0, , .	1.6	Ο
1668	Recent Advances in Carbonâ€Nitrogen/Carbonâ€Oxygen Bond Formation Under Transitionâ€Metalâ€Free Conditions. Chemical Record, 2023, 23, .	2.9	4
1669	Rh(III)-Catalyzed Atroposelective C–H Iodination of 1-Aryl Isoquinolines. ACS Catalysis, 2023, 13, 5127-5134.	5.5	10
1670	Structural authentication of intermediates of mechanistic significance in palladium- and nickel-catalysed cross-couplings: case studies. Chemical Communications, 0, , .	2.2	1
1671	N,N-Dialkylation of Acyl Hydrazides with Alcohols Catalyzed by Amidato Iridium Complexes via Borrowing Hydrogen. Organometallics, 2023, 42, 2623-2631.	1.1	3
1672	Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines. Nature Communications, 2023, 14, .	5.8	5
1673	General access to cubanes as benzene bioisosteres. Nature, 2023, 618, 513-518.	13.7	36
1674	Efficient synthesis of 5-aryl-5H-pyrido[2′,1′:2,3]imidazo[4,5-b]indoles by double C N coupling reactions using HKUST-1 as recyclable heterogeneous catalyst under air. Tetrahedron Letters, 2023, , 154504.	0.7	1
1675	CHâ€Functionalization of Heterocycles with the Formation of Câ^'O, Câ^'N, Câ^'S/Se, and Câ^'P Bonds by Intermolecular Addition of Heteroatomâ€Centered Radicals. Advanced Synthesis and Catalysis, 2023, 365, 1714-1755.	2.1	4
1676	Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design. ACS Catalysis, 2023, 13, 5697-5711.	5.5	3
1677	Orthometallated Pd(<scp>ii</scp>) C^N^S pincer complex catalyzed sustainable synthesis of bis(indolyl)methanes <i>via</i> acceptorless dehydrogenative coupling of alcohols. Catalysis Science and Technology, 2023, 13, 3358-3365.	2.1	4
1678	Prospects and challenges for nitrogen-atom transfer catalysis. Nature Reviews Chemistry, 2023, 7, 424-438.	13.8	11
1679	Heterogeneously Catalyzed Selective Acceptorless Dehydrogenative Aromatization to Primary Anilines from Ammonia via Concerted Catalysis and Adsorption Control. Jacs Au, 2023, 3, 1376-1384.	3.6	1
1680	Niâ€Catalyzed Photochemical Câ^'N Coupling of Amides with (Hetero)aryl Chlorides. Chemistry - A European Journal, 2023, 29, .	1.7	14
1681	Site- and Stereoselective Synthesis of Alkenyl Chlorides by Dual Functionalization of Internal Alkynes via Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2023, 145, 9876-9885.	6.6	7
1689	Aryl fluorosulfates: powerful and versatile partners in cross-coupling reactions. RSC Advances, 2023, 13, 13642-13654.	1.7	6
1696	Cu-Catalyzed C(sp ³) Amination of Unactivated Secondary Alkyl Iodides Promoted by Diaryliodonium Salts. Organic Letters, 2023, 25, 3750-3754.	2.4	3

#	Article	IF	CITATIONS
1698	Aqueous mediated iodine catalyzed C–N coupling followed by C–C coupling towards 5 <i>H</i> -pyrazino[2,3- <i>b</i>]indoles. Chemical Communications, 2023, 59, 7771-7774.	2.2	0
1702	Tungsten-doping promoted catalytic activity of polyaniline-supported palladium for the Suzuki–Miyaura coupling reaction. Catalysis Science and Technology, 2023, 13, 3791-3795.	2.1	2
1704	A Streamlined, Green, and Sustainable Synthesis of the Anticancer Agent Erdafitinib. Organic Letters, 2023, 25, 4308-4312.	2.4	0
1709	Übergangsmetallkatalysierte Kupplungsreaktionen. , 2023, , 615-751.		0
1710	Total Syntheses of Cinchona Alkaloids via Photoredox-Catalyzed Deoxygenative Arylation. Organic Letters, 2023, 25, 4586-4591.	2.4	2
1716	Applications of palladium-catalyzed C–N cross-coupling reactions in pharmaceutical compounds. RSC Advances, 2023, 13, 18715-18733.	1.7	8
1726	Palladium-catalyzed and norbornene-mediated C–H amination and C–O alkenylation of aryl triflates. Organic and Biomolecular Chemistry, 2023, 21, 4398-4403.	1.5	3
1731	<i>Syn</i> - <i>versus anti</i> -carbopalladation of alkynes with organoborons: access to indoles symmetrically and unsymmetrically substituted on their 2,3-positions. Chemical Communications, 2023, 59, 6873-6876.	2.2	0
1739	Completely <i>o</i> -Phenylene Bridged <i>N</i> ⁴ -Cyclophane: A Missing Link in the Phenylene Bridge <i>N</i> ⁴ -Cyclophane Family. Organic Letters, 2023, 25, 3946-3950.	2.4	0
1747	Targeting the Estrogen Receptor for the Treatment of Breast Cancer: Recent Advances and Challenges. Journal of Medicinal Chemistry, 2023, 66, 8339-8381.	2.9	13
1751	Iron-Catalyzed Intermolecular C–N Cross-Coupling Reactions via Radical Activation Mechanism. Journal of the American Chemical Society, 2023, 145, 14599-14607.	6.6	4
1752	Dipolar Microenvironment Enhanced Catalytic Activity of Pd Nanoparticles in MOF Channel. ACS Sustainable Chemistry and Engineering, 2023, 11, 10219-10224.	3.2	0
1755	Nickel-Catalyzed Reductive Decarboxylative/Deaminative Glycosylation of Activated Aliphatic Acids and Primary Amines. Organic Letters, 2023, 25, 5022-5026.	2.4	1
1782	Classic <i>vs.</i> C–H functionalization strategies in the synthesis of APIs: a sustainability comparison. Green Chemistry, 2023, 25, 7916-7933.	4.6	2
1793	Organic photoredox-catalyzed oxidative azolation of unactivated fluoroarenes. Organic and Biomolecular Chemistry, 2023, 21, 6503-6508.	1.5	0
1813	Comproportionation and disproportionation in nickel and copper complexes. Chemical Society Reviews, 2023, 52, 6601-6616.	18.7	7
1822	Nickel and light combine for amine synthesis. , 0, , .		0
1834	Synthesis of Benzimidazole Fused Poly-heterocycles <i>via </i> Oxidant Free Cu-Catalyzed Dehydrogenative C-N Coupling and Photophysical Studies. Chemical Communications, 0, , .	2.2	0

#	Article	IF	CITATIONS
1844	Facile Access to 5H-thiazolo[2',3':2,3]imidazo[4,5-b]indole derivatives by two-fold Cu-catalysed C-N coupling reactions. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1893	Synthesis of Amines from a Sustainable Perspective in Deep Eutectic Solvents, and Applications of Amines in Different Areas. , 2023, , 278-307.		0
1894	First Atroposelective Chan–Lam Coupling for the Synthesis of C–N Linked Biaryls. Chemical Communications, 0, , .	2.2	1
1907	Catalytic amination of polychloroarenes promoted by the Buchwald ligands. Russian Chemical Bulletin, 2023, 72, 2749-2753.	0.4	0
1914	Borataalkenes, boraalkenes, and the η ² -B,C coordination mode in coordination chemistry and catalysis. Chemical Society Reviews, 2024, 53, 1915-1935.	18.7	0
1916	Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Topics in Current Chemistry, 2024, 382, .	3.0	0
1941	The low loading of metal in metal–organic framework-derived NiN _{<i>x</i>} @NC promotes amide formation through C–N coupling. Chemical Communications, 2024, 60, 2544-2547.	2.2	0
1954	Stimuli-responsive luminescence from polar cyano/isocyano-derived luminophores <i>via</i> structural tailoring and self-assembly. Dalton Transactions, 2024, 53, 5320-5341.	1.6	0
1963	Asymmetric Dual Catalytic Processes: Transition Metal Catalysis and Photoredox Catalysis. , 2024, , .		0