Split form nodal discontinuous Galerkin schemes with s the compressible Euler equations

Journal of Computational Physics 327, 39-66 DOI: 10.1016/j.jcp.2016.09.013

Citation Report

#	ARTICLE	IF	CITATIONS
1	Tensor-Product Summation-by-Parts Operators. , 2017, , .		2
2	High-Order, Entropy-Conservative Discretizations of the Euler Equations for Complex Geometries. , 2017, , .		5
3	An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. Journal of Computational Physics, 2017, 340, 200-242.	1.9	75
4	Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM - International Journal on Geomathematics, 2017, 8, 85-133.	0.7	27
5	Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy. Journal of Computational Physics, 2017, 330, 902-923.	1.9	6
6	An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids. Applied Mathematics and Computation, 2017, 314, 257-286.	1.4	7
7	An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations. Journal of Computational Physics, 2017, 348, 754-775.	1.9	44
8	On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence. Journal of Computational Physics, 2017, 330, 615-623.	1.9	105
9	Interior Penalties for Summation-by-Parts Discretizations of Linear Second-Order Differential Equations. Journal of Scientific Computing, 2018, 75, 1385-1414.	1.1	7
10	Generalised summation-by-parts operators and variable coefficients. Journal of Computational Physics, 2018, 362, 20-48.	1.9	29
11	Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics. Deutsche Mathematiker Vereinigung Jahresbericht, 2018, 120, 153-219.	0.4	4
12	On the order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-Parts Form. SIAM Journal on Numerical Analysis, 2018, 56, 1048-1063.	1.1	18
13	Well-posed and stable transmission problems. Journal of Computational Physics, 2018, 364, 95-110.	1.9	9
14	Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. Journal of Computational Physics, 2018, 356, 410-438.	1.9	74
15	Physically consistent formulations for kinetic energy preservation by quasi-skew-symmetric forms. , 2018, , .		1
16	Conservative and Stable Degree Preserving SBP Operators for Non-conforming Meshes. Journal of Scientific Computing, 2018, 75, 657-686.	1.1	16
17	The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss–Lobatto points. Journal of Computational Physics, 2018, 363, 1-10.	1.9	19
18	Dispersion-Dissipation Analysis for Advection Problems with Nonconstant Coefficients: Applications to Discontinuous Galerkin Formulations. SIAM Journal of Scientific Computing, 2018, 40, A747-A768.	1.3	24

~			~	
		ON	REPC	NDT
\sim	плп		NLFC	ואנ

#	Article	IF	CITATIONS
19	On discretely entropy conservative and entropy stable discontinuous Galerkin methods. Journal of Computational Physics, 2018, 362, 346-374.	1.9	89
20	Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms. Journal of Computational Physics, 2018, 353, 193-227.	1.9	31
21	Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES. Computers and Fluids, 2018, 169, 349-364.	1.3	39
22	Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations. Journal of Scientific Computing, 2018, 76, 216-242.	1.1	47
23	Stability of Overintegration Methods for Nodal Discontinuous Galerkin Spectral Element Methods. Journal of Scientific Computing, 2018, 76, 426-442.	1.1	13
24	Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods. Journal of Scientific Computing, 2018, 75, 1262-1281.	1.1	19
25	Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators. Journal of Scientific Computing, 2018, 75, 83-110.	1.1	26
26	Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 2215-2245.	0.8	18
27	A localised dynamic closure model for Euler turbulence. International Journal of Computational Fluid Dynamics, 2018, 32, 326-378.	0.5	3
28	Kinetic energy and entropy preserving schemes for compressible flows by split convective forms. Journal of Computational Physics, 2018, 375, 823-853.	1.9	60
29	An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs. Journal of Computational Physics, 2018, 375, 447-480.	1.9	30
30	An Entropy Stable hÂ/Âp Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property. Journal of Scientific Computing, 2018, 77, 689-725.	1.1	39
31	A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. Journal of Computational Physics, 2018, 372, 1-21.	1.9	69
32	Low Reynolds number airfoil aerodynamics: three different flow patterns within an angle of attack range of four degrees. , 2018, , .		2
33	Comparative Fourier Analysis of DG, FD and Compact Difference schemes. , 2018, , .		5
34	High-Order Artificial Dissipation Operators Possessing the Summation-By-Parts Property. , 2018, , .		3
36	The BR1 Scheme is Stable for the Compressible Navier–Stokes Equations. Journal of Scientific Computing, 2018, 77, 154-200.	1.1	72
37	Skew-Symmetric Entropy Stable Modal Discontinuous Galerkin Formulations. Journal of Scientific Computing, 2019, 81, 459-485.	1.1	20

#	Article	IF	CITATIONS
38	Progress in CFD Discretizations, Algorithms and Solvers for Aerodynamic Flows. , 2019, , .		5
39	Computer and laboratory studies on the aerodynamics of the NACA 65(1)-412 at Reynolds number 20 000. , 2019, , .		2
41	Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids. Journal of Computational Science, 2019, 36, 101008.	1.5	4
42	A hybridized discontinuous Galerkin method for a linear degenerate elliptic equation arising from two-phase mixtures. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 315-336.	3.4	5
43	A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction. Journal of Computational Physics, 2019, 387, 245-279.	1.9	47
44	Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous Galerkin Spectral Elements. Journal of Scientific Computing, 2019, 79, 1389-1408.	1.1	15
45	Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2019, 80, 175-222.	1.1	43
46	Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method. Journal of Scientific Computing, 2019, 80, 376-402.	1.1	15
47	Discrete Energy-Conservation Properties in the Numerical Simulation of the Navier–Stokes Equations. Applied Mechanics Reviews, 2019, 71, .	4.5	31
48	Zonal large eddy simulation of active open cavity noise using a high order discontinuous Galerkin method. , 2019, , .		3
49	Efficient Entropy Stable Gauss Collocation Methods. SIAM Journal of Scientific Computing, 2019, 41, A2938-A2966.	1.3	35
50	On discretely entropy stable weight-adjusted discontinuous Galerkin methods: curvilinear meshes. Journal of Computational Physics, 2019, 378, 366-393.	1.9	24
51	Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numerical Mathematics, 2019, 59, 547-563.	1.0	14
52	Kinetic energy and entropy preserving schemes by split convective forms on hierarchical Cartesian grids with hanging nodes. , 2019, , .		0
53	Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows. Journal of Computational Physics, 2019, 382, 1-26.	1.9	23
54	Wall-Modeled Implicit LES of Transitional Flows using Variable-Order Flux Reconstruction Method. , 2019, , .		2
55	On the robustness and accuracy of marginally resolved discontinuous Galerkin schemes for two dimensional Navier-Stokes flows. , 2019, , .		3
56	Dynamic SGS modeling in LES using DG with kinetic energy preserving flux schemes. , 2019, , .		4

#	ARTICLE	IF	CITATIONS
57	An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification. Journal of Computational Physics, 2020, 422, 108076.	1.9	30
58	The Notion of Conservation for Residual Distribution Schemes (or Fluctuation Splitting Schemes), with Some Applications. Communications on Applied Mathematics and Computation, 2020, 2, 341-368.	0.7	4
59	A free–energy stable nodal discontinuous Galerkin approximation with summation–by–parts property for the Cahn–Hilliard equation. Journal of Computational Physics, 2020, 403, 109072.	1.9	16
60	Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points. Applied Numerical Mathematics, 2020, 151, 98-118.	1.2	13
61	A stable and non-dissipative kinetic energy and entropy preserving (KEEP) scheme for non-conforming block boundaries on Cartesian grids. Computers and Fluids, 2020, 200, 104427.	1.3	20
62	Stable, non-dissipative and physically-consistent kinetic energy and entropy preserving (KEEP) schemes for compressible flows. , 2020, , .		1
63	Entropy stable numerical approximations for the isothermal and polytropic Euler equations. BIT Numerical Mathematics, 2020, 60, 791-824.	1.0	8
64	Nektar++: Enhancing the capability and application of high-fidelity spectral/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e862" altimg="si5.svg"><mml:mrow><mml:mi>h</mml:mi>e</mml:mrow> element methods. Computer Physics Communications. 2020. 249. 107110.</mml:math 	3.0	82
65	Entropy stable reduced order modeling of nonlinear conservation laws. Journal of Computational Physics, 2020, 423, 109789.	1.9	23
66	An Efficient Low-Dissipation Hybrid Central/WENO Scheme for Compressible Flows. International Journal of Computational Fluid Dynamics, 2020, 34, 705-730.	0.5	8
67	A dynamically load-balanced parallel p-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation. Journal of Computational Physics, 2020, 417, 109581.	1.9	13
68	On the use of split forms and wall modeling to enable accurate high-Reynolds number discontinuous Galerkin simulations on body-fitted unstructured grids. Computers and Fluids, 2020, 208, 104616.	1.3	3
69	Split form ALE discontinuous Galerkin methods with applications to under-resolved turbulent low-Mach number flows. Journal of Computational Physics, 2020, 421, 109726.	1.9	10
70	On Entropy Conservation and Kinetic Energy Preservation Methods. Journal of Physics: Conference Series, 2020, 1623, 012020.	0.3	3
71	A structure-preserving discontinuous Galerkin scheme for the Fisher–KPP equation. Numerische Mathematik, 2020, 146, 119-157.	0.9	6
72	Kinematics of Lagrangian Flow Separation in External Aerodynamics. AIAA Journal, 2020, 58, 1926-1938.	1.5	13
73	Assessing standard and kinetic energy conserving volume fluxes in discontinuous Galerkin formulations for marginally resolved Navier-Stokes flows. Computers and Fluids, 2020, 205, 104557.	1.3	9
74	Dispersion and dissipation analysis for unphysical modes of high-order discontinuous Galerkin methods. , 2020, , .		0

#	Article	IF	CITATIONS
75	Optimized geometrical metrics satisfying free-stream preservation. Computers and Fluids, 2020, 207, 104555.	1.3	8
76	Entropy-stable p-nonconforming discretizations with the summation-by-parts property for the compressible Navier–Stokes equations. Computers and Fluids, 2020, 210, 104631.	1.3	8
77	Entropy–stable discontinuous Galerkin approximation with summation–by–parts property for the incompressible Navier–Stokes/Cahn–Hilliard system. Journal of Computational Physics, 2020, 408, 109363.	1.9	15
78	Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2020, 82, 1.	1.1	7
79	Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier–Stokes equations. SN Partial Differential Equations and Applications, 2020, 1, 1.	0.3	7
80	Relaxation Runge–Kutta Methods for Hamiltonian Problems. Journal of Scientific Computing, 2020, 84, 1.	1.1	21
81	Advantages of static condensation in implicit compressible Navier–Stokes DGSEM solvers. Computers and Fluids, 2020, 209, 104646.	1.3	5
82	Stabilized DG-PSTD Method With Nonconformal Meshes for Electromagnetic Waves. IEEE Transactions on Antennas and Propagation, 2020, 68, 4714-4726.	3.1	26
83	A large eddy simulation method for DGSEM using non-linearly optimized relaxation filters. Journal of Computational Physics, 2020, 408, 109303.	1.9	7
84	Superconvergent Functional Estimates from Tensor-Product Generalized Summation-by-Parts Discretizations in Curvilinear Coordinates. Journal of Scientific Computing, 2020, 82, 1.	1.1	3
85	Design of a Smagorinsky spectral Vanishing Viscosity turbulence model for discontinuous Galerkin methods. Computers and Fluids, 2020, 200, 104440.	1.3	30
86	An entropy–stable discontinuous Galerkin approximation for the incompressible Navier–Stokes equations with variable density and artificial compressibility. Journal of Computational Physics, 2020, 408, 109241.	1.9	13
87	Entropy Stable Discontinuous Galerkin Schemes on Moving Meshes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2020, 82, 1.	1.1	14
88	Direct Reconstruction Method for Physical Domain-based Discontinuous Galerkin Formulation. , 2020, , .		0
89	FLEXI: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws. Computers and Mathematics With Applications, 2021, 81, 186-219.	1.4	69
90	High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver. Journal of Computational Physics, 2021, 424, 109844.	1.9	22
91	High-order entropy stable discontinuous Galerkin methods for the shallow water equations: Curved triangular meshes and GPU acceleration. Computers and Mathematics With Applications, 2021, 82, 179-199.	1.4	15
92	A Novel Robust Strategy for Discontinuous Galerkin Methods in Computational Fluid Mechanics: Why? When? What? Where?. Frontiers in Physics, 2021, 8, .	1.0	18

#	Article	IF	CITATIONS
93	On the robustness and performance of entropy stable collocated discontinuous Galerkin methods. Journal of Computational Physics, 2021, 426, 109891.	1.9	19
94	Future Space-Transport-System Components under High Thermal and Mechanical Loads. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , .	0.2	1
95	A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations. Journal of Computational Physics, 2021, 426, 109953.	1.9	5
96	A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. Journal of Computational Physics, 2021, 426, 109935.	1.9	40
97	Simulation of Turbulent Flows Using a Fully Discrete Explicit <i>hp</i> -nonconforming Entropy Stable Solver of Any Order on Unstructured Grids. , 2021, , .		1
98	Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes III. Code optimization via tensor contraction. Computers and Fluids, 2021, 215, 104790.	1.3	6
99	Optimized Explicit Runge-Kutta Schemes for Entropy Stable Discontinuous Collocated Methods Applied to the Euler and Navier–Stokes equations. , 2021, , .		3
100	Large Eddy Simulations of Turbulent Channel Flows Using Split Form DG Schemes. , 2021, , .		1
101	Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier–Stokes Equations. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2021, , 117-196.	0.3	2
102	High order nonlinear filter methods for subsonic turbulence simulation with stochastic forcing. Journal of Computational Physics, 2021, 431, 110118.	1.9	2
103	Impact of wall modeling on kinetic energy stability for the compressible Navier-Stokes equations. Computers and Fluids, 2021, 220, 104870.	1.3	2
104	An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model. Journal of Computational Physics, 2021, 431, 110135.	1.9	13
105	Entropy Stable Discontinuous Galerkin Methods for Nonlinear Conservation Laws on Networks and Multi-Dimensional Domains. Journal of Scientific Computing, 2021, 87, 1.	1.1	2
106	Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes. Computers and Fluids, 2021, 221, 104922.	1.3	18
107	A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations. Communications in Computational Physics, 2021, 29, 979-1029.	0.7	14
108	Entropy Stable Split Forms for the Flux Reconstruction High-Order Method: Three-Dimensional Numerical Validation. , 2021, , .		0
109	A discontinuous Galerkin approximation for a wall–bounded consistent three–component Cahn–Hilliard flow model. Computers and Fluids, 2021, 225, 104971.	1.3	2
110	Preventing Pressure Oscillations Does Not Fix Local Linear Stability Issues of Entropy-Based Split-Form High-Order Schemes. Communications on Applied Mathematics and Computation, 2022, 4, 880-903.	0.7	16

#	Article	IF	CITATIONS
111	Architecture-based and target-oriented algorithm optimization of high-order methods via complete-search tensor contraction. Computer Physics Communications, 2021, 264, 107988.	3.0	5
112	A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods. Communications on Applied Mathematics and Computation, 2023, 5, 679-721.	0.7	5
113	CFD–based erosion and corrosion modeling in pipelines using a high–order discontinuous Galerkin multiphase solver. Wear, 2021, 478-479, 203882.	1.5	1
114	A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. Journal of Computational Physics, 2021, 442, 110467.	1.9	17
115	A free–energy stable p–adaptive nodal discontinuous Galerkin for the Cahn–Hilliard equation. Journal of Computational Physics, 2021, 442, 110409.	1.9	6
116	High-order accurate kinetic-energy and entropy preserving (KEEP) schemes on curvilinear grids. Journal of Computational Physics, 2021, 442, 110482.	1.9	21
117	A scalable exponential-DG approach for nonlinear conservation laws: With application to Burger and Euler equations. Computer Methods in Applied Mechanics and Engineering, 2021, 385, 114031.	3.4	1
118	Entropy stable, robust and high-order DGSEM for the compressible multicomponent Euler equations. Journal of Computational Physics, 2021, 445, 110584.	1.9	15
119	Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier-Stokes equations. Journal of Computational Physics, 2022, 448, 110723.	1.9	11
120	Efficient computation of Jacobian matrices for entropy stable summation-by-parts schemes. Journal of Computational Physics, 2022, 448, 110701.	1.9	5
121	The Discontinuous Galerkin Method: Derivation and Properties. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2021, , 1-55.	0.3	2
122	Stability of Wall Boundary Condition Procedures for Discontinuous Galerkin Spectral Element Approximations of the Compressible Euler Equations. Lecture Notes in Computational Science and Engineering, 2020, , 3-19.	0.1	5
123	On the Order Reduction of Entropy Stable DGSEM for the Compressible Euler Equations. Lecture Notes in Computational Science and Engineering, 2020, , 21-44.	0.1	5
124	Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators. Lecture Notes in Computational Science and Engineering, 2020, , 525-535.	0.1	7
125	Assessment of Split Form Nodal Discontinuous Galerkin Schemes for the LES of a Low Pressure Turbine Profile. ERCOFTAC Series, 2020, , 365-371.	0.1	7
127	A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods. Lecture Notes in Computational Science and Engineering, 2017, , 21-40.	0.1	8
128	Mortar-based Entropy-Stable Discontinuous Galerkin Methods on Non-conforming Quadrilateral and Hexahedral Meshes. Journal of Scientific Computing, 2021, 89, 1.	1.1	1
130	Implicit Large Eddy Simulations for NACA0012 Airfoils Using Compressible and Incompressible Discontinuous Galerkin Solvers. Lecture Notes in Computational Science and Engineering, 2020, , 477-487.	0.1	2

#	Article	IF	CITATIONS
131	Progress in Computational Fluid Dynamics Discretizations Algorithms and Solvers for Aerodynamic Flows. AIAA Journal, 2021, 59, 5374-5397.	1.5	4
132	On the entropy conserving/stable implicit DC discretization of the Euler equations in entropy variables. Computers and Fluids, 2022, 232, 105198.	1.3	2
133	On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations. SN Partial Differential Equations and Applications, 2021, 2, .	0.3	3
134	An Entropy-stable Ideal EC-GLM-MHD Model for the Simulation of the Three-dimensional Ambient Solar Wind. Astrophysical Journal, Supplement Series, 2021, 257, 24.	3.0	3
135	Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. Communications on Applied Mathematics and Computation, 2022, 4, 1191-1228.	0.7	10
137	Alias-Free, Matrix-Free, and Quadrature-Free Discontinuous Galerkin Algorithms for (Plasma) Kinetic Equations. , 2020, , .		7
138	Stability Issues of Entropy-Stable and/or Split-form High-order Schemes. Journal of Scientific Computing, 2022, 90, 1.	1.1	4
139	Comparison of Propeller-Wing Interaction Simulation using Different Levels of Fidelity. , 2022, , .		2
140	Aeroacoustic simulations of 3D airfoil sections using a high order discontinuous Galerkin solver. , 2022, , .		1
141	Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing. Proceedings of the JuliaCon Conferences, 2022, 1, 77.	2.8	14
142	An entropy–stable discontinuous Galerkin approximation of the Spalart–Allmaras turbulence model for the compressible Reynolds Averaged Navier–Stokes equations. Journal of Computational Physics, 2022, 455, 110998.	1.9	5
143	Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: Application to structure preserving discretization. Journal of Computational Physics, 2022, 453, 110955.	1.9	27
144	A Positivity Preserving Strategy for Entropy Stable Discontinuous Galerkin Discretizations of the Compressible Euler and Navier-Stokes Equations. SSRN Electronic Journal, 0, , .	0.4	0
145	A Neural Network Based Framework to Model Particle Rebound and Fracture. SSRN Electronic Journal, 0, , .	0.4	0
146	Entropy-Stable Gauss Collocation Methods for Ideal Magneto-Hydrodynamics. SSRN Electronic Journal, 0, , .	0.4	1
147	On the investigation of oblique shockâ€wave/turbulent boundaryâ€layer interactions with a highâ€order discontinuous Galerkin method. International Journal for Numerical Methods in Fluids, 2022, 94, 1331-1357.	0.9	4
148	An entropy–stable p–adaptive nodal discontinuous Galerkin for the coupled Navier–Stokes/Cahn–Hilliard system. Journal of Computational Physics, 2022, 458, 111093.	1.9	3
149	Provably stable flux reconstruction high-order methods on curvilinear elements. Journal of Computational Physics, 2022, 463, 111259.	1.9	5

#	Article	IF	CITATIONS
150	Optimized explicit Runge–Kutta schemes for high-order collocated discontinuous Galerkin methods for compressible fluid dynamics. Computers and Mathematics With Applications, 2022, 118, 1-17.	1.4	2
151	A kinetic energy–and entropy-preserving scheme for compressible two-phase flows. Journal of Computational Physics, 2022, 464, 111307.	1.9	7
152	A Discontinuous Galerkin Spectral Element Method for a Nonconservative Compressible Multicomponent Flow Model. SSRN Electronic Journal, 0, , .	0.4	0
153	Modified wavenumber and aliasing errors of split convective forms for compressible flows. Journal of Computational Physics, 2022, 464, 111336.	1.9	9
154	RANS and Hybrid RANS-LES Results for the Fourth High-Lift Prediction Workshop using the NSU3D Solver. , 2022, , .		2
155	High–order discontinuous Galerkin approximation for a three–phase incompressible Navier–Stokes/Cahn–Hilliard model. Computers and Fluids, 2022, , 105545.	1.3	0
156	Study on the Resolution of Large-Eddy Simulations for Supersonic Jet Flows. , 2022, , .		2
157	Zonal Hybrid Computational Aeroacoustics Simulation of Trailing Edge Noise Using a High-Order Discontinuous Galerkin Method. , 2022, , .		1
158	A Wall Model for External Laminar Boundary Layer Flows Applied to the Wall-Modeled LES Framework. SSRN Electronic Journal, 0, , .	0.4	0
159	On the Entropy Projection and the Robustness of High Order Entropy Stable Discontinuous Galerkin Schemes for Under-Resolved Flows. Frontiers in Physics, 0, 10, .	1.0	7
160	A reconstructed discontinuous Galerkin method based on variational formulation for compressible flows. Journal of Computational Physics, 2022, 466, 111406.	1.9	1
161	A Unifying Algebraic Framework for Discontinuous Galerkin and Flux Reconstruction Methods Based on the Summation-by-Parts Property. Journal of Scientific Computing, 2022, 92, .	1.1	1
162	Subcell limiting strategies for discontinuous Galerkin spectral element methods. Computers and Fluids, 2022, 247, 105627.	1.3	13
163	Entropy stable discontinuous Galerkin methods for balance laws in non-conservative form: Applications to the Euler equations with gravity. Journal of Computational Physics, 2022, 468, 111507.	1.9	9
164	Eigenanalysis and non-modal analysis of collocated discontinuous Galerkin discretizations with the summation-by-parts property. Computers and Mathematics With Applications, 2022, 124, 196-217.	1.4	1
165	An entropy stable spectral vanishing viscosity for discontinuous Galerkin schemes: Application to shock capturing and LES models. Journal of Computational Physics, 2022, 471, 111618.	1.9	2
166	Convergence of discontinuous Galerkin schemes for the Euler equations via dissipative weak solutions. Applied Mathematics and Computation, 2023, 436, 127508.	1.4	2
167	Zonal direct-hybrid aeroacoustic simulation of trailing edge noise using a high-order discontinuous Galerkin spectral element method. Acta Acustica, 2022, 6, 39.	0.4	2

#	Article	IF	Citations
168	Entropy–Preserving and Entropy–Stable Relaxation IMEX and Multirate Time–Stepping Methods. Journal of Scientific Computing, 2022, 93, .	1.1	4
169	Entropy conserving implicit time integration in a Discontinuous Galerkin solver in entropy variables. Journal of Computational Physics, 2023, 472, 111683.	1.9	1
170	A discontinuous Galerkin spectral element method for a nonconservative compressible multicomponent flow model. Journal of Computational Physics, 2023, 472, 111693.	1.9	1
171	High order entropy preserving ADER-DG schemes. Applied Mathematics and Computation, 2023, 440, 127644.	1.4	12
172	On the accuracy and robustness of implicit LES / under-resolved DNS approaches based on spectral element methods. , 2017, , .		2
173	A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations. Journal of Computational Physics, 2023, 475, 111850.	1.9	8
174	Entropy-stable Gauss collocation methods for ideal magneto-hydrodynamics. Journal of Computational Physics, 2023, 475, 111851.	1.9	3
175	Discontinuous Galerkin spectral element method for shock capturing with summation by parts properties. Journal of Computational Physics: X, 2023, 17, 100123.	1.1	0
177	: A high-order discontinuous Galerkin solver for flow simulations and multi-physics applications. Computer Physics Communications, 2023, 287, 108700.	3.0	8
178	High order discontinuous Galerkin simulation of hypersonic shock-boundary layer interaction using subcell limiting approach. Journal of Computational Physics, 2023, 485, 112117.	1.9	2
179	A wall model for external laminar boundary layer flows applied to the Wall-Modeled LES framework. Journal of Computational Physics, 2023, 484, 112087.	1.9	1
180	Numerical Accuracy Necessary for Large-Eddy Simulation of Planetary Boundary Layer Turbulence Using the Discontinuous Galerkin Method. Monthly Weather Review, 2023, 151, 1479-1508.	0.5	0
181	Summation-by-Parts Operators for General Function Spaces. SIAM Journal on Numerical Analysis, 2023, 61, 733-754.	1.1	6
185	Quadrupole-Enhanced Overset Noise Predictions for Counter-Rotating Open Rotors. , 2023, , .		0
190	Split Form ALE DG Methods for the Euler Equations: Entropy Stability and Kinetic Energy Dissipation. Lecture Notes in Computational Science and Engineering, 2023, , 411-426.	0.1	0
199	Split Form Discontinuous Galerkin Methods forÂConservation Laws. Springer Proceedings in Mathematics and Statistics, 2023, , 279-287.	0.1	0
205	Large Eddy Simulation ofÂaÂLow Pressure Turbine Cascade withÂTurbulent End Wall Boundary Layers. ERCOFTAC Series, 2024, , 101-107.	0.1	0
206	Analysis ofÂaÂTransonic Cascade withÂWall-Modeled LES Based onÂDGSEM. ERCOFTAC Series, 2024, , 157-163.	0.1	0

#	Article	IF	CITATIONS
213	A Comparison of LES Inlet Boundary Conditions for Supersonic Jet Flows. , 2024, , .		0