Application of Vehicle Mounted Accelerometers to Mea

International Journal of Distributed Sensor Networks 12, 8413146 DOI: 10.1155/2016/8413146

Citation Report

#	Article	IF	CITATIONS
1	Protocols and applications in vehicular sensor networks for driving safety, driving efficiency, and data services. International Journal of Distributed Sensor Networks, 2017, 13, 155014771769245.	2.2	2
2	Vehicle Vibration Signal Processing for Road Surface Monitoring. IEEE Sensors Journal, 2017, 17, 5192-5197.	4.7	119
3	A review on automated pavement distress detection methods. Cogent Engineering, 2017, 4, 1374822.	2.2	116
4	Repeatability of road pavement condition assessment based on three-dimensional analysis of linear accelerations of vehicles. IOP Conference Series: Materials Science and Engineering, 2018, 356, 012021.	0.6	6
5	Public–private partnerships vs. traditional contracts for highways. Indian Economic Review, 2018, 53, 29-63.	0.8	10
6	Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones. Sensors, 2018, 18, 914.	3.8	87
7	A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. International Journal of Pavement Engineering, 2022, 23, 862-876.	4.4	23
8	Pavement asset management systems and technologies: A review. Automation in Construction, 2020, 119, 103336.	9.8	73
9	Identification of asphalt pavement transverse cracking based on vehicle vibration signal analysis. Road Materials and Pavement Design, 2021, 22, 1780-1798.	4.0	8
10	Development of a crowdsourcing-based system for computing the international roughness index. International Journal of Pavement Engineering, 2022, 23, 489-498.	4.4	28
11	Application of MEMS Sensors for Evaluation of the Dynamics for Cargo Securing on Road Vehicles. Sensors, 2021, 21, 2881.	3.8	23
12	Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning. Transportation Research Part C: Emerging Technologies, 2021, 125, 103048.	7.6	72
13	Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8, 554-567.	4.2	19
14	Development of pavement roughness models using Artificial Neural Network (ANN). International Journal of Pavement Engineering, 2022, 23, 4622-4637.	4.4	21
15	Application of signal processing and support vector machine to transverse cracking detection in asphalt pavement. Journal of Central South University, 2021, 28, 2451-2462.	3.0	11
16	Crowdsourcing-Based Road Surface Evaluation and Indexing. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 4164-4175.	8.0	12
17	Road Pavement Condition Assessment at Selected Roundabouts in the Town of Tychy. Lecture Notes in Networks and Systems, 2019, , 40-49.	0.7	0
18	Using the Kalman Filter for Purposes of Road Condition Assessment. Advances in Intelligent Systems and Computing, 2020, , 254-264.	0.6	0

#	Article	IF	Citations
19	Real-Time Classification of Road Type and Condition in Passenger Vehicles. IFAC-PapersOnLine, 2020, 53, 14254-14260.	0.9	3
20	Road Surface Defects Detection Based on IMU Sensor. IEEE Sensors Journal, 2021, , 1-1.	4.7	7
21	Weakly-supervised Road Condition Classification Using Automatically Generated Labels. , 2020, , .		0
22	Assessment of Ride Quality and Road Roughness by Measuring the Response from a Vehicle Mounted Android Smartphone. IOP Conference Series: Earth and Environmental Science, 2022, 982, 012062.	0.3	1
23	Response Type Road Roughness Measuring System from a Vehicle Mounted Android Smartphone. , 2022, , ,		1
24	A review on empirical methods of pavement performance modeling. Construction and Building Materials, 2022, 342, 127968.	7.2	15
25	Reconstruction of Road Defects from Dynamic Vehicle Accelerations by Using the Artificial Neural Networks. Mechanisms and Machine Science, 2023, , 622-629.	0.5	0
26	Application of MEMS Accelerometers in Dynamic Vibration Monitoring of a Vehicle. Micromachines, 2023, 14, 923.	2.9	3
27	Industry- and Academic-Based Trends in Pavement Roughness Inspection Technologies over the Past Five Decades: A Critical Review. Remote Sensing, 2023, 15, 2941.	4.0	6
28	Road Crack and Road Quality Checking Mechanism. , 2023, , .		0
29	International Roughness Index Prediction for Jointed Plain Concrete Pavements Using Regression and Machine Learning Techniques. Transportation Research Record, 2024, 2678, 235-250.	1.9	0
30	Reconciling Pavement Condition Data from Connected Vehicles with the International Roughness Index from Standard Monitoring Equipment Using Physics-Integrated Machine Learning. Transportation Research Record, 2024, 2678, 416-429.	1.9	1
31	Potential applications of connected vehicles in pavement condition evaluation: a brief review. Road Materials and Pavement Design, 0, , 1-25.	4.0	3
32	An ensemble learning with sequential model-based optimization approach for pavement roughness estimation using smartphone sensor data. Construction and Building Materials, 2023, 406, 133293.	7.2	0
33	Design and Implementation of Smart Inertial Profilometer System for Road Quality Assessment. , 2023, ,		0
34	Road Profile Inversion from In-Vehicle Accelerometers. Journal of Transportation Engineering Part B: Pavements, 2024, 150, .	1.5	1
35	Pavement maintenance strategy for Provincial roads in Tarakan City, North Kalimantan. E3S Web of Conferences, 2024, 479, 07002.	0.5	0
36	A novel characterisation method for asphalt pavement structural performance assessment based on vehicle vibration data fusion. International Journal of Pavement Engineering, 2024, 25, .	4.4	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Physics-informed neural networks to advance pavement engineering and management. Road Materials and Pavement Design, 0, , 1-22.	4.0	0
38	Pavement Roughness Detection Method Based on Smartphone and PSO-BP Neural Network. , 2024, , .		0
39	Road Profile Estimation Using Full/Quarter-Car Model with Artificial Neural Networks. Lecture Notes in Mechanical Engineering, 2024, , 203-210.	0.4	0