Sustainable hybrid photocatalysts: titania immobilized renewable and biodegradable resources

Green Chemistry 18, 5736-5750 DOI: 10.1039/c6gc02477g

Citation Report

#	Article	IF	CITATIONS
2	A bio-inspired strategy for the interfacial assembly of graphene oxide with in situ generated Ag/AgCl: designing sustainable hybrid photocatalysts. Physical Chemistry Chemical Physics, 2017, 19, 7624-7630.	2.8	7
3	An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. International Journal of Biological Macromolecules, 2017, 103, 1232-1256.	7.5	131
4	Dual Functionality of TiO ₂ /Biochar Hybrid Materials: Photocatalytic Phenol Degradation in the Liquid Phase and Selective Oxidation of Methanol in the Gas Phase. ACS Sustainable Chemistry and Engineering, 2017, 5, 6274-6287.	6.7	130
5	Ecotechnological strategies in the development of alternative photocatalysts. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 63-68.	5.9	16
6	Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chemical Society Reviews, 2017, 46, 6675-6686.	38.1	102
7	Fabrication of PAN@TiO 2 /Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Applied Surface Science, 2017, 426, 622-629.	6.1	78
8	Photoactive Hybrid Catalysts Based on Natural and Synthetic Polymers: A Comparative Overview. Molecules, 2017, 22, 790.	3.8	35
9	The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation. Frontiers in Chemistry, 2017, 5, 84.	3.6	52
10	Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 2018, 8, 14237-14248.	3.6	171
11	Green Recovery of Titanium and Effective Regeneration of TiO ₂ Photocatalysts from Spent Selective Catalytic Reduction Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 3091-3101.	6.7	44
12	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	2.8	105
13	Novel biomass-derived hybrid TiO 2 /carbon material using tar-derived secondary char to improve TiO 2 bonding to carbon matrix. Journal of Analytical and Applied Pyrolysis, 2018, 131, 35-41.	5.5	28
14	Improved photo-induced charge carriers separation through the addition of erbium on TiO2 nanoparticles and its effect on photocatalytic degradation of rhodamine B. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 524-533.	3.9	9
15	Visible-light-enhanced catalytic activity of Ru nanoparticles over carbon modified g-C3N4. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 327-333.	3.9	29
16	Controlled synthesis of Pt nanoparticle supported TiO ₂ nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 23435-23444.	10.3	55
17	Applications of Metal–Organicâ€Frameworkâ€Derived Carbon Materials. Advanced Materials, 2019, 31, e1804740.	21.0	369
18	Simultaneous Control over Lattice Doping and Nanocluster Modification of a Hybrid CuO _x /TiO ₂ Photocatalyst during Flame Synthesis for Enhancing Hydrogen Evolution. Solar Rrl, 2018, 2, 1800215.	5.8	17
19	Dual Functional N-Doped TiO ₂ -Carbon Composite Fibers for Efficient Removal of Water Pollutants. ACS Sustainable Chemistry and Engineering, 2018, 6, 12893-12905.	6.7	46

#	Article	IF	CITATIONS
20	Cellulose Mineralization as a Route for Novel Functional Materials. Advanced Functional Materials, 2018, 28, 1705042.	14.9	50
21	Visible-Light-Induced Graphitic–C ₃ N ₄ @Nickel–Aluminum Layered Double Hydroxide Nanocomposites with Enhanced Photocatalytic Activity for Removal of Dyes in Water. Inorganic Chemistry, 2018, 57, 8681-8691.	4.0	104
22	Defective Anatase TiO _{2â^'<i>x</i>} Mesocrystal Growth In Situ on gâ€C ₃ N ₄ Nanosheets: Construction of 3D/2D Zâ€Scheme Heterostructures for Highly Efficient Visibleâ€Light Photocatalysis. Chemistry - A European Journal, 2018, 24, 13311-13321.	3.3	46
23	Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry, 2018, 376, 20.	5.8	53
24	Design and Fabrication of TiO ₂ /Lignocellulosic Carbon Materials: Relevance of Lowâ€ŧemperature Sonocrystallization to Photocatalysts Performance. ChemCatChem, 2018, 10, 3469-3480.	3.7	35
25	Plant tannin immobilized Fe3O4@SiO2 microspheres: A novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium. Journal of Hazardous Materials, 2019, 364, 780-790.	12.4	105
26	One-step synthesis of N-doped metal/biochar composite using NH3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue. Journal of Environmental Sciences, 2019, 78, 29-41.	6.1	60
27	Oneâ€pot selfâ€assembled TiO ₂ /graphene/poly(acrylamide) superporous hybrid for photocatalytic degradation of organic pollutants. Journal of Applied Polymer Science, 2019, 136, 47033.	2.6	7
28	Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21, 4266-4289.	9.0	180
29	Biochar colloids and their use in contaminants removal. Biochar, 2019, 1, 151-162.	12.6	27
30	Molecules and heterostructures at TiO2 surface: the cases of H2O, CO2, and organic and inorganic sensitizers. Research on Chemical Intermediates, 2019, 45, 5801-5829.	2.7	14
31	Natural Eumelanin and Its Derivatives as Multifunctional Materials for Bioinspired Applications: A Review. Biomacromolecules, 2019, 20, 4312-4331.	5.4	73
32	Titanium Dioxide (TiO2) Mesocrystals: Synthesis, Growth Mechanisms and Photocatalytic Properties. Catalysts, 2019, 9, 91.	3.5	48
33	A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 2019, 222, 391-398.	8.2	238
33 34		8.2	238 60
	Chemosphere, 2019, 222, 391-398. Synthesis and photocatalytic activities of a CuO/TiO ₂ composite catalyst using aquatic		
34	 Chemosphere, 2019, 222, 391-398. Synthesis and photocatalytic activities of a CuO/TiO₂ composite catalyst using aquatic plants with accumulated copper as a template. RSC Advances, 2019, 9, 2018-2025. Photocatalytic decomposition of VOCs by AC–TiO2 and EG–TiO2 nanocomposites. Clean Technologies 	3.6	60

#	Article	IF	CITATIONS
38	Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6458-6470.	6.7	227
39	Sustainable Production of Carbon Nanoparticles from Olive Pit Biomass: Understanding Proton Transfer in the Excited State on Carbon Dots. ACS Sustainable Chemistry and Engineering, 2019, 7, 10493-10500.	6.7	26
40	Synthesis of visible light responsive iodine-doped mesoporous TiO2 by using biological renewable lignin as template for degradation of toxic organic pollutants. Applied Catalysis B: Environmental, 2019, 252, 152-163.	20.2	87
41	Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 2019, 1, 45-73.	12.6	255
42	Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: A review. Science of the Total Environment, 2019, 666, 525-539.	8.0	88
43	Carbonaceous biomass-titania composites with Ti O C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chemical Engineering Journal, 2019, 366, 172-180.	12.7	113
44	Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons: the key role of surface chemistry. Green Chemistry, 2019, 21, 6685-6698.	9.0	49
45	Polymer Nanocomposites for Photocatalytic Applications. Catalysts, 2019, 9, 986.	3.5	78
46	Oxygenâ€Deficient Dumbbellâ€Shaped Anatase TiO _{2â^'<i>x</i>} Mesocrystals with Nearly 100 Exposed {101} Facets: Synthesis, Growth Mechanism, and Photocatalytic Performance. Chemistry - A European Journal, 2019, 25, 3032-3041.	% 3.3	9
47	Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose, 2019, 26, 2363-2373.	4.9	27
48	Biomass-Based Photocatalysts for Environmental Applications. Environmental Chemistry for A Sustainable World, 2020, , 55-86.	0.5	6
49	Application of biochar and its composites in catalysis. Chemosphere, 2020, 240, 124842.	8.2	153
50	Functionalized Polymer-Based Composite Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , 167-188.	0.5	3
51	Green Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , .	0.5	5
52	Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chemical Engineering Journal, 2020, 379, 122264.	12.7	238
53	Highly efficient photodegradation of various organic pollutants in water: Rational structural design of photocatalyst via thiol-ene click reaction. Chemical Engineering Journal, 2020, 381, 122631.	12.7	22
54	Evaluation of biochar properties exposing to solar radiation: A promotion on surface activities. Chemical Engineering Journal, 2020, 384, 123353.	12.7	13
55	Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 2020, 482, 110648.	2.0	21

#	Article	IF	CITATIONS
56	A novel strategy to construct a visible-light-driven Z-scheme (ZnAl-LDH with active phase/g-C3N4) heterojunction catalyst via polydopamine bridge (a similar "bridge" structure). Journal of Hazardous Materials, 2020, 386, 121650.	12.4	77
57	Waste eggshells to valuable Co3O4/CaCO3 materials as efficient catalysts for VOCs oxidation. Molecular Catalysis, 2020, 483, 110766.	2.0	27
58	Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere, 2020, 246, 125755.	8.2	71
59	Natural melanin/TiO2 hybrids for simultaneous removal of dyes and heavy metal ions under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112292.	3.9	19
60	Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment. Chemical Record, 2020, 20, 1338-1393.	5.8	21
61	Recent advance in renewable materials and green processes for optoelectronic applications. Materials Today Sustainability, 2021, 11-12, 100057.	4.1	6
63	New composite of pecan nutshells biochar-ZnO for sequential removal of acid red 97 by adsorption and photocatalysis. Biomass and Bioenergy, 2020, 140, 105648.	5.7	57
64	Conversion of spent coffee grounds to biochar as promising TiO ₂ support for effective degradation of diclofenac in water. Applied Organometallic Chemistry, 2020, 34, e6001.	3.5	26
65	Recent Advances in the Fabrication of All-Solid-State Nanostructured TiO ₂ -Based Z-scheme Heterojunctions for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2020, 20, 5861-5873.	0.9	11
67	Biological renewable hemicellulose-template for synthesis of visible light responsive sulfur-doped TiO2 for photocatalytic oxidation of toxic organic and As(III) pollutants. Applied Surface Science, 2020, 525, 146531.	6.1	49
68	"Waste to Wealth― Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. ChemSusChem, 2020, 13, 2807-2827.	6.8	55
69	Immobilization of semiconductor photocatalysts. , 2020, , 103-140.		3
70	Biochar based catalysts for the abatement of emerging pollutants: A review. Chemical Engineering Journal, 2020, 394, 124856.	12.7	129
71	Nanosized Carbonate-Doped TiO _{2–<i>x</i>} Mesocrystals for Visible-Light-Driven Photocatalytic Removal of Water Pollutants. ACS Applied Nano Materials, 2020, 3, 4197-4208.	5.0	8
72	Surface/Interface Engineering of Carbonâ€Based Materials for Constructing Multidimensional Functional Hybrids. Solar Rrl, 2020, 4, 1900577.	5.8	52
73	Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Environmental Chemistry Letters, 2020, 18, 1825-1903.	16.2	49
74	MoS ₂ nanoâ€flowers stacked by ultrathin sheets coupling with oxygen selfâ€doped porous biochar for efficient photocatalytic N ₂ fixation. ChemCatChem, 2020, 12, 5221-5228.	3.7	14
75	Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications. Applied Sciences (Switzerland), 2020, 10, 1019.	2.5	28

CIT	ATION	DEDA	NNT
		KFP(ד אונ

#	Article	IF	CITATIONS
76	Photosensitive Hybrid Nanostructured Materials: The Big Challenges for Sunlight Capture. Catalysts, 2020, 10, 103.	3.5	42
77	Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting. Green Chemistry, 2020, 22, 1198-1208.	9.0	33
78	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198
79	An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@Ni–Ti LDH: mechanistic insight and toxicity assessment. Inorganic Chemistry Frontiers, 2020, 7, 2287-2304.	6.0	66
80	Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation. Journal of Colloid and Interface Science, 2021, 586, 563-575.	9.4	19
81	Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere, 2021, 263, 128005.	8.2	184
82	The controlled synthesis and DFT investigation of novel (0D)–(3D) ZnS/SiO ₂ heterostructures for photocatalytic applications. RSC Advances, 2021, 11, 22352-22364.	3.6	19
83	Homogeneous photocatalysts immobilized on polymeric supports: Environmental and chemical synthesis applications. , 2021, , 575-588.		0
84	Biowaste eggshells as efficient electrodes for energy storage. , 2021, , 475-495.		0
85	Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic applications. Journal of Cleaner Production, 2021, 288, 125632.	9.3	113
86	Synthesis of core-shell titanium dioxide nanoparticles with water-soluble shell of poly(methacrylic) Tj ETQq0 0 0	rgBT /Ovei 0.4	rlock 10 Tf 50
87	Activated carbon supported CuSnOS catalyst with an efficient catalytic reduction of pollutants under dark condition. Journal of Molecular Liquids, 2021, 334, 116079.	4.9	24
88	Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 2021, 6, 19529-19545.	3.5	36
89	Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors. Chemical Engineering Journal, 2021, 415, 128907.	12.7	17
90	Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts, 2021, 11, 1048.	3.5	27
91	Biological renewable nanocellulose templated CeO2/TiO2 synthesis and its photocatalytic removal efficiency of pollutants. Journal of Molecular Liquids, 2021, 336, 116873.	4.9	21
92	Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Materials Research Bulletin, 2021, 140, 111262.	5.2	86
93	Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chemical Engineering Journal, 2022, 427, 131503.	12.7	165

#	Article	IF	Citations
94	Wood Treatments and Interfacial Bonding in Wood-Plastic Composites. Composites Science and Technology, 2021, , 43-65.	0.6	0
95	Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 2021, 18, 3273-3294.	3.5	287
96	Visible light-induced photocatalytic degradation of gaseous toluene by Ce, S and N doped ionic liquid-TiO2. Materials Science in Semiconductor Processing, 2020, 120, 105259.	4.0	8
97	Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives. , 2021, , 169-229.		1
98	Organic–Inorganic Polymer Hybrids for Water and Wastewater Treatment. Environmental Footprints and Eco-design of Products and Processes, 2022, , 29-54.	1.1	3
99	Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 2022, 818, 151774.	8.0	60
100	Application of Biochar for Wastewater Treatment. , 2021, , 67-90.		1
101	Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances. Journal of Alloys and Compounds, 2022, 899, 163287.	5.5	25
102	Iron/titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. Journal of Colloid and Interface Science, 2022, 614, 603-616.	9.4	28
103	Combined effect involving semiconductors and plasmonic nanoparticles in photocatalytic degradation of pesticides. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100657.	2.9	3
104	Biomimetic Nanoarchitectonics: Natural Cellulose Based Nanocomposites as High Performance Catalysts. RSC Nanoscience and Nanotechnology, 2022, , 63-81.	0.2	0
106	Fusion of Cellulose and Multicomponent Reactions: Benign by Design. ACS Sustainable Chemistry and Engineering, 2022, 10, 4359-4373.	6.7	11
107	Physicochemical Properties of Biochar Produced from Goldenrod Plants. Materials, 2022, 15, 2615.	2.9	8
108	Adsorptive Recovery of Cu2+ from Aqueous Solution by Polyethylene Terephthalate Nanofibres Modified with 2-(Aminomethyl)Pyridine. Applied Sciences (Switzerland), 2021, 11, 11912.	2.5	5
109	<i>In situ</i> composite of Co-MOF on a Ti-based material for visible light multiphase catalysis: synthesis and the photocatalytic degradation mechanism. New Journal of Chemistry, 2022, 46, 11341-11349.	2.8	3
110	Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: A review. Journal of Cleaner Production, 2022, 360, 132131.	9.3	32
111	Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: Doping, co-doping, and green materials functionalization. Applied Materials Today, 2022, 27, 101500.	4.3	23
112	Activated carbon-supported AgMoOS bimetallic oxysulfide as a catalyst for the photocatalytic hydrogen evolution and pollutants reduction. Journal of Alloys and Compounds, 2022, 913, 165287.	5.5	17

7

#	Article	IF	CITATIONS
113	Selected organic dyes (carminic acid, pyrocatechol violet and dithizone) sensitized metal (silver,) Tj ETQq0 0 0 rg solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121387.	BT /Overlo 3.9	ock 10 Tf 50 3 6
115	Preparation of biochar based on grapefruit peel and magnetite decorated with cadmium sulfide nanoparticles for photocatalytic degradation of chlorpyrifos. Diamond and Related Materials, 2022, 126, 109130.	3.9	11
116	Striding the threshold of photocatalytic <i>lignin-first</i> biorefining <i>via</i> a bottom-up approach: from model compounds to realistic lignin. Green Chemistry, 2022, 24, 5351-5378.	9.0	25
117	Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 2022, 3, 444-460.	29.7	233
118	Effect of the Performance of Lignin Into the Matrix of the TiO2 with Application on DSSCs. Floresta E Ambiente, 2022, 29, .	0.4	1
119	Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	4
120	Hollow C, N-TiO2@C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine. Separation and Purification Technology, 2022, 299, 121814.	7.9	18
121	Synthesis of magnetic nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye. Industrial Crops and Products, 2022, 187, 115449.	5.2	12
122	A critical review on utilization of sewage sludge as environmental functional materials. Bioresource Technology, 2022, 363, 127984.	9.6	12
123	Regenerated cellulose as template for in-situ synthesis of monoclinic titanium dioxide nanocomposite carbon aerogel towards multiple application in water treatment. Journal of Colloid and Interface Science, 2023, 630, 772-782.	9.4	12
124	BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis. Applied Catalysis B: Environmental, 2023, 323, 122150.	20.2	69
125	Conversion of novel tannery sludge-derived biochar/TiO2 nanocomposite for efficient removal of Cr (VI) under UV light: photocatalytic performance and mechanism insight. Environmental Science and Pollution Research, 0, , .	5.3	5
126	Cellulose mineralization with in-situ synthesized amorphous titanium dioxide for enhanced adsorption and auto-accelerating photocatalysis on water pollutant. Chemical Engineering Journal, 2023, 456, 141036.	12.7	4
127	Removal of methylene blue using a novel generation photocatalyst based on nano-SnO ₂ /wild plumb kernel shell biochar composite. Journal of Dispersion Science and Technology, 2023, 44, 2748-2759.	2.4	3
128	Design of biomass-based composite photocatalysts for wastewater treatment: a review over the past decade and future prospects. Environmental Science and Pollution Research, 2023, 30, 9103-9126.	5.3	5
129	Fabrication and Characterization of Electrospun Waste Polyethylene Terephthalate Blended with Chitosan: A Potential Single-Use Material. Polymers, 2023, 15, 442.	4.5	1
130	TiO ₂ /g-C ₃ N ₄ /SO ₃ H(IL): Unique Usage of Ionic Liquid-Based Sulfonic Acid as an Efficient Photocatalyst for Visible-Light-Driven Preparation of 5-HMF from Cellulose and Glucose. ACS Applied Materials & Interfaces, 2023, 15, 8054-8065.	8.0	13
131	Activation of biomass with volatilized KOH. Green Chemistry, 2023, 25, 2825-2839.	9.0	22

#	Article	IF	CITATIONS
132	Fe3S4/biochar catalysed heterogeneous Fenton oxidation of organic contaminants: Hydrogen peroxide activation and biochar enhanced reduction of Fe (III) to Fe (II). Separation and Purification Technology, 2023, 312, 123387.	7.9	8
133	Solid-supported photocatalysts for wastewater treatment: Supports contribution in the photocatalysis process. Solar Energy, 2023, 255, 99-125.	6.1	18
134	Effect of reactant ratio and nanofillers type on the microstructural properties, porosity fluctuations and heavy metal removal ability of chitosan-clay hybrid materials. Applied Surface Science Advances, 2023, 13, 100387.	6.8	1
195	Effective removal of hexavalent chromium from aqueous system by biochar-supported titanium		

#	Article	IF	CITATIONS
150	Ternary nanohybrid of biochar/ NiFe2O4 /Ag3PO4 for simultaneous adsorption of Hg(ІІ) and photodegradation of methylene blue; modeling, kinetic and isotherm studies. Journal of Solid State Chemistry, 2023, , 124503.	2.9	1
151	An extensive catalytic potential of sustainable TiO2-based materials fabricated via flame spray pyrolysis: A comprehensive review. Sustainable Materials and Technologies, 2024, 40, e00826.	3.3	0
152	Novel Processing Methods of Low-Clinker Multi-Component Cementitious Materials—A Review. Applied Sciences (Switzerland), 2024, 14, 899.	2.5	0
153	Selenium-doped carbon materials: synthesis and applications for sustainable technologies. Green Chemistry, 2024, 26, 2985-3020.	9.0	0
154	Combination of ensemble machine learning models in photocatalytic studies using nano TiO2 - Lignin based biochar. Chemosphere, 2024, 352, 141326.	8.2	0
155	Sustainable synthesis: natural processes shaping the nanocircular economy. Environmental Science: Nano, 2024, 11, 688-707.	4.3	0
156	Water-Soluble Hybrid Core–Shell Nanoparticles with Titanium Dioxide Core and Poly(Acrylic Acid) Shell. Polymer Science - Series B, 2023, 65, 974-979.	0.8	0
157	Sustainability, performance, and production perspectives of waste-derived functional carbon nanomaterials towards a sustainable environment: A review. Chemosphere, 2024, 352, 141419.	8.2	0
158	Efficient abatement of organic pollutants by Fe(III)/Fe(II) cycle activating H2O2 with the assistance of sulfurized manganese-supported graphene. Separation and Purification Technology, 2024, 344, 127240.	7.9	0